Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 431: 137127, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37573744

RESUMO

On-site multi-pesticide residues detection is particularly urgent and challenging. Here, we fabricated an enzyme-free ratiometric fluorescent detection system in combination with a hinge-like dual-channel 3D microfluidic paper analytical device (3D µPAD) for simultaneous visual detection of carbaryl and glyphosate. Blue-emission 1-naphthol (Em. 470 nm) was hydrolyzed from carbaryl, while yellow-emission 2,3-diaminophenazine (Em. 570 nm) was produced with the aid of Cu2+ for glyphosate sensing. Inner-filter effect between 1-naphthol or 2,3-diaminophenazine and green-emission carbon dots (Em. 510 nm) realized two ratiometric fluorescent detection systems. Remarkable color variation of green-blue for carbaryl (50.00-1100 µΜ) and yellow-green for glyphosate (5.00-600 µΜ) were observed on a dual-channel 3D µPAD without crosstalk. Their detection limits were 1.11 and 0.63 µΜ, respectively. The strategy realized simultaneous visual detection of carbaryl and glyphosate in food/herbal with excellent accuracy (spiked recoveries, 91.00-107.2%), high precision (RSD ≤ 8.43%), and superior selectivity.


Assuntos
Carbaril , Pontos Quânticos , Corantes Fluorescentes/química , Microfluídica , Pontos Quânticos/química , Carbono/química , Limite de Detecção , Glifosato
2.
Talanta ; 254: 124202, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549139

RESUMO

Herein, we present a novel Origami 3D-µPAD for colorimetric carbaryl detection using a super-efficient catalyst, namely mesoporous silica-platinum nanoparticles coated with a molecularly imprinted polymer (MSN-PtNPs@MIP). Morphological and structural characterization reveals that coating MIP on the MSN-PtNPs surface significantly increases the selective area, leading to larger numbers of imprinting sites for improved sensitivity and selectivity in determining carbaryl. The as-prepared MSN-PtNPs@MIP was used for catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2. Carbaryl selectively binds to the cavities embedded on the MSN-PtNPs surface and subsequently inhibits TMB oxidation leading the color to change to light blue. The change of reaction color from dark blue to light blue depends on the concentration of carbaryl within the 3D-µPAD detection zone. This design integrates the advantages of highly efficient sample delivery through micro channels (top layer) and efficient partition/separation paths (bottom layer) of the cellulose substrate to achieve both improved detection sensitivity and selectivity. Assay on the Origami 3D-µPAD can determine carbaryl by ImageJ detection, over a dynamic range of 0.002-20.00 mg kg-1, with a very low limit of detection at 1.5 ng g-1. The developed 3D-µPAD exhibit high accuracy when applied to detect carbaryl in fruits, with satisfactory recoveries from 90.1% to 104.0% and relative differences from the reference HPLC values less than 5.0%. Furthermore, the fabricated Origami 3D-µPAD provides reliable durability and good reproducibility (3.19% RSD for fifteen devices).


Assuntos
Nanopartículas Metálicas , Impressão Molecular , Carbaril , Polímeros Molecularmente Impressos , Dióxido de Silício/química , Polímeros/química , Platina , Nanopartículas Metálicas/química , Peróxido de Hidrogênio , Microfluídica , Reprodutibilidade dos Testes
3.
Talanta ; 236: 122858, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635242

RESUMO

Chemiluminescence signal amplification (CLSA) is of huge interest because of its sensitive detection in various applications such as food analysis, biomedical diagnosis and environmental monitoring. Due to this, there is a manifold attention to develop rapidly prototyped and miniaturized devices for CLSA. In this context, herein, a novel CLSA approach is demonstrated on a 3D printed microfluidic paper-based analytical device (µPADs), fabricated using Fused deposition modeling (FDM) printing technology. Influence of working temperature, ranging 30 °C-110 °C, on CL signal generation from well-established Luminol/Co+2 - H2O2 reaction was analyzed using a screen-printed flexible heater onto the 3D printed reaction platform. A smartphone-based capturing/detection system provided the amenability for a point-of-care testing system. For the first time, strong and stable CLSA was found with about 255% ± 5% increase in its signal intensity without using any additional external enhancers. The on-site working temperature was directly in proportional to the intensity of CL signal generated from Luminol/Co+2 - H2O2 reaction under optimum conditions, wherein the device had a wide linear range from 50 nM to 1 µM with a detection limit of 35 nM for H2O2 detection. The reliability of the developed amplification method was tested for practicability to detect the concentration of H2O2 in milk as real sample analysis. Overall, such CLSA mechanism in miniaturized µPADs will have strong potential for multiple CL based detection and monitoring application.


Assuntos
Luminescência , Smartphone , Calefação , Peróxido de Hidrogênio , Medições Luminescentes , Microfluídica , Peróxidos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA