Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.556
Filtrar
1.
Small ; : e2402067, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092685

RESUMO

Additive manufacturing (AM) will empower the next breakthroughs in nanotechnology by combining unmatched geometrical freedom with nanometric resolution. Despite recent advances, no micro-AM technique has been able to synthesize functional nanostructures with excellent metal quality and sub-100 nm resolution. Here, significant breakthroughs in electrohydrodynamic redox 3D printing (EHD-RP) are reported by directly fabricating high-purity Cu (>98 at.%) with adjustable voxel size from >6µm down to 50 nm. This unique tunability of the feature size is achieved by managing in-flight solvent evaporation of the ion-loaded droplet to either trigger or prevent the Coulomb explosion. In the first case, the landing of confined droplets on the substrate allows the fabrication of high-aspect-ratio 50 nm-wide nanopillars, while in the second, droplet disintegration leads to large-area spray deposition. It is discussed that the reported pillar width corresponds to the ultimate resolution achievable by EHD printing. The unrivaled feature size and growth rate (>100 voxel s-1) enable the direct manufacturing of 30 µm-tall atom probe tomography (APT) tips that unveil the pristine microstructure and chemistry of the deposit. This method opens up prospects for the development of novel materials for 3D nano-printing.

2.
Technol Health Care ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39093089

RESUMO

BACKGROUND: Current treatments do not support direct exposure of fracture fragments, resulting in the inability to directly observe the articular surface during surgery for accurate reduction and firm fixation. OBJECTIVE: The aim of the study was to explore the treatment effect of digital virtual reduction combined with individualized guide plate of lateral tibial condyle osteotomy on tibial plateau fracture involving the lateral posterior condyle collapse. METHODS: 41 patients with tibial plateau fracture involving the lateral posterior condyle collapse were recruited in the trial. All patients underwent Computed Tomography (CT) scanning before operation. After operation, fracture reduction was evaluated using Rasmussen score and function of knee joint was assessed using hospital for special surgery (HSS) score. RESULTS: 41 patients were followed-up 6-26 months (mean, 15.2 months). Fracture reduction was good after operation, with an average of 13.3 weeks of fracture healing without serious complications. The excellent and good rate was 97.6%. The joint movement degree was -5∘∼0∘∼135∘ with an average of 125.5∘. CONCLUSIONS: Digital virtual reduction combined with individualized guide plate of lateral tibial condyle osteotomy was effectively for treating tibial plateau fracture involving the lateral posterior condyle collapse.

3.
Small ; : e2403525, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087369

RESUMO

Living organisms in nature possess diverse and vibrant structural colors generated from their intrinsic surface micro/nanostructures. These intricate micro/nanostructures can be harnessed to develop a new generation of colorful materials for various fields such as photonics, information storage, display, and sensing. Recent advancements in the fabrication of photonic crystals have enabled the preparation of structurally colored materials with customized geometries using 3D printing technologies. Here, a comprehensive review of the historical development of fabrication methods for photonic crystals is provided. Diverse 3D printing approaches along with the underlying mechanisms, as well as the regulation methods adopted to generate photonic crystals with structural color, are discussed. This review aims to offer the readers an overview of the state-of-the-art 3D printing techniques for photonic crystals, present a guide and considerations to fabricate photonic crystals leveraging different 3D printing methods.

4.
3D Print Med ; 10(1): 28, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110149

RESUMO

INTRODUCTION: Distal locking is a challenging and time-consuming step in interlocked intramedullary nailing of long bone fractures. Current methods have limitations in terms of simplicity, universality, accuracy, speed, and safety. We propose a novel device and software for distal locking using computer vision. METHODS AND MATERIALS: The device consists of an universal ancillary clamp, a telescopic arm, a viewfinder clamp, and a radio-opaque cross. The software uses a camera photo from the C-arm intensifier and adjusts for geometric projection deformities. The software employs edge detection, Hough transform, perspective interpolation, and vector calculation algorithms to locate the distal hole center. The device and software were designed, manufactured, and tested using 3D CAD, FEM, DRR, and performance testing on phantom bones. RESULTS: The device and software showed high accuracy and precision of 98.7% and 99.2% respectively in locating the distal hole center and calculating the correctional vector. The device and software also showed high success ratio in drilling the hole and inserting the screw. The device and software reduced the radiation exposure for the surgeon and the patient. The success ratio of the device and software was validated by the physical testing, which simulated the real clinical scenario of distal locking. The radiation exposure was as low as 5 s with a radiation dose of 0.2mSv, drastically reducing radiation exposure during distal locking. DISCUSSION: Our device and software have several advantages over other distal locking methods, such as simplicity, universality, accuracy, speed, and safety. Our device and software also have some disadvantages, such as reliability and legislation. Our device and software can be compared with other distal locking methods based on these criteria. Our device and software have some limitations and challenges that need to be addressed in the future, such as clinical validation, and regulatory approval. CONCLUSION: The device showed promising results in terms of low-cost, reusability, low radiation exposure, high accuracy, fast distal locking, high stiffness, and adaptability. The device has several advantages over other distal locking techniques, such as free-hand technique, mechanical aiming devices, electromagnetic navigation systems, and computer-assisted systems. We believe that our device and software have the potential to revolutionize the distal locking technique and to improve the outcomes and quality of life of the patients with long bone fractures.

5.
3D Print Med ; 10(1): 29, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110290

RESUMO

INTRODUCTION: The use of three-dimensional (3D) printed anatomic models is steadily increasing in research and as a tool for clinical decision-making. The mechanical properties of polymers and metamaterials were investigated to evaluate their application in mimicking the biomechanics of the aortic vessel wall. METHODOLOGY: Uniaxial tensile tests were performed to determine the elastic modulus, mechanical stress, and strain of 3D printed samples. We used a combination of materials, designed to mimic biological tissues' properties, the rigid VeroTM family, and the flexible Agilus30™. Metamaterials were designed by tessellating unit cells that were used as lattice-reinforcement to tune their mechanical properties. The lattice-reinforcements were based on two groups of patterns, mainly responding to the movement between links/threads (chain and knitted) or to deformation (origami and diamond crystal). The mechanical properties of the printed materials were compared with the characteristics of healthy and aneurysmal aortas. RESULTS: Uniaxial tensile tests showed that the use of a lattice-reinforcement increased rigidity and may increase the maximum stress generated. The pattern and material of the lattice-reinforcement may increase or reduce the strain at maximum stress, which is also affected by the base material used. Printed samples showed max stress ranging from 0.39 ± 0.01 MPa to 0.88 ± 0.02 MPa, and strain at max stress ranging from 70.44 ± 0.86% to 158.21 ± 8.99%. An example of an application was created by inserting a metamaterial designed as a lattice-reinforcement on a model of the aorta to simulate an abdominal aortic aneurysm. CONCLUSION: The maximum stresses obtained with the printed models were similar to those of aortic tissue reported in the literature, despite the fact that the models did not perfectly reproduce the biological tissue behavior.

6.
J Am Coll Radiol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117182

RESUMO

OBJECTIVE: To report data from the first three years of operation of the RSNA-ACR 3D Printing Registry. METHODS: Data from June 2020 to June 2023 was extracted, including demographics, indications, workflow and user assessments. Clinical indications were stratified by 12 organ systems. Imaging modalities, printing technologies and number of parts per case were assessed. Effort data was analyzed, dividing staff into provider and non-provider categories. The opinions of clinical users were evaluated through a Likert-scale questionnaire, and estimates of procedure time saved were collected. RESULTS: A total of 20 sites and 2,637 cases were included, consisting of 1,863 anatomic models and 774 anatomic guides. Mean patient age for models and guides was 42.4 ± 24.5 years and 56.3 ± 18.5 years respectively. Cardiac models were the most common type of models (27.2%), and neurologic guides were the most common type of guides (42.4%). Material jetting, vat photopolymerization and material extrusion were the most common printing technologies used overall (85.6% of all cases). On average, providers spent 92.4 minutes and non-providers spent 335.0 minutes per case. Providers spent most time on consultation (33.6 minutes), while non-providers focused most on segmentation (148.0 minutes). Confidence in treatment plans increased after using 3D printing (p<.001). Estimated procedure time savings for 155 cases was 40.5 ± 26.1 minutes. CONCLUSION: 3D printing is performed in healthcare facilities for many clinical indications. The registry provides insight into the technologies and workflows used to create anatomic models and guides, and the data shows clinical benefits from 3D printing.

7.
Dent Mater ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39117501

RESUMO

OBJECTIVES: 3D printing found its way into various medical applications and could be particularly beneficial for dentistry. Currently, materials for 3D printing of occlusal splints lack mechanical strength compared to polymethyl methacrylate (PMMA) used for standard milling of occlusal splints. It is known that print orientation and graphene nanoplatelets (GNP) can increase biaxial strength in a variety of materials. Thus, the aim of this study was to assess if adjustment of print orientation and addition of GNP improve biaxial strength and if they affect cytotoxicity of a 3D printable resin for occlusal splints. METHODS: Specimens were printed vertically and horizontally with a stereolithography (SLA) printer and multilayered GNP powder was added to the resin at different concentrations. Printed specimens were characterized by Raman spectroscopy, optical profilometer analysis and scanning electron microscopy. Biaxial strength was evaluated by biaxial flexural testing. Cytotoxicity of specimens on L929 and gingival stromal cells (GSC) was assessed by the toxdent test, the resazurin-based toxicity assay and live-dead staining. RESULTS: Horizontally printed specimens showed significantly higher biaxial strength and lower deformation. GNP did not improve biaxial strength and material deformation of 3D-printed resins. None of the specimens were cytotoxic to L929 cells or GSC. SIGNIFICANCE: Print orientation in SLA printing has a significant impact on biaxial strength and material deformation. 3D printable materials can reach comparable or even improved biaxial strength compared to PMMA when using the optimal print orientation while GNP has no beneficial effects on the biaxial strength of resins for 3D printing of occlusal splints.

8.
Small Methods ; : e2400831, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118579

RESUMO

Focus on advancement of energy storage has now turned to curbing carbon emissions in the transportation sector by adopting electric vehicles (EVs). Technological advancements in lithium-ion batteries (LIBs), valued for their lightweight and high capacity, are critical to making this switch a reality. Integrating structurally enhanced LIBs directly into vehicular design tackles two EV limitations: vehicle range and weight. In this study, 3D-carbon (3D-C) lattices, prepared with an inexpensive stereolithography-type 3D printer followed by carbonization, are proposed as scaffolds for Li metal anodes for structural LIBs. Mechanical stability tests revealed that the 3D-C lattice can withstand a maximum stress of 5.15 ± 0.15 MPa, which makes 3D-C lattices an ideal candidate for structural battery electrodes. Symmetric cell tests show the superior cycling stability of 3D-C scaffolds compared to conventional bare Cu foil current collectors. When 3D-C scaffolds are used, a small overpotential (≈0.075 V) is retained over 100 cycles at 1 mA cm-2 for 3 mAh cm-2, while the overpotential of a bare Cu symmetric cell is unstable and increased to 0.74 V at the 96th cycle. The precisely oriented internal pores of the 3D-C lattice confine lithium metal deposits within the 3D scaffold, effectively preventing short circuits.

9.
Adv Sci (Weinh) ; : e2404679, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120556

RESUMO

Flexible electrochromic devices (FECDs) are widely explored for diverse applications including wearable electronics, camouflage, and smart windows. However, the manufacturing process of patterned FECDs remains complex, costly, and non-customizable. To address this challenge, a strategy is proposed to prepare integrated FECDs via multi-material direct writing 3D printing. By designing novel viologen/polyvinyl alcohol (PVA) hydrogel inks and systematically evaluating the printability of various inks, seamless interface integration can be achieved, enabling streamlined manufacturing of patterned FECDs with continuous production capabilities. The resultant 3D-printed FECDs exhibit excellent electrochromic and mechanical properties, including high optical contrast (up to 54% at 360 nm), nice cycling stability (less than 5% electroactivity reduction after 10 000 s), and mechanical stability (less than 19% optimal contrast decrease after 5000 cycles of bending). The potential applications of these 3D-printed hydrogel-based FECDs are further demonstrated in wearable electronics, camouflage, and smart windows.

10.
Surg Radiol Anat ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120797

RESUMO

PURPOSE: The aim of this study was to find an alternative method to meet traditional human anatomy teaching and clinical needs in order to solve the problem of cranial specimen attrition and specimen resource shortage due to long-term use. METHODS: We performed a computed tomography (CT) scan of a well-preserved male cranial specimen and used Mimics 19.0 software for 3D reconstruction and cranial block separation. Subsequently, we compared the recognition ability of the processed cranial digital model with that of the 3D body digital model and used 3D printing to create the cranial model and compare it with the physical specimen. RESULTS: Twenty-two cranial bone block models were obtained, excluding the hyoid bone. Their 3D reconstructed digital models had better bony landmark recognition than the 3D body human digital models, and the differences between the 3D printed models and the physical specimens were minimal. In addition, only one stereolithography (STL) file was required to produce the cranial models, which facilitates repetitive printing at any time. CONCLUSION: By isolating cranial bone blocks through 3D reconstruction techniques and preparing high-quality cranial models in combination with 3D printing techniques, this study solves the problem of shortage of cranial teaching specimens for the sustainable development of clinical and medical schools.

11.
3D Print Med ; 10(1): 26, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102099

RESUMO

BACKGROUND: . Mitral transcatheter edge-to-edge repair (m-TEER) is a minimally invasive procedure for treating mitral regurgitation (MR). m-TEER is a highly technical procedure, and a steep learning curve needs to be overcome for operators to ensure optimal patient outcomes and minimise procedural complications. Training via online simulation and observation of procedures is not sufficient to establish operator confidence; thus, advanced hands-on training modalities need to be explored and developed. METHODS: . In this study, a novel anatomical simulator for m-TEER training was evaluated in comparison to a standard model. The proposed simulator resembled the anatomical features of the right and left atrium, left ventricle and mitral valve apparatus. Participants in the questionnaire (n = 18) were recruited across 4 centres in London with (n = 8) and without (n = 10) prior experience in m-TEER. Participants were asked to simulate procedures on both an idealised, routinely used simulator and the newly proposed anatomical model. The questionnaire was designed to assess (i) participants' confidence before and after training and (ii) the realism of the model in the context of the m-TEER procedure. The results of the questionnaires were collected, and statistical analysis (t-test) was performed. RESULTS: . Both models were equally beneficial in increasing operator confidence before and after the simulation of the intervention (P = 0.43). However, increased confidence after training with the anatomical model was recorded (P = 0.02). Participants with prior experience with m-TEER therapy were significantly more confident about the procedure after training with the anatomical model than participants who had no prior experience (P = 0.002). On average, all participants thought that the anatomical model was effective as a training simulator (P = 0.013) and should be integrated into routine training (P = 0.015)). Participants with experience thought that the anatomical model was more effective at reproducing the m-TEER procedure than the idealised model (P = 0.03). CONCLUSIONS: . This study showed how a more realistic simulator can be used to improve the effectiveness of m-TEER procedural training. Such pilot results suggest planning future and large investigations to evaluate improvements in clinical practice.

12.
Radiol Case Rep ; 19(9): 4091-4099, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39104452

RESUMO

Parosteal osteosarcomas are uncommon malignant bone tumors that arise from the bone surface. Their heterogenous components can present challenges in diagnosis. We present a case of a rare variant of this tumor known as an osteochondroma-like parosteal osteosarcoma, which was initially misdiagnosed as a cartilaginous tumor on core needle biopsy. Surgical resection of the tumor ultimately allowed for definitive diagnosis. Our case demonstrates the limitations of needle biopsy in diagnosing variants of parosteal osteosarcoma and the vital role of multidisciplinary discussions in guiding diagnosis and treatment. Furthermore, our case utilizes 3-dimensional printing technology in the surgical treatment, and illustrates the recent advances in patient-specific surgical techniques.

13.
HardwareX ; 19: e00550, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39104615

RESUMO

The operation of microfluidic devices requires precise and constant fluid flow. Microfluidic systems in low-resource settings require a portable, inexpensive, and electricity-free pumping approach due to the rising demand for microfluidics in point-of-care testing (POCT). Open-source alternatives, employing 3D printing and motors, offer affordability. However, using motors require electrical power, which often relies on external sources, hindering the on-site use of open-source pumps. This study introduces a spring-driven, 3D-printed syringe pump, eliminating the need for an external power source. The syringe pump is operated by the flat spiral spring's torque. By manually winding up the mainspring, the syringe pump can be operated without electricity. Various flow rates can be achieved by utilizing different syringe sizes and choosing the right gear combinations. All the parts of the syringe pump can be fabricated by 3D printing, requiring no additional components that require electricity. It operates by winding a mainspring and is user-friendly, allowing flow rate adjustments by assembling gears that modulate syringe plunger pushing velocity. The fabrication cost is $25-30 and can be assembled easily by following the instructions. We expect that the proposed syringe pump will enable the utilization of microfluidic technologies in resource-limited settings, promoting the adoption of microfluidics. Detailed information and results are available in the original research paper (https://doi.org/10.1016/j.snb.2024.135289).

14.
Front Bioeng Biotechnol ; 12: 1432587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104631

RESUMO

Introduction: Intervertebral disk degeneration is a growing problem in our society. The degeneration of the intervertebral disk leads to back pain and in some cases to a herniated disk. Advanced disk degeneration can be treated surgically with either a vertebral body fusion or a disk prosthesis. Vertebral body fusion is currently considered the gold standard of surgical therapy and is clearly superior to disk prosthesis based on the number of cases. The aim of this work was the 3D printing of Gyroid structures and the determination of their mechanical properties in a biomechanical feasibility study for possible use as an intervertebral disc prosthesis. Material and methods: Creo Parametric 6.0.6.0 was used to create models with various Gyroid properties. These were printed with the Original Prusa i3 MK3s+. Different flexible filaments (TPU FlexHard and TPU FlexMed, extrudr, Lauterach, Austria) were used to investigate the effects of the filament on the printing results and mechanical properties of the models. Characterization was carried out by means of microscopy and tension/compression testing on the universal testing machine. Results: The 3D prints with the FlexHard and FlexMid filament went without any problems. No printing errors were detected in the microscopy. The mechanical confined compression test resulted in force-deformation curves of the individual printed models. This showed that changing the Gyroid properties (increasing the wall thickness or density of the Gyroid) leads to changes in the force-deformation curves and thus to the mechanical properties. Conlcusion: The flexible filaments used in this work showed good print quality after the printing parameters were adjusted. The mechanical properties of the discs were also promising. The parameters Gyroid volume, wall thickness of the Gyroid and the outer wall played a decisive role for both FlexMed and FlexHard. All in all, the Gyroid structured discs (Ø 50 mm) made of TPU represent a promising approach with regard to intervertebral disc replacement. We would like to continue to pursue this approach in the future.

15.
JOR Spine ; 7(3): e1363, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39104832

RESUMO

Background: Mechanical augmentation upon implantation is essential for the long-term success of tissue-engineered intervertebral discs (TE-IVDs). Previous studies utilized stiffer materials to fabricate TE-IVD support structures. However, these materials undergo various failure modes in the mechanically challenging IVD microenvironment. FlexiFil (FPLA) is an elastomeric 3D printing filament that is amenable to the fabrication of support structures. However, no present study has evaluated the efficacy of a flexible support material to preserve disc height and support the formation of hydrated tissues in a large animal model. Methods: We leveraged results from our previously developed FE model of the minipig spine to design and test TE-IVD support cages comprised of FPLA and PLA. Specifically, we performed indentation to assess implant mechanical response and scanning electron microscopy to visualize microscale damage. We then implanted FPLA and PLA support cages for 6 weeks in the minipig cervical spine and monitored disc height via weekly x-rays. TE-IVDs cultured in FPLA were also implanted for 6 weeks with weekly x-rays and terminal T2 MRIs to quantify tissue hydration at study endpoint. Results: Results demonstrated that FPLA cages withstood nearly twice the deformation of PLA without detrimental changes in mechanical performance and minimal damage. In vivo, FPLA cages and stably implanted TE-IVDs restored native disc height and supported the formation of hydrated tissues in the minipig spine. Displaced TE-IVDs yielded disc heights that were superior to PLA or discectomy-treated levels. Conclusions: FPLA holds great promise as a flexible and bioresorbable material for enhancing the long-term success of TE-IVD implants.

16.
Forensic Sci Int ; 363: 112157, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39106595

RESUMO

This paper highlights how micro-CT was used to assist in the investigation of hybrid firearms constructed using a mixture of plastic and metal components, as a complementary technique to the physical examination performed by firearms experts. In recent years, there has been an increase in the complexity and sophistication of 3D printed and hybrid firearm designs. This was also the case in the investigation presented herein, with the firearms seized demonstrating a step change in the threat level they pose through their complexity. Thus, we describe how data produced from micro-CT scans was used to help firearms experts study the viability and mechanics of two hybrid weapons prior to dismantling and test-firing. This process aided experts in determining whether components were 3D printed or manufactured through other means, whilst ensuring that a digital record (digital twin) was retained in case evidence was damaged during testing. Finally, we show how the data was presented visually through animations and as evidence in court. This proved to be imperative when communicating to the judge, jury, and wider investigating teams, the complex multiple components and mechanisms within the firearms.

17.
Food Chem ; 460(Pt 3): 140720, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39106754

RESUMO

Personalized three-dimensional (3D) printed foods rich in probiotics were investigated. Lactiplantibacillus plantarum (Lp), as a representative of probiotics, was used to investigate the 3D printing of probiotic-rich dysphagia foods. Here, whey protein isolate nanofibrils (WPNFs) were coated and anchored on bacterial surfaces via biointerfacial supramolecular self-assembly, providing protection against environmental stress and the 3D printing process. The optimized composite gels consisting of High acyl gellan gum (0.25 g), whey protein isolate (1.25 g), fructooligosaccharides (0.75 g), Lp-WPNFs-Glyceryl tributyrate emulsion (Φ = 40%, 3.75 mL) can realize 3D printing, and exhibit high resolution, and stable shape. The viable cell count is higher than 8.0 log CFU/g. They are particularly suitable for people with dysphagia and are classified as level 5-minced & moist in the international dysphagia diet standardization initiative framework. The results provide new insights into the development of WPNFs-coating on bacterial surfaces to deliver probiotics and 3D printed food rich in probiotics.

18.
Microsc Microanal ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107244

RESUMO

Cryo-transfer stations are essential tools in the field of cryo-electron microscopy, enabling the safe transfer of frozen vitreous samples between different stages of the workflow. However, existing cryo-transfer stations are typically configured for only the two most popular sample holder geometries and are not commercially available for all electron microscopes. Additionally, they are expensive and difficult to customize, which limits their accessibility and adaptability for research laboratories. Here, we present a new modular cryo-transfer station that addresses these limitations. The station is composed entirely of 3D-printed and off the shelf parts, allowing it to be reconfigured to a fit variety of microscopes and experimental protocols. We describe the design and construction of the station and report on the results of testing the cryo-transfer station, including its ability to maintain cryogenic temperatures and transfer frozen vitreous samples as demonstrated by vibrational spectroscopy. Our findings demonstrate that the cryo-transfer station performs comparably to existing commercial models, while offering greater accessibility and customizability. The design for the station is open source to encourage other groups to replicate and build on this development. We hope that this project will increase access to cryo-transfer stations for researchers in a variety of disciplines with nonstandard equipment.

19.
Artigo em Inglês | MEDLINE | ID: mdl-39109582

RESUMO

BACKGROUND: This case report demonstrates the effective clinical application of a 3D-printed, patient-specific polycaprolactone (PCL) resorbable scaffold for staged alveolar bone augmentation. OBJECTIVE: To evaluate the effectiveness of a 3D-printed PCL scaffold in facilitating alveolar bone regeneration and subsequent dental implant placement. MATERIALS AND METHODS: A 46-year-old man with a missing tooth (11) underwent staged alveolar bone augmentation using a patient-specific PCL scaffold. Volumetric bone gain and implant stability were assessed. Histological analysis was conducted to evaluate new bone formation and graft integration. RESULTS: The novel approach resulted in a volumetric bone gain of 364.69 ± 2.53 mm3, sufficient to reconstruct the original alveolar bone contour and permit dental implant placement. Histological analysis showed new bone presence and successful graft integration across all defect zones (coronal, medial, and apical), with continuous new bone formation around and between graft particles. The dental implant achieved primary stability at 35 Ncm-1, indicating the scaffold's effectiveness in promoting bone regeneration and supporting implant therapy. The post-grafting planned implant position deviated overall by 2.4° compared with the initial restoratively driven implant plan pre-bone augmentation surgery. The patient reported low average daily pain during the first 48 h and no pain from Day 3. CONCLUSIONS: This proof-of-concept underscores the potential of 3D-printed scaffolds in personalized dental reconstruction and alveolar bone regeneration. It marks a significant step forward in integrating additive manufacturing technologies into clinical practice through a scaffold-guided bone regeneration (SGBR) approach. The trial was registered with the Australian New Zealand Clinical Trials Registry (ACTRN12622000118707p).

20.
Laryngoscope Investig Otolaryngol ; 9(4): e1309, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39108945

RESUMO

Objectives: With rapid advances in ultrasound-guided procedures, there is an unmet need for echogenic phantoms with sufficient anatomical details for artificial intelligence and ultrasound-guided device testing. We developed a method for creating neck phantoms for novel otolaryngology-related device testing. To achieve accurate representation of the anatomy, we utilized CT scans and 3D printing technology to create customized agar molds, thus providing high-fidelity yet cost-effective tools. Methods: Based on previous studies, the key components in our neck phantom include the cervical vertebrae, trachea, common carotid arteries, internal jugular veins, thyroid gland, and surrounding soft tissue. Open-source image analysis software were employed to process CT data to generate high fidelity 3D models of the target structures. Resin molds were 3D printed and filled with various agar mixtures to mimic anatomical echogenicity. Results: Following the method proposed, we successfully assembled the neck phantom which provided a detailed representation of the target structures. To evaluate the results, ultrasound data was collected on the phantom and living tissue and analyzed with ImageJ. We were able to demonstrate echogenicity comparable to that of living tissue. Conclusion: The proposed method for building neck phantoms with detailed anatomical features offers a valuable, detailed, low-cost tool for medical training and device testing in otolaryngology, particularly for novel devices that involve artificial intelligence (AI) guidance and robotic-based needle insertion. Additional anatomical refinements and validation studies could further enhance the consistency and accuracy, thus paving the way for future advancements in ultrasound training and research, and ultimately benefiting patient care and safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA