Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Sci Rep ; 14(1): 18308, 2024 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112681

RESUMO

Late gadolinium enhancement (LGE) is a widely used magnetic resonance imaging method for assessing cardiac disease. However, the relationship between different LGE signal thresholds and microscopic tissue staining images is unclear. In this study, we performed cardiovascular MRI on myocardial infarction (MI) model rats and evaluated the relationship between LGE with different signal thresholding methods and tissue staining images. We prepared 16 rats that underwent MRI 14-18 days following a surgery to create an MI model. We captured cine and LGE images of the cardiac short-axis and longitudinal two- and four-chamber views. The mean ± 2SD, ± 3SD, and ± 5SD of the pixel values in the non-infarcted area were defined as the LGE area. We compared areas of Sirius red staining, determined by the color tone, with their respective LGE areas at end-diastole and end-systole. We observed that the LGE area calculated as the mean ± 2SD of the non-infarcted area at end-diastole demonstrated a significant positive correlation with the area of Sirius red staining (Pearson's correlation coefficient in both: 0.81 [p < 0.01]). Therefore, the LGE area calculated as the mean ± 2SD of the non-infarcted area at end-diastole best reflected the MI area in tissue staining.


Assuntos
Meios de Contraste , Modelos Animais de Doenças , Gadolínio , Imageamento por Ressonância Magnética , Infarto do Miocárdio , Animais , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Ratos , Imageamento por Ressonância Magnética/métodos , Masculino , Coloração e Rotulagem/métodos , Miocárdio/patologia , Ratos Sprague-Dawley
2.
J Peripher Nerv Syst ; 29(3): 368-375, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39056278

RESUMO

BACKGROUND AND AIMS: Histopathological diagnosis is the gold standard in many acquired inflammatory, infiltrative and amyloid based peripheral nerve diseases and a sensory nerve biopsy of sural or superficial peroneal nerve is favoured where a biopsy is deemed necessary. The ability to determine nerve pathology by high-resolution imaging techniques resolving anatomy and imaging characteristics might improve diagnosis and obviate the need for biopsy in some. The sural nerve is anatomically variable and occasionally adjacent vessels can be sent for analysis in error. Knowing the exact position and relationships of the nerve prior to surgery could be clinically useful and thus reliably resolving nerve position has some utility. METHODS: 7T images of eight healthy volunteers' (HV) right ankle were acquired in a pilot study using a double-echo in steady-state sequence for high-resolution anatomy images. Magnetic Transfer Ratio images were acquired of the same area. Systematic scoring of the sural, tibial and deep peroneal nerve around the surgical landmark 7 cm from the lateral malleolus was performed (number of fascicles, area in voxels and mm2, diameter and location relative to nearby vessels and muscles). RESULTS: The sural and tibial nerves were visualised in the high-resolution double-echo in steady-state (DESS) image in all HV. The deep peroneal nerve was not always visualised at level of interest. The MTR values were tightly grouped except in the sural nerve where the nerve was not visualised in two HV. The sural nerve location was found to be variable (e.g., lateral or medial to, or crossing behind, or found positioned directly posterior to the saphenous vein). INTERPRETATION: High-resolution high-field images have excellent visualisation of the sural nerve and would give surgeons prior knowledge of the position before surgery. Basic imaging characteristics of the sural nerve can be acquired, but more detailed imaging characteristics are not easily evaluable in the very small sural and further developments and specific studies are required for any diagnostic utility at 7T.


Assuntos
Voluntários Saudáveis , Imageamento por Ressonância Magnética , Nervo Sural , Humanos , Nervo Sural/anatomia & histologia , Nervo Sural/diagnóstico por imagem , Adulto , Masculino , Feminino , Projetos Piloto , Adulto Jovem , Nervo Fibular/diagnóstico por imagem , Nervo Fibular/anatomia & histologia
3.
J Magn Reson Imaging ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058248

RESUMO

BACKGROUND: Deuterium metabolic imaging (DMI) is an innovative, noninvasive metabolic MR imaging method conducted after administration of 2H-labeled substrates. DMI after [6,6'-2H2]glucose consumption has been used to investigate brain metabolic processes, but the impact of different [6,6'-2H2]glucose doses on DMI brain data is not well known. PURPOSE: To investigate three different [6,6'-2H2]glucose doses for DMI in the human brain at 7 T. STUDY TYPE: Prospective. POPULATION: Six healthy participants (age: 28 ± 8 years, male/female: 3/3). FIELD STRENGTH/SEQUENCE: 7 T, 3D 2H free-induction-decay (FID)-magnetic resonance spectroscopic imaging (MRSI) sequence. ASSESSMENT: Three subjects received two different doses (0.25 g/kg, 0.50 g/kg or 0.75 g/kg body weight) of [6,6'-2H2]glucose on two occasions and underwent consecutive 2H-MRSI scans for 120 minutes. Blood was sampled every 10 minutes during the scan, to determine plasma glucose levels and plasma 2H-Glucose atom percent excess (APE) (part-1). Three subjects underwent the same protocol once after receiving 0.50 g/kg [6,6'-2H2]glucose (part-2). STATISTICAL TEST: Mean plasma 2H-Glucose APE and glucose plasma concentrations were compared using one-way ANOVA. Brain 2H-Glc and brain 2H-Glx (part-1) were analyzed with a two-level Linear Mixed Model. In part-2, a General Linear Model was used to compare brain metabolite signals. Statistical significance was set at P < 0.05. RESULTS: Between 60 and 100 minutes after ingesting [6,6'-2H2]glucose, plasma 2H-Glc APE did not differ between 0.50 g/kg and 0.75 g/kg doses (P = 0.961), but was significantly lower for 0.25 g/kg. Time and doses significantly affected brain 2H-Glucose levels (estimate ± standard error [SE]: 0.89 ± 0.01, 1.09 ± 0.01, and 1.27 ± 0.01, for 0.25 g/kg, 0.50 g/kg, and 0.75 g/kg, respectively) and brain 2H-Glutamate/Glutamine levels (estimate ± SE: 1.91 ± 0.03, 2.27 ± 0.03, and 2.46 ± 0.03, for 0.25 g/kg, 0.50 g/kg, and 0.75 g/kg, respectively). Plasma 2H-Glc APE, brain 2H-Glc, and brain 2H-Glx levels were comparable among subjects receiving 0.50 g/kg [6,6'-2H2]glucose. DATA CONCLUSION: Brain 2H-Glucose and brain 2H-Glutamate/Glutamine showed to be [6,6'-2H2]glucose dose dependent. A dose of 0.50 g/kg demonstrated comparable, and well-detectable, 2H-Glucose and 2H-Glutamate/Glutamine signals in the brain. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.

4.
J Cereb Blood Flow Metab ; : 271678X241260629, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863151

RESUMO

Enlarged perivascular spaces (EPVS) are common in cerebral small vessel disease (CSVD) and have been identified as a marker of dysfunctional brain clearance. However, it remains unknown if the enlargement occurs predominantly around arteries or veins. We combined in vivo ultra-high-resolution MRI and histopathology to investigate the spatial relationship of veins and arteries with EPVS within the basal ganglia (BG). Furthermore, we assessed the relationship between the EPVS and measures of blood-flow (blood-flow velocity, pulsatility index) in the small arteries of the BG. Twenty-four healthy controls, twelve non-CAA CSVD patients, and five probable CAA patients underwent a 3 tesla [T] and 7T MRI-scan, and EPVS, arteries, and veins within the BG were manually segmented. Furthermore, the scans were co-registered. Six autopsy-cases were also assessed. In the BG, EPVS were significantly closer to and overlapped more frequently with arteries than with veins. Histological analysis showed a higher proportion of BG EPVS surrounding arteries than veins. Finally, the pulsatility index of BG arteries correlated with EPVS volume. Our results are in line with previous works and establish a pathophysiological relationship between arteries and EPVS, contributing to elucidating perivascular clearance routes in the human brain.

5.
J Neuroimaging ; 34(4): 451-458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38778455

RESUMO

BACKGROUND AND PURPOSE: Slowly expanding lesions (SELs) are thought to represent a subset of chronic active lesions and have been associated with clinical disability, severity, and disease progression. The purpose of this study was to characterize SELs using advanced magnetic resonance imaging (MRI) measures related to myelin and neurite density on 7 Tesla (T) MRI. METHODS: The study design was retrospective, longitudinal, observational cohort with multiple sclerosis (n = 15). Magnetom 7T scanner was used to acquire magnetization-prepared 2 rapid acquisition gradient echo and advanced MRI including visualization of short transverse relaxation time component (ViSTa) for myelin, quantitative magnetization transfer (qMT) for myelin, and neurite orientation dispersion density imaging (NODDI). SELs were defined as lesions showing ≥12% of growth over 12 months on serial MRI. Comparisons of quantitative measures in SELs and non-SELs were performed at baseline and over time. Statistical analyses included two-sample t-test, analysis of variance, and mixed-effects linear model for MRI metrics between lesion types. RESULTS: A total of 1075 lesions were evaluated. Two hundred twenty-four lesions (21%) were SELs, and 216 (96%) of the SELs were black holes. At baseline, compared to non-SELs, SELs showed significantly lower ViSTa (1.38 vs. 1.53, p < .001) and qMT (2.47 vs. 2.97, p < .001) but not in NODDI measures (p > .27). Longitudinally, only ViSTa showed a greater loss when comparing SEL and non-SEL (p = .03). CONCLUSIONS: SELs have a lower myelin content relative to non-SELs without a difference in neurite measures. SELs showed a longitudinal decrease in apparent myelin water fraction reflecting greater tissue injury.


Assuntos
Imageamento por Ressonância Magnética , Esclerose Múltipla , Bainha de Mielina , Humanos , Feminino , Masculino , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Imageamento por Ressonância Magnética/métodos , Estudos Longitudinais , Adulto , Pessoa de Meia-Idade , Bainha de Mielina/patologia , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Progressão da Doença , Reprodutibilidade dos Testes
6.
Heliyon ; 10(9): e30006, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694075

RESUMO

Background: Wall shear stress (WSS) has been proved to be related to the formation, development and rupture of intracranial aneurysms. Aneurysm wall enhancement (AWE) on magnetic resonance imaging (MRI) can be caused by inflammation and have confirmed its relationship with low WSS. High WSS can also result in inflammation but the research of its correlation with AWE is lack because of the focus on large aneurysms limited by 3T MRI in most previous studies.This study aimed to assess the potential association between high or low WSS and AWE in different aneuryms. Especially the relationship between high WSS and AWE in small aneurysm. Methods: Forty-three unruptured intracranial aneurysms in 42 patients were prospectively included for analysis. 7.0 T MRI was used for imaging. Aneurysm size was measured on three-dimensional time-of-flight (TOF) images. Aneurysm-to-pituitary stalk contrast ratio (CRstalk) was calculated on post-contrast black-blood T1-weighted fast spin echo sequence images. Hemodynamics were assessed by four-dimensional flow MRI. Results: The small aneurysms group had more positive WSS-CRstalk correlation coefficient distribution (dome: 78.6 %, p = 0.009; body: 50.0 %, p = 0.025), and large group had more negative coefficient distribution (dome: 44.8 %, p = 0.001; body: 69.0 %, p = 0.002). Aneurysm size was positively correlated with the significant OSI-CRstalk correlation coefficient at the dome (p = 0.012) and body (p = 0.010) but negatively correlated with the significant WSS-CRstalk correlation coefficient at the dome (p < 0.001) and body (p = 0.017). Conclusion: AWE can be mediated by both high and low WSS, and translate from high WSS- to low WSS-mediated pathways as size increase. Additionally, AWE may serve as an indicator of the stage of aneurysm development via different correlations with hemodynamic factors.

7.
Curr Biol ; 34(10): 2265-2271.e4, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38697110

RESUMO

Popular accounts of mind and brain propose that the brain continuously forms predictions about future sensory inputs and combines predictions with inputs to determine what we perceive.1,2,3,4,5,6 Under "predictive processing" schemes, such integration is supported by the hierarchical organization of the cortex, whereby feedback connections communicate predictions from higher-level deep layers to agranular (superficial and deep) lower-level layers.7,8,9,10 Predictions are compared with input to compute the "prediction error," which is transmitted up the hierarchy from superficial layers of lower cortical regions to the middle layers of higher areas, to update higher-level predictions until errors are reconciled.11,12,13,14,15 In the primary visual cortex (V1), predictions have thereby been proposed to influence representations in deep layers while error signals may be computed in superficial layers. Despite the framework's popularity, there is little evidence for these functional distinctions because, to our knowledge, unexpected sensory events have not previously been presented in human laminar paradigms to contrast against expected events. To this end, this 7T fMRI study contrasted V1 responses to expected (75% likely) and unexpected (25%) Gabor orientations. Multivariate decoding analyses revealed an interaction between expectation and layer, such that expected events could be decoded with comparable accuracy across layers, while unexpected events could only be decoded in superficial laminae. Although these results are in line with these accounts that have been popular for decades, such distinctions have not previously been demonstrated in humans. We discuss how both prediction and error processes may operate together to shape our unitary perceptual experiences.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Masculino , Percepção Visual/fisiologia , Adulto , Feminino , Córtex Visual Primário/fisiologia , Adulto Jovem , Córtex Visual/fisiologia
8.
Med Phys ; 51(6): 4380-4388, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38630982

RESUMO

BACKGROUND: 7 Tesla (7T) apparent diffusion coefficient (ADC) maps derived from diffusion-weighted imaging (DWI) demonstrate improved image quality and spatial resolution over 3 Tesla (3T) ADC maps. However, 7T magnetic resonance imaging (MRI) currently suffers from limited clinical unavailability, higher cost, and increased susceptibility to artifacts. PURPOSE: To address these issues, we propose a hybrid CNN-transformer model to synthesize high-resolution 7T ADC maps from multimodal 3T MRI. METHODS: The Vision CNN-Transformer (VCT), composed of both Vision Transformer (ViT) blocks and convolutional layers, is proposed to produce high-resolution synthetic 7T ADC maps from 3T ADC maps and 3T T1-weighted (T1w) MRI. ViT blocks enabled global image context while convolutional layers efficiently captured fine detail. The VCT model was validated on the publicly available Human Connectome Project Young Adult dataset, comprising 3T T1w, 3T DWI, and 7T DWI brain scans. The Diffusion Imaging in Python library was used to compute ADC maps from the DWI scans. A total of 171 patient cases were randomly divided into 130 training cases, 20 validation cases, and 21 test cases. The synthetic ADC maps were evaluated by comparing their similarity to the ground truth volumes with the following metrics: peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and mean squared error (MSE). In addition, RESULTS: The results are as follows: PSNR: 27.0 ± 0.9 dB, SSIM: 0.945 ± 0.010, and MSE: 2.0E-3 ± 0.4E-3. Both qualitative and quantitative results demonstrate that VCT performs favorably against other state-of-the-art methods. We have introduced various efficiency improvements, including the implementation of flash attention and training on 176×208 resolution images. These enhancements have resulted in the reduction of parameters and training time per epoch by 50% in comparison to ResViT. Specifically, the training time per epoch has been shortened from 7.67 min to 3.86 min. CONCLUSION: We propose a novel method to predict high-resolution 7T ADC maps from low-resolution 3T ADC maps and T1w MRI. Our predicted images demonstrate better spatial resolution and contrast compared to 3T MRI and prediction results made by ResViT and pix2pix. These high-quality synthetic 7T MR images could be beneficial for disease diagnosis and intervention, producing higher resolution and conformal contours, and as an intermediate step in generating synthetic CT for radiation therapy, especially when 7T MRI scanners are unavailable.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Humanos , Imagem de Difusão por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética
9.
J Neurotrauma ; 41(13-14): 1533-1549, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38481124

RESUMO

Sports-related concussions may cause white matter injuries and persistent post-concussive symptoms (PPCS). We hypothesized that athletes with PPCS would have neurocognitive impairments and white matter abnormalities that could be revealed by advanced neuroimaging using ultra-high field strength diffusion tensor (DTI) and diffusion kurtosis (DKI) imaging metrics and cerebrospinal fluid (CSF) biomarkers. A cohort of athletes with PPCS severity limiting the ability to work/study and participate in sport school and/or social activities for ≥6 months completed 7T magnetic resonance imaging (MRI) (morphological T1-weighed volumetry, DTI and DKI), extensive neuropsychological testing, symptom rating, and CSF biomarker sampling. Twenty-two athletes with PPCS and 22 controls were included. Concussed athletes performed below norms and significantly lower than controls on all but one of the psychometric neuropsychology tests. Supratentorial white and gray matter, as well as hippocampal volumes did not differ between concussed athletes and controls. However, of the 72 examined white matter tracts, 16% of DTI and 35% of DKI metrics (in total 28%) were significantly different between concussed athletes and controls. DKI fractional anisotropy and axial kurtosis were increased, and DKI radial diffusivity and radial kurtosis decreased in concussed athletes when compared with controls. CSF neurofilament light (NfL; an axonal injury marker), although not glial fibrillary acidic protein, correlated with several diffusion metrics. In this first 7T DTI and DKI study investigating PPCS, widespread microstructural alterations were observed in the white matter, correlating with CSF markers of axonal injury. More white matter changes were observed using DKI than using DTI. These white matter alterations may indicate persistent pathophysiological processes following concussion in sport.


Assuntos
Atletas , Traumatismos em Atletas , Concussão Encefálica , Substância Branca , Humanos , Masculino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Feminino , Traumatismos em Atletas/diagnóstico por imagem , Traumatismos em Atletas/patologia , Traumatismos em Atletas/complicações , Traumatismos em Atletas/líquido cefalorraquidiano , Adulto Jovem , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/patologia , Concussão Encefálica/líquido cefalorraquidiano , Adulto , Adolescente , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Síndrome Pós-Concussão/diagnóstico por imagem , Síndrome Pós-Concussão/patologia , Síndrome Pós-Concussão/líquido cefalorraquidiano
10.
Magn Reson Med ; 92(2): 869-880, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38469911

RESUMO

PURPOSE: Ultra-high field MRI offers unprecedented detail for noninvasive visualization of the human brain. However, brain imaging is challenging at 7T due to the B 1 + $$ {}_1^{+} $$ field inhomogeneity, which results in signal intensity drops in temporal lobes and a bright region in the brain center. This study aims to evaluate using a metasurface to improve brain imaging at 7T and simplify the investigative workflow. METHODS: Two flexible metasurfaces comprising a periodic structure of copper strips and parallel-plate capacitive elements printed on an ultra-thin substrate were optimized for brain imaging and implemented via PCB. We considered two setups: (1) two metasurfaces located near the temporal lobes and (2) one metasurface placed near the occipital lobe. The effect of metasurface placement on the transmit efficiency and specific absorption rate was evaluated via electromagnetic simulation studies with voxelized models. In addition, their impact on signal-to-noise ratio (SNR) and diagnostic image quality was assessed in vivo for two male and one female volunteers. RESULTS: Placement of metasurfaces near the regions of interest led to an increase in homogeneity of the transmit field by 5% and 10.5% in the right temporal lobe and occipital lobe for a male subject, respectively. SAR efficiency values changed insignificantly, dropping by less than 8% for all investigated setups. In vivo studies also confirmed the numerically predicted improvement in field distribution and receive sensitivity in the desired ROI. CONCLUSION: Optimized metasurfaces enable homogenizing transmit field distribution in the brain at 7T. The proposed lightweight and flexible structure can potentially provide MR examination with higher diagnostic value images.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Razão Sinal-Ruído , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Masculino , Feminino , Desenho de Equipamento , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Simulação por Computador , Adulto , Algoritmos
11.
J Neurosurg ; 141(1): 252-259, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394660

RESUMO

OBJECTIVE: The aim of this study was to compare outcomes of direct targeting in deep brain stimulation (DBS) for essential tremor using 7T MRI versus 3T MRI. The authors hypothesized that 7T MRI direct targeting would be noninferior to 3T MRI in early tremor outcomes. METHODS: A retrospective study was conducted on patients undergoing unilateral thalamic DBS for essential tremor between 2021 and 2023. Two matched cohorts were assessed, one using 7T MRI and the other using 3T MRI for surgical planning. The primary endpoint was the percentage improvement in the Fahn-Tolosa-Marin Tremor Rating Scale (TRS) scores. Additionally, the authors assessed optimized programming settings and variance in electrode position on postoperative imaging. Demographic and clinical data were compared using the nonparametric Mann-Whitney U-test. The squared Euclidean distance of each contact from the group mean centroid was calculated and averaged across the entire cohort to provide the variance (i.e., the mean squared distance) of electrode contact position. RESULTS: A total of 34 patients were analyzed, with 17 in each cohort. There were no significant differences in demographic information or mean surgical dates between the groups. There were no differences in intraoperative target repositioning or adverse events. The 7T group had a significantly greater TRS improvement than the 3T group (64.9% ± 11.4% vs 50.9% ± 16.4%, p = 0.004). Patients in the 7T cohort also had a lower mean stimulation current compared with those in the 3T cohort (2.0 ± 0.8 mA vs 2.7 ± 0.9 mA, p = 0.01). Image evaluation revealed that although the mean electrode position was comparable between 7T and 3T, the 7T electrode positioning was more clustered, indicating a lower variance in the final electrode location. The mean Euclidean distance between the individual electrode tips and the group centroid was significantly less at 7T than at 3T (1.82 ± 0.68 mm vs 2.75 ± 0.81 mm, p = 0.001). CONCLUSIONS: Despite concerns for increased artifacts and distortions at 7T, the authors show that these effects can be mitigated with an appropriate workflow, leading to improved surgical outcomes with direct targeting using 7T MRI. Their results suggest similar accuracy but greater precision in targeting with 7T MRI compared with 3T MRI, resulting in lower stimulation currents and improved tremor reduction. Future studies are needed to assess outcomes related to 7T MRI in targeting other subcortical structures.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Imageamento por Ressonância Magnética , Humanos , Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/cirurgia , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Eletrodos Implantados
12.
Hum Brain Mapp ; 45(3): e26597, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38375948

RESUMO

Although functional magnetic resonance imaging (fMRI) is widely applied in the brain, fMRI of the spinal cord is more technically demanding. Proximity to the vertebral column and lungs results in strong spatial inhomogeneity and temporal fluctuations in B0 . Increasing field strength enables higher spatial resolution and improved sensitivity to blood oxygenation level-dependent (BOLD) signal, but amplifies the effects of B0 inhomogeneity. In this work, we present the first task fMRI in the spinal cord at 7 T. Further, we compare the performance of single-shot and multi-shot 2D echo-planar imaging (EPI) protocols, which differ in sensitivity to spatial and temporal B0 inhomogeneity. The cervical spinal cords of 11 healthy volunteers were scanned at 7 T using single-shot 2D EPI at 0.75 mm in-plane resolution and multi-shot 2D EPI at 0.75 and 0.6 mm in-plane resolutions. All protocols used 3 mm slice thickness. For each protocol, the BOLD response to 13 10-s noxious thermal stimuli applied to the right thumb was acquired in a 10-min fMRI run. Image quality, temporal signal to noise ratio (SNR), and BOLD activation (percent signal change and z-stat) at both individual- and group-level were evaluated between the protocols. Temporal SNR was highest in single-shot and multi-shot 0.75 mm protocols. In group-level analyses, activation clusters appeared in all protocols in the ipsilateral dorsal quadrant at the expected C6 neurological level. In individual-level analyses, activation clusters at the expected level were detected in some, but not all subjects and protocols. Single-shot 0.75 mm generally produced the highest mean z-statistic, while multi-shot 0.60 mm produced the best-localized activation clusters and the least geometric distortion. Larger than expected within-subject segmental variation of BOLD activation along the cord was observed. Group-level sensory task fMRI of the cervical spinal cord is feasible at 7 T with single-shot or multi-shot EPI. The best choice of protocol will likely depend on the relative importance of sensitivity to activation versus spatial localization of activation for a given experiment. PRACTITIONER POINTS: First stimulus task fMRI results in the spinal cord at 7 T. Single-shot 0.75 mm 2D EPI produced the highest mean z-statistic. Multi-shot 0.60 mm 2D EPI provided the best-localized activation and least distortion.


Assuntos
Medula Cervical , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Medula Cervical/diagnóstico por imagem , Imagem Ecoplanar/métodos , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia
13.
Biol Psychiatry ; 95(5): 465-472, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678539

RESUMO

BACKGROUND: Major depressive disorder (MDD) is characterized by depressed mood or loss of interest or pleasure. Generally, women are twice as likely as men to have depression. Taurine, a type of amino acid, plays critical roles in neuronal generation, differentiation, arborization, and formation of synaptic connections. Importantly, it enhances proliferation and synaptogenesis in the hippocampus. When injected into animals, taurine has an antidepressant effect. However, there is no in vivo evidence to show an association between taurine concentration in the human brain and the development of MDD. METHODS: Forty-one unmedicated young women with MDD (ages 18-29) and 43 healthy control participants matched for gender and age were recruited in South Korea. Taurine concentration was measured in the hippocampus, anterior cingulate cortex, and occipital cortex of the MDD and healthy control groups using proton magnetic resonance spectroscopy at 7T. Analysis of covariance was used to examine differences in taurine concentration, adjusting for age as a covariate. RESULTS: Taurine concentration in the hippocampus was lower (F1,75 = 5.729, p = .019, Δη2 = 0.073) for the MDD group (mean [SEM] = 0.91 [0.06] mM) than for the healthy control group (1.13 [0.06] mM). There was no significant difference in taurine concentration in the anterior cingulate cortex or occipital cortex between the two groups. CONCLUSIONS: This study demonstrates that a lower level of taurine concentration in the hippocampus may be a novel characteristic of MDD.


Assuntos
Transtorno Depressivo Maior , Masculino , Animais , Humanos , Feminino , Transtorno Depressivo Maior/tratamento farmacológico , Espectroscopia de Prótons por Ressonância Magnética , Taurina/metabolismo , Taurina/uso terapêutico , Imageamento por Ressonância Magnética , Hipocampo/metabolismo , Giro do Cíngulo/metabolismo
14.
J Neurol ; 271(2): 804-818, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37805665

RESUMO

OBJECTIVE: Recently, the 7 Tesla (7 T) Epilepsy Task Force published recommendations for 7 T magnetic resonance imaging (MRI) in patients with pharmaco-resistant focal epilepsy in pre-surgical evaluation. The objective of this study was to implement and evaluate this consensus protocol with respect to both its practicability and its diagnostic value/potential lesion delineation surplus effect over 3 T MRI in the pre-surgical work-up of patients with pharmaco-resistant focal onset epilepsy. METHODS: The 7 T MRI protocol consisted of T1-weighted, T2-weighted, high-resolution-coronal T2-weighted, fluid-suppressed, fluid-and-white-matter-suppressed, and susceptibility-weighted imaging, with an overall duration of 50 min. Two neuroradiologists independently evaluated the ability of lesion identification, the detection confidence for these identified lesions, and the lesion border delineation at 7 T compared to 3 T MRI. RESULTS: Of 41 recruited patients > 12 years of age, 38 were successfully measured and analyzed. Mean detection confidence scores were non-significantly higher at 7 T (1.95 ± 0.84 out of 3 versus 1.64 ± 1.19 out of 3 at 3 T, p = 0.050). In 50% of epilepsy patients measured at 7 T, additional findings compared to 3 T MRI were observed. Furthermore, we found improved border delineation at 7 T in 88% of patients with 3 T-visible lesions. In 19% of 3 T MR-negative cases a new potential epileptogenic lesion was detected at 7 T. CONCLUSIONS: The diagnostic yield was beneficial, but with 19% new 7 T over 3 T findings, not major. Our evaluation revealed epilepsy outcomes worse than ILAE Class 1 in two out of the four operated cases with new 7 T findings.


Assuntos
Epilepsias Parciais , Epilepsia , Substância Branca , Humanos , Adulto , Consenso , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/cirurgia , Imageamento por Ressonância Magnética/métodos , Substância Branca/patologia
15.
Neurobiol Dis ; 190: 106372, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061397

RESUMO

Gait disturbance is a manifestation of cerebral small vessel disease (CSVD). The posterolateral thalamus (PL), whose blood is mainly supplied by the P2 segment of posterior cerebral artery (P2-PCA), plays pivotal roles in gait regulation. We investigated the influence of the distance between P2-PCA and PL on gait with varying CSVD burden. 71 participants were divided into low and high CSVD burden groups. The distance from P2-PCA to PL was measured using 7 T TOF-MRA and categorized into an immediate or distant PCA-to-thalamus pattern. Functional connectivity (FC) and voxel-based morphometry were assessed to evaluate functional and structural alterations. In the low CSVD burden group, immediate PCA-to-thalamus supply strongly correlates with longer step length and higher wave phase time percent, and exhibited enhanced FCs in left supplementary motor area, right precentral cortex (PreCG.R). While in the high CSVD burden group, no association between PCA-to-thalamus pattern and gait was found, and we observed reduced FC in PreCG.R with immediate PCA-to-thalamus pattern. Higher CSVD burden was associated with decreased gray matter density in bilateral thalamus. However, no significant structural thalamic change was observed between the two types of PCA-to-thalamus patterns in all patients. Our study demonstrated patients with immediate PCA-to-thalamus supply exhibited better gait performance in low CSVD burden populations, which also correlated with enhanced FCs in motor-related cortex, indicating the beneficial effects of the immediate PCA-to-thalamus supply pattern. In the higher burden CSVD populations, the effects of PCA-to-thalamus pattern on gait are void, attributable to the CSVD-related thalamic destruction and impairment of thalamus-related FC.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Artéria Cerebral Posterior , Humanos , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Substância Cinzenta , Imageamento por Ressonância Magnética , Tálamo/diagnóstico por imagem
16.
Front Neuroimaging ; 2: 1252261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107773

RESUMO

Introduction: Automatic whole brain and lesion segmentation at 7T presents challenges, primarily from bias fields, susceptibility artifacts including distortions, and registration errors. Here, we sought to use deep learning algorithms (D/L) to do both skull stripping and whole brain segmentation on multiple imaging contrasts generated in a single Magnetization Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) acquisition on participants clinically diagnosed with multiple sclerosis (MS), bypassing registration errors. Methods: Brain scans Segmentation from 3T and 7T scanners were analyzed with software packages such as FreeSurfer, Classification using Derivative-based Features (C-DEF), nnU-net, and a novel 3T-to-7T transfer learning method, Pseudo-Label Assisted nnU-Net (PLAn). 3T and 7T MRIs acquired within 9 months from 25 study participants with MS (Cohort 1) were used for training and optimizing. Eight MS patients (Cohort 2) scanned only at 7T, but with expert annotated lesion segmentation, was used to further validate the algorithm on a completely unseen dataset. Segmentation results were rated visually by experts in a blinded fashion and quantitatively using Dice Similarity Coefficient (DSC). Results: Of the methods explored here, nnU-Net and PLAn produced the best tissue segmentation at 7T for all tissue classes. In both quantitative and qualitative analysis, PLAn significantly outperformed nnU-Net (and other methods) in lesion detection in both cohorts. PLAn's lesion DSC improved by 16% compared to nnU-Net. Discussion: Limited availability of labeled data makes transfer learning an attractive option, and pre-training a nnUNet model using readily obtained 3T pseudo-labels was shown to boost lesion detection capabilities at 7T.

17.
Front Neurol ; 14: 1258895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020603

RESUMO

Objective: To characterize how the proximity of deep brain stimulation (DBS) active contact locations relative to the cerebellothalamic tract (CTT) affect clinical outcomes in patients with essential tremor (ET). Background: DBS is an effective treatment for refractory ET. However, the role of the CTT in mediating the effect of DBS for ET is not well characterized. 7-Tesla (T) MRI-derived tractography provides a means to measure the distance between the active contact and the CTT more precisely. Methods: A retrospective review was conducted of 12 brain hemispheres in 7 patients at a single center who underwent 7T MRI prior to ventral intermediate nucleus (VIM) DBS lead placement for ET following failed medical management. 7T-derived diffusion tractography imaging was used to identify the CTT and was merged with the post-operative CT to calculate the Euclidean distance from the active contact to the CTT. We collected optimized stimulation parameters at initial programing, 1- and 2-year follow up, as well as a baseline and postoperative Fahn-Tolosa-Marin (FTM) scores. Results: The therapeutic DBS current mean (SD) across implants was 1.8 mA (1.8) at initial programming, 2.5 mA (0.6) at 1 year, and 2.9 mA (1.1) at 2-year follow up. Proximity of the clinically-optimized active contact to the CTT was 3.1 mm (1.2), which correlated with lower current requirements at the time of initial programming (R2 = 0.458, p = 0.009), but not at the 1- and 2-year follow up visits. Subjects achieved mean (SD) improvement in tremor control of 77.9% (14.5) at mean follow-up time of 22.2 (18.9) months. Active contact distance to the CTT did not predict post-operative tremor control at the time of the longer term clinical follow up (R2 = -0.073, p = 0.58). Conclusion: Active DBS contact proximity to the CTT was associated with lower therapeutic current requirement following DBS surgery for ET, but therapeutic current was increased over time. Distance to CTT did not predict the need for increased current over time, or longer term post-operative tremor control in this cohort. Further study is needed to characterize the role of the CTT in long-term DBS outcomes.

18.
J Neurosci ; 43(42): 7028-7040, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37669861

RESUMO

Parkinson's disease (PD) and progressive supranuclear palsy (PSP) both impair response inhibition, exacerbating impulsivity. Inhibitory control deficits vary across individuals and are linked with worse prognosis, and lack improvement on dopaminergic therapy. Motor and cognitive control are associated with noradrenergic innervation of the cortex, arising from the locus coeruleus (LC) noradrenergic system. Here we test the hypothesis that structural variation of the LC explains response inhibition deficits in PSP and PD. Twenty-four people with idiopathic PD, 14 with PSP-Richardson's syndrome, and 24 age- and sex-matched controls undertook a stop-signal task and ultrahigh field 7T magnetization-transfer-weighted imaging of the LC. Parameters of "race models" of go- versus stop-decisions were estimated using hierarchical Bayesian methods to quantify the cognitive processes of response inhibition. We tested the multivariate relationship between LC integrity and model parameters using partial least squares. Both disorders impaired response inhibition at the group level. PSP caused a distinct pattern of abnormalities in inhibitory control with a paradoxically reduced threshold for go responses, but longer nondecision times, and more lapses of attention. The variation in response inhibition correlated with the variability of LC integrity across participants in both clinical groups. Structural imaging of the LC, coupled with behavioral modeling in parkinsonian disorders, confirms that LC integrity is associated with response inhibition and LC degeneration contributes to neurobehavioral changes. The noradrenergic system is therefore a promising target to treat impulsivity in these conditions. The optimization of noradrenergic treatment is likely to benefit from stratification according to LC integrity.SIGNIFICANCE STATEMENT Response inhibition deficits contribute to clinical symptoms and poor outcomes in people with Parkinson's disease and progressive supranuclear palsy. We used cognitive modeling of performance of a response inhibition task to identify disease-specific mechanisms of abnormal inhibitory control. Response inhibition in both patient groups was associated with the integrity of the noradrenergic locus coeruleus, which we measured in vivo using ultra-high field MRI. We propose that the imaging biomarker of locus coeruleus integrity provides a trans-diagnostic tool to explain individual differences in response inhibition ability beyond the classic nosological borders and diagnostic criteria. Our data suggest a potential new stratified treatment approach for Parkinson's disease and progressive supranuclear palsy.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/psicologia , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Locus Cerúleo , Teorema de Bayes
19.
Ocul Surf ; 30: 204-212, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37774917

RESUMO

PURPOSE: To study the tissue architecture, isthmus (connection between two lobes) of the lacrimal gland using preclinical 7T MRI in combination with histology and electron microscopy. METHODS: Ten lacrimal glands from Caucasian body donors (mean age 78.7 years) were studied using 7T-MRI (N = 5; scanned at 75-µm intervals), histology, and electron microscopy (N = 5) and 3D cinematic rendering (CR) techniques. RESULTS: 3D CR images showed uniform-sized lobules (widest lobule diameter, 1.68 ± 0.19 mm in orbital lobe, 1.68 ± 0.17 mm in palpebral lobe) in both lobes, separated by septae (size, 0.29 ± 0.09 mm). The internal framework of the gland resembled a honeycoomb pattern. In CR and histology, the isthmus contained glandular acini, large blood vessels, nerves, and no more than two ducts having a tortuous course towards the conjunctival surface. On assigning a color display to the rendered lacrimal gland, all glands showed a blood vessel originating from the main lacrimal artery just 5 mm beyond the hilum and making it course to the palpebral lobe via isthmus. The distance between the conjunctiva and the central substance of the orbital and palpebral lobe was 9.4 ± 0.2 mm and 2.8 ± 0.7 mm, respectively. Electron microscopy of the palpebral lobe revealed compact subepithelial layer in the overlying conjunctiva, followed by loosely scattered collagen bundles that contained the gland lobules. CONCLUSION: 3D-CR can be used to study the lacrimal gland microstructure, help fabricate a 3D scaffold for lacrimal gland bioprinting, and serve as guide for transconjunctival lacrimal gland targeted therapies i.e., 2.9 & 9 mm long needle to reach the orbital and palpebral lobe center, respectively in normal-size glands.


Assuntos
Doenças do Aparelho Lacrimal , Aparelho Lacrimal , Humanos , Idoso , Aparelho Lacrimal/diagnóstico por imagem , Microscopia Eletrônica , Imageamento por Ressonância Magnética , Bioengenharia
20.
Front Mol Neurosci ; 16: 1214738, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635903

RESUMO

Introduction: Abnormalities in myelin are believed to be one of the important causes of major depressive disorder, and it is becoming important to more accurately quantify myelin in in vivo magnetic resonance imaging of major depressive disorder patients. We aimed to investigate the difference in myelin concentration in the white matter and subcortical areas using new quantitative myelin-related maps of high-resolution 7 Tesla (7 T) magnetic resonance imaging between patients with major depressive disorder and healthy controls. Methods: Myelin-related comparisons of the white matter and nearby subcortical regions were conducted between healthy controls (n = 36) and patients with major depressive disorder (n = 34). Smoothed quantitative ratio (sq-Ratio) myelin-related maps were created using the multi-echo magnetization-prepared two rapid gradient echoes (ME-MP2RAGE) sequence of the T1 and T2* images of 7 T magnetic resonance imaging. Differences in the myelin-related values of the regions of interest between the two groups were analyzed using a two-sample t-test, and multiple comparison corrections were performed using the false discovery rate. Results: The average sq-Ratio myelin-related values were 2.62% higher in the white matter and 2.26% higher in the subcortical regions of the healthy controls group than in the major depressive disorder group. In the group analysis of the healthy control and major depressive disorder groups, the sq-Ratio myelin-related values were significantly different in the fornix area of the white matter (false discovery rate-corrected p = 0.012). In addition, significant differences were observed in both the left (false discovery rate-corrected p = 0.04) and right thalamus (false discovery rate-corrected p = 0.040) among the subcortical regions. Discussion: The average sq-ratio myelin-related value and sq-ratio myelin-related values in the fornix of the white matter and both thalami were higher in the healthy controls group than in the major depressive disorder group. We look forward to replicating our findings in other populations using larger sample sizes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA