Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Exp Parasitol ; 255: 108639, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918502

RESUMO

The subcellular localisation of Rad1, a subunit of the Leishmania major 9-1-1 complex, remains unexplored. Herein, we reveal that Rad1 localises predominantly to the nucleus. Upon hydroxyurea treatment, the diffuse nuclear localisation of Rad1 becomes more punctate, suggesting that Rad1 is responsive to replication stress. Moreover, Rad1 localisation correlates with cell cycle progression. In the majority of G1 to early S-phase cells, Rad1 localises predominantly to the nucleus. As cells progress from late-S phase to mitosis, Rad1 relocalizes to both the nucleus and the cytoplasm in ∼90 % of cells. This pattern of distribution is different from Rad9 and Hus1, which remain nuclear throughout the cell cycle, suggesting Leishmania Rad1 may regulate 9-1-1 activities and/or perform relevant functions outside the 9-1-1 complex.


Assuntos
Proteínas de Ciclo Celular , Leishmania major , Proteínas de Ciclo Celular/genética , Leishmania major/metabolismo , Ciclo Celular , Dano ao DNA
2.
DNA Repair (Amst) ; 130: 103567, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37713925

RESUMO

The ATR pathway plays a crucial role in maintaining genome integrity as the major DNA damage checkpoint. It also attracts attention as a therapeutic target in cancer treatment. The Rad17-RFC2-5 complex loads the Rad9-Hus1-Rad1 (9-1-1) DNA clamp complex onto damaged chromatin to activate the ATR pathway. We previously reported that phosphorylation of a polyanionic C-terminal tail of human Rad17, iVERGE, is essential for the interaction between Rad17 and the 9-1-1 complex. However, the molecular mechanism has remained unclear. Here, we show that iVERGE directly interacts with the Hus1 subunit of the 9-1-1 complex through Rad17-S667 phosphorylation independently of the AAA+ ATPase domains. An exogenous iVERGE peptide interacted with the 9-1-1 complex in vivo. The binding conformation of the iVERGE peptide was analyzed by de novo modeling with docking simulation, simulated annealing-molecular dynamics simulation, and the fragment molecular orbital method. The in silico analyses predicted the association of the iVERGE peptide with the hydrophobic and basic patches on the Hus1 protein, and the corresponding Hus1 mutants were deficient in the interaction with the iVERGE peptide in vivo. The iVERGE peptide occupied the same position as the C-terminus of Saccharomyces cerevisiae RAD24 on MEC3. The interaction energy calculation suggested that the Rad17 KYxxL motif and the iVERGE peptide are the primary and secondary interaction surfaces between the Rad17-RFC2-5 and 9-1-1 complexes. Our data reveal a novel molecular interface, iVERGE, between the Rad17-RFC2-5 and 9-1-1 complexes in vertebrates and implicate that Rad17 utilizes two distinct molecular interfaces to regulate the 9-1-1 complex.


Assuntos
Adenosina Trifosfatases , Cromatina , Humanos , Animais , Simulação de Dinâmica Molecular , ATPases Associadas a Diversas Atividades Celulares , Proteínas de Ciclo Celular
3.
J Clin Med ; 11(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35456300

RESUMO

Platinum-based chemotherapy is the standard of care with concern to first-line systemic therapy for metastatic disease in urothelial cancer (UC). Resistance to chemotherapy despite an initial response is linked with the ability to remove platinum-based DNA adducts and to repair chemotherapy-induced DNA lesions by various DNA repair proteins. The Rad9-Rad1-HUS1 complex that is loaded onto DNA at sites of damage is involved in checkpoint activation as well as DNA repair. Here, we addressed for the first time the potential influence of HUS1 expression in urothelial carcinogenesis (using two human basal urothelial cancer cell lines UM-UC-3 and HT1197) and its role as a potential therapeutic target for predicting responses to platinum-based chemotherapy. Specific inhibition of HUS1 expression in both cell lines was achieved by specific siRNA and validated by Western blot. In order to define the possible importance of HUS1 in the regulation of cellular proliferation, parental and resistant cells were treated with increasing concentrations of either control or HUS1 siRNA. HUS1 protein expression was observed in both human basal urothelial cancer cell lines UM-UC-3 and HT1197. In cisplatin-sensitive cells, knock-down of HUS1 inhibited cellular proliferation in the presence of cisplatin. On the contrary, knock-down of HUS1 in resistant cells did not result in a re-sensitization to cisplatin. Finally, RNAseq data from the Cancer Genome Atlas provided evidence that HUS1 expression is a significant prognostic factor for poor survival in UC patients. In summary, HUS1 may acts as an oncogene in UC and might be a key determinant of the cellular response to cisplatin-based chemotherapy.

4.
Elife ; 112022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35133274

RESUMO

DNA damage response mechanisms have meiotic roles that ensure successful gamete formation. While completion of meiotic double-strand break (DSB) repair requires the canonical RAD9A-RAD1-HUS1 (9A-1-1) complex, mammalian meiocytes also express RAD9A and HUS1 paralogs, RAD9B and HUS1B, predicted to form alternative 9-1-1 complexes. The RAD1 subunit is shared by all predicted 9-1-1 complexes and localizes to meiotic chromosomes even in the absence of HUS1 and RAD9A. Here, we report that testis-specific disruption of RAD1 in mice resulted in impaired DSB repair, germ cell depletion, and infertility. Unlike Hus1 or Rad9a disruption, Rad1 loss in meiocytes also caused severe defects in homolog synapsis, impaired phosphorylation of ATR targets such as H2AX, CHK1, and HORMAD2, and compromised meiotic sex chromosome inactivation. Together, these results establish critical roles for both canonical and alternative 9-1-1 complexes in meiotic ATR activation and successful prophase I completion.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pareamento Cromossômico , Reparo do DNA , Meiose , Animais , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Transdução de Sinais , Testículo/metabolismo
5.
J Biol Chem ; 297(2): 100831, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174284

RESUMO

The ATR pathway is one of the major DNA damage checkpoints, and Rad17 is a DNA-binding protein that is phosphorylated upon DNA damage by ATR kinase. Rad17 recruits the 9-1-1 complex that mediates the checkpoint activation, and proteasomal degradation of Rad17 is important for recovery from the ATR pathway. Here, we identified several Rad17 mutants deficient in nuclear localization and resistant to proteasomal degradation. The nuclear localization signal was identified in the central basic domain of Rad17. Rad17 Δ230-270 and R240A/L243A mutants that were previously postulated to lack the destruction box, a sequence that is recognized by the ubiquitin ligase/anaphase-promoting complex that mediates degradation of Rad17, also showed cytoplasmic localization. Our data indicate that the nuclear translocation of Rad17 is functionally linked to the proteasomal degradation. The ATP-binding activity of Rad17, but not hydrolysis, is essential for the nuclear translocation, and the ATPase domain orchestrates the nuclear translocation, the proteasomal degradation, as well as the interaction with the 9-1-1 complex. The Rad17 mutant that lacked a nuclear localization signal was proficient in the interaction with the 9-1-1 complex, suggesting cytosolic association of Rad17 and the 9-1-1 complex. Finally, we identified two tandem canonical and noncanonical destruction boxes in the N-terminus of Rad17 as the bona fide destruction box, supporting the role of anaphase-promoting complex in the degradation of Rad17. We propose a model in which Rad17 is activated in the cytoplasm for translocation into the nucleus and continuously degraded in the nucleus even in the absence of exogenous DNA damage.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Dano ao DNA , Sinais de Localização Nuclear/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Células Cultivadas , Chlorocebus aethiops , Humanos , Sinais de Localização Nuclear/química , Fosforilação , Proteólise
6.
Environ Mol Mutagen ; 61(7): 752-766, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32725817

RESUMO

In germ cells undergoing meiosis, the induction of double strand breaks (DSBs) is required for the generation of haploid gametes. Defects in the formation, detection, or recombinational repair of DSBs often result in defective chromosome segregation and aneuploidies. Central to the ability of meiotic cells to properly respond to DSBs are DNA damage response (DDR) pathways mediated by DNA damage sensor kinases. DDR signaling coordinates an extensive network of DDR effectors to induce cell cycle arrest and DNA repair, or trigger apoptosis if the damage is extensive. Despite their importance, the functions of DDR kinases and effector proteins during meiosis remain poorly understood and can often be distinct from their known mitotic roles. A key DDR kinase during meiosis is ataxia telangiectasia and Rad3-related (ATR). ATR mediates key signaling events that control DSB repair, cell cycle progression, and meiotic silencing. These meiotic functions of ATR depend on upstream scaffolds and regulators, including the 9-1-1 complex and TOPBP1, and converge on many downstream effectors such as the checkpoint kinase CHK1. Here, we review the meiotic functions of the 9-1-1/TOPBP1/ATR/CHK1 signaling pathway during mammalian meiosis.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Mamíferos/genética , Meiose/genética , Transdução de Sinais/genética , Animais , Humanos
7.
Cell Biol Int ; 44(2): 412-423, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31538680

RESUMO

Genetic analysis has strongly implicated human FHIT (Fragile Histidine Triad) as a tumor suppressor gene, being mutated in a large proportion of early-stage cancers. The functions of the FHIT protein have, however, remained elusive. Here, we investigated aph1+ , the fission yeast homolog of FHIT, for functions related to checkpoint control and oxidative metabolism. In sublethal concentrations of DNA damaging agents, aph1Δ mutants grew with a substantially shorter lag phase. In aph1Δ mutants carrying a hypomorphic allele of cds1 (the fission yeast homolog of Chk2), in addition, increased chromosome fragmentation and missegregation were found. We also found that under hypoxia or impaired electron transport function, the Aph1 protein level was strongly depressed. Previously, FHIT has been linked to regulation of the human 9-1-1 checkpoint complex constituted by Hus1, Rad1, and Rad9. In Schizosaccharomyces pombe, the levels of all three 9-1-1 proteins are all downregulated by hypoxia in similarity with Aph1. Moreover, deletion of the aph1+ gene reduced the Rad1 protein level, indicating a direct relationship between these two proteins. We conclude that the fission yeast FHIT homolog has a role in modulating DNA damage checkpoint function, possibly through an effect on the 9-1-1 complex, and that this effect may be critical under conditions of limiting oxidative metabolism and reoxygenation.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Ciclo Celular , Proliferação de Células , Endopeptidases/metabolismo , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Hidrolases Anidrido Ácido/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Transporte de Elétrons , Endopeptidases/genética , Proteínas de Neoplasias/genética , Fosforilação Oxidativa , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética
8.
Biochem Biophys Res Commun ; 517(2): 310-316, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31353086

RESUMO

The ATR-dependent DNA damage checkpoint is one of the major checkpoint pathways. The interaction between the Rad17-RFC2-5 and 9-1-1 complexes is central to the ATR-Chk1 pathway. However, little is known about the regulation of the interaction. We recently showed that vertebrate Rad17 proteins share a conserved C-terminal tail and that the C-terminal tails have a conserved amino acid motif named iVERGE that must be intact for the interaction between Rad17 and the 9‒1‒1 complex. In human Rad17, the Y665 and S667 residues are conserved in iVERGE. The Rad17-S667 residue is phosphorylated by CK2, and the phosphorylation is important for the interaction with the 9‒1‒1 complex. Here, we show that a C-terminal threonine residue of Rad17, T670 in human Rad17, is constitutively phosphorylated in vivo. The T670 phosphorylation is important for the S667 phosphorylation, and vice versa. Phosphomimetic mutations in the T670 residue promote the interaction with the 9-1-1 complex. The T670 and Y665 residues show functional redundancy, and their roles are dependent on the S667 phosphorylation. Rad17-T670 is phosphorylated by casein kinase 1δ/ε. Our data suggest that iVERGE integrates multiple signaling pathways to regulate the ATR-Chk1 pathway.


Assuntos
Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase II/metabolismo , Caseína Quinase Idelta/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mapas de Interação de Proteínas , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Células COS , Proteínas de Ciclo Celular/química , Chlorocebus aethiops , Dano ao DNA , Humanos , Fosforilação , Transdução de Sinais
9.
Biochem Biophys Res Commun ; 515(4): 688-692, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31182279

RESUMO

The 9-1-1 complex is a circular heterotrimeric complex composed of Rad9-Hus1-Rad1. In response to DNA damage, the 9-1-1 complex will be loaded onto the DNA damage site by clamp loader Rad24-RFC to activate the cell cycle checkpoint. The C-terminal of Ddc1/Rad9 is critical for checkpoint activation. However, there is little structural information about the intact 9-1-1 complex and the interaction with Rad24-RFC. Here, we determined the structure of the intact 9-1-1 complex in S. cerevisiae by cryo-Electron Microscopy (cryo-EM) and identified the Ddc1 C-tail module for the first time. We found that the C-terminal of Ddc1 has structural flexibility and it plays a critical role for Mec1/Ddc2 activation in G1/G2 phase. At the same time, we got a glimpse of the structure of Rad24-RFC and captured the interaction between the 9-1-1 complex and Rad24-RFC. The structural information greatly helped us to understand the process of clamp-loading.


Assuntos
Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Quinase do Ponto de Checagem 2/metabolismo , Microscopia Crioeletrônica , Dano ao DNA , Proteínas Nucleares/metabolismo , Fosforilação , Domínios Proteicos
10.
Exp Neurol ; 317: 214-225, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30853389

RESUMO

Following neurotoxic damage, cells repair their DNA, and survive or undergo apoptosis. This study tests the hypothesis that ethanol induces a DNA damage response (DDR) in neural stem cells (NSCs) that promotes excision repair (ER) and this repair is influenced by the growth factor environment. Non-immortalized NSCs treated with fibroblast growth factor 2 or transforming growth factor (TGF) ß1 were exposed to ethanol. Ethanol increased total DNA damage, reactive oxygen species, and oxidized DNA bases. TGFß1 potentiated these toxic effects. Transcriptional analyses of cultured NSCs revealed ethanol-induced increases in transcripts related to the DDR (e.g., Hus1 and p53), base ER (e.g., Mutyh and Nthl1), and nucleotide ER (e.g., Xpc), particularly in the presence of TGFß1. Expression and activity of ER proteins were affected by ethanol. Similar changes occurred in proliferating cells of ethanol-treated mouse fetuses. Ethanol-induced DNA repair in NSCs depends on the ambient growth factors. Gene products for DNA repair in stem cells are among the first biomarkers identifying fetal alcohol-induced damage.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Reparo do DNA/efeitos dos fármacos , Etanol/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/fisiologia , Animais , Células Cultivadas , Ensaio Cometa , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
11.
Biochem Biophys Res Commun ; 504(2): 380-386, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-29902452

RESUMO

An interaction between the Rad17-RFC2-5 and 9-1-1 complexes is essential for ATR-Chk1 signaling, which is one of the major DNA damage checkpoints. Recently, we showed that the polyanionic C-terminal tail of human Rad17 and the embedded conserved sequence iVERGE are important for the interaction with 9-1-1 complex. Here, we show that Rad17-S667 in the C-terminal tail is constitutively phosphorylated in vivo in a casein kinase 2-dependent manner, and the phosphorylation is important for 9-1-1 interaction. The serine phosphorylation of Rad17 could be seen in the absence of exogenous genotoxic stress, and was mostly abolished by S667A substitution. Rad17-S667 was also phosphorylated when the C-terminal tail was fused with EGFP, but the phosphorylation was inhibited by two casein kinase 2 inhibitors. Furthermore, interaction between Rad17 and the 9-1-1 complex was inhibited by the casein kinase 2 inhibitor CX-4945/Silmitasertib, and the effect was dependent on the Rad17-S667 residue, indicating that S667 phosphorylation is the only role of casein kinase 2 in the 9-1-1 interaction. Our data raise the possibility that the C-terminal tail of vertebrate Rad17 regulates ATR-Chk1 signaling through multi-site phosphorylation in the iVERGE.


Assuntos
Caseína Quinase II/metabolismo , Proteínas de Ciclo Celular/metabolismo , Exonucleases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Dano ao DNA , Replicação do DNA , Proteínas de Fluorescência Verde/química , Humanos , Naftiridinas/química , Fenazinas , Fosforilação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Domínios Proteicos , Serina/química , Transdução de Sinais
12.
Biochem Biophys Res Commun ; 490(4): 1147-1153, 2017 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-28666868

RESUMO

In the activation and maintenance of ATR-dependent DNA damage checkpoint, the interaction between the Rad17-RFC2-5 and 9-1-1 complexes is essential, however, the regulatory mechanism of the interaction is not known. Here we show that vertebrate Rad17 proteins contain a polyanionic 12-amino acid sequence in the C-terminal ends that is important for the 9-1-1 interaction. We demonstrate that the C-terminal tail contains a conserved sequence designated iVERGE that must be intact for the 9-1-1 interaction and contains potential posttranslational modification sites. Our data raise a possibility that the Rad17 C-terminal tail is a molecular switch that regulates the 9-1-1 interaction and the ATR pathway.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Complexos Multiproteicos/metabolismo , Polímeros/metabolismo , Proteínas de Ciclo Celular/química , Células Cultivadas , Exonucleases/metabolismo , Humanos , Complexos Multiproteicos/química , Polieletrólitos
13.
Mol Biochem Parasitol ; 216: 45-48, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28629935

RESUMO

Here we present the establishment of an inducible system based on the dimerizable Cre recombinase (DiCre) for controlled gene expression in the protozoan parasite Leishmania. Rapamycin-induced DiCre activation promoted efficient flipping and expression of gene products in a time and dose-dependent manner. The DiCre flipping activity induced the expression of target genes from both integrated and episomal contexts broadening the applicability of the system. We validated the system by inducing the expression of both full length and truncated forms of the checkpoint protein Rad9, which revealed that the highly divergent C-terminal domain of Rad9 is necessary for proper subcellular localization. Thus, by establishing the DiCre-based inducible system we have created and validated a robust new tool for assessing gene function in Leishmania.


Assuntos
Regulação da Expressão Gênica , Engenharia Genética , Recombinação Homóloga , Integrases/metabolismo , Leishmania major/genética , Leishmania major/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ordem dos Genes , Vetores Genéticos/genética
14.
Biochem Biophys Res Commun ; 477(4): 982-987, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27387238

RESUMO

ATR-dependent DNA damage checkpoint is the major DNA damage checkpoint against UV irradiation and DNA replication stress. The Rad17-RFC and Rad9-Rad1-Hus1 (9-1-1) complexes interact with each other to contribute to ATR signaling, however, the precise regulatory mechanism of the interaction has not been established. Here, we identified a conserved sequence motif, KYxxL, in the AAA+ domain of Rad17 protein, and demonstrated that this motif is essential for the interaction with the 9-1-1 complex. We also show that UV-induced Rad17 phosphorylation is increased in the Rad17 KYxxL mutants. These data indicate that the interaction with the 9-1-1 complex is not required for Rad17 protein to be an efficient substrate for the UV-induced phosphorylation. Our data also raise the possibility that the 9-1-1 complex plays a negative regulatory role in the Rad17 phosphorylation. We also show that the nucleotide-binding activity of Rad17 is required for its nuclear localization.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , DNA/química , DNA/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/ultraestrutura , DNA/ultraestrutura , Ligação Proteica , Subunidades Proteicas , Relação Estrutura-Atividade
15.
J Biol Chem ; 290(24): 14826-40, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25911100

RESUMO

The RAD9A-HUS1-RAD1 (9-1-1) complex is a heterotrimeric clamp that promotes checkpoint signaling and repair at DNA damage sites. In this study, we elucidated HUS1 functional residues that drive clamp assembly, DNA interactions, and downstream effector functions. First, we mapped a HUS1-RAD9A interface residue that was critical for 9-1-1 assembly and DNA loading. Next, we identified multiple positively charged residues in the inner ring of HUS1 that were crucial for genotoxin-induced 9-1-1 chromatin localization and ATR signaling. Finally, we found two hydrophobic pockets on the HUS1 outer surface that were important for cell survival after DNA damage. Interestingly, these pockets were not required for 9-1-1 chromatin localization or ATR-mediated CHK1 activation but were necessary for interactions between HUS1 and its binding partner MYH, suggesting that they serve as interaction domains for the recruitment and coordination of downstream effectors at damage sites. Together, these results indicate that, once properly loaded onto damaged DNA, the 9-1-1 complex executes multiple, separable functions that promote genome maintenance.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , Genoma Humano , Transdução de Sinais , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sequência de Bases , Proteínas de Ciclo Celular/química , Células Cultivadas , Primers do DNA , Humanos , Camundongos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA