Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci Res ; 100(6): 1370-1385, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35355316

RESUMO

Accumulating evidence implicates the parafascicular nucleus of the thalamus (Pf) in basal ganglia (BG)-related functions and pathologies. Despite Pf connectivity with all BG components, most attention is focused on the thalamostriatal system and an integrated view of thalamic information processing in this network is still lacking. Here, we addressed this question by recording the responses elicited by Pf activation in single neurons of the substantia nigra pars reticulata (SNr), the main BG output structure in rodents, in anesthetized mice. We performed optogenetic activation of Pf neurons innervating the striatum, the subthalamic nucleus (STN), or the SNr using virally mediated transcellular delivery of Cre from injection in either target in Rosa26-LoxP-stop-ChR2-EYFP mice to drive channelrhodopsin expression. Photoactivation of Pf neurons connecting the striatum evoked an inhibition often followed by an excitation, likely resulting from the activation of the trans-striatal direct and indirect pathways, respectively. Photoactivation of Pf neurons connecting the SNr or the STN triggered one or two early excitations, suggesting partial functional overlap of trans-subthalamic and direct thalamonigral projections. Excitations were followed in about half of the cases by an inhibition that might reflect recruitment of intranigral inhibitory loops. Finally, global Pf stimulation, electrical or optogenetic, elicited similar complex responses comprising up to four components: one or two short-latency excitations, an inhibition, and a late excitation. These data provide evidence for functional connections between the Pf and different BG components and for convergence of the information processed through these pathways in single SNr neurons, stressing their importance in regulating BG outflow.


Assuntos
Núcleos Intralaminares do Tálamo , Núcleo Subtalâmico , Animais , Gânglios da Base/fisiologia , Corpo Estriado/fisiologia , Núcleos Intralaminares do Tálamo/fisiologia , Camundongos , Vias Neurais/fisiologia , Tálamo/fisiologia
2.
J Comp Neurol ; 529(15): 3533-3560, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216020

RESUMO

The lateral complexes (LXs) are bilaterally paired neuropils in the insect brain that mediate communication between the central complex (CX), a brain center controlling spatial orientation, various sensory processing areas, and thoracic motor centers that execute locomotion. The LX of the desert locust consists of the lateral accessory lobe (LAL), and the medial and lateral bulb. We have analyzed the anatomical organization and the neuronal connections of the LX in the locust, to provide a basis for future functional studies. Reanalyzing the morphology of neurons connecting the CX and the LX revealed likely feedback loops in the sky compass network of the CX via connections in the gall of the LAL and a newly identified neuropil termed ovoid body. In addition, we characterized 16 different types of neuron that connect the LAL with other areas in the brain. Eight types of neuron provide information flow between both LALs, five types are LAL input neurons, and three types are LAL output neurons. Among these are neurons providing input from sensory brain areas such as the lobula and antennal neuropils. Brain regions most often targeted by LAL neurons are the posterior slope, the wedge, and the crepine. Two descending neurons with dendrites in the LAL were identified. Our data support and complement existing knowledge about how the LAL is embedded in the neuronal network involved in processing of sensory information and generation of appropriate behavioral output for goal-directed locomotion.


Assuntos
Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Rede Nervosa/citologia , Rede Nervosa/diagnóstico por imagem , Animais , Encéfalo/fisiologia , Química Encefálica , Feminino , Gafanhotos , Masculino , Rede Nervosa/química , Neurópilo/química , Neurópilo/citologia
3.
J Comp Neurol ; 529(1): 159-186, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32374034

RESUMO

The central complex (CX) in the insect brain is a higher order integration center that controls a number of behaviors, most prominently goal directed locomotion. The CX comprises the protocerebral bridge (PB), the upper division of the central body (CBU), the lower division of the central body (CBL), and the paired noduli (NO). Although spatial orientation has been extensively studied in honeybees at the behavioral level, most electrophysiological and anatomical analyses have been carried out in other insect species, leaving the morphology and physiology of neurons that constitute the CX in the honeybee mostly enigmatic. The goal of this study was to morphologically identify neuronal cell types of the CX in the honeybee Apis mellifera. By performing iontophoretic dye injections into the CX, we traced 16 subtypes of neuron that connect a subdivision of the CX with other regions in the bee's central brain, and eight subtypes that mainly interconnect different subdivisions of the CX. They establish extensive connections between the CX and the lateral complex, the superior protocerebrum and the posterior protocerebrum. Characterized neuron classes and subtypes are morphologically similar to those described in other insects, suggesting considerable conservation in the neural network relevant for orientation.


Assuntos
Abelhas/citologia , Química Encefálica , Encéfalo/citologia , Neurônios/química , Neurópilo/química , Animais , Encéfalo/anatomia & histologia
4.
J Comp Neurol ; 528(15): 2602-2619, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32266714

RESUMO

To what extent do modifications in the nervous system and peripheral effectors contribute to novel behaviors? Using a combination of morphometric analysis, neuroanatomical tract-tracing, and intracellular neuronal recording, we address this question in a sound-producing and a weakly electric species of synodontid catfish, Synodontis grandiops, and Synodontis nigriventris, respectively. The same peripheral mechanism, a bilateral pair of protractor muscles associated with vertebral processes (elastic spring mechanism), is involved in both signaling systems. Although there were dramatic species differences in several morphometric measures, electromyograms provided strong evidence that simultaneous activation of paired protractor muscles accounts for an individual sound and electric discharge pulse. While the general architecture of the neural network and the intrinsic properties of the motoneuron population driving each target was largely similar, differences could contribute to species-specific patterns in electromyograms and the associated pulse repetition rate of sounds and electric discharges. Together, the results suggest that adaptive changes in both peripheral and central characters underlie the transition from an ancestral sound to a derived electric discharge producing system, and thus the evolution of a novel communication channel among synodontid catfish. Similarities with characters in other sonic and weakly electric teleost fish provide a striking example of convergent evolution in functional adaptations underlying the evolution of the two signaling systems among distantly related taxa.


Assuntos
Peixes-Gato/fisiologia , Peixe Elétrico/fisiologia , Órgão Elétrico/fisiologia , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Vocalização Animal/fisiologia , Animais , Peixes-Gato/anatomia & histologia , Peixe Elétrico/anatomia & histologia , Órgão Elétrico/anatomia & histologia , Eletromiografia/métodos , Feminino , Masculino , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Rede Nervosa/anatomia & histologia , Especificidade da Espécie
5.
J Comp Neurol ; 528(6): 906-934, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31625611

RESUMO

The central complex (CX) comprises a group of midline neuropils in the insect brain, consisting of the protocerebral bridge (PB), the upper (CBU) and lower division (CBL) of the central body and a pair of globular noduli. It receives prominent input from the visual system and plays a major role in spatial orientation of the animals. Vertical slices and horizontal layers of the CX are formed by columnar, tangential, and pontine neurons. While pontine and columnar neurons have been analyzed in detail, especially in the fruit fly and desert locust, understanding of the organization of tangential cells is still rudimentary. As a basis for future functional studies, we have studied the morphologies of tangential neurons of the CX of the desert locust Schistocerca gregaria. Intracellular dye injections revealed 43 different types of tangential neuron, 8 of the PB, 5 of the CBL, 24 of the CBU, 2 of the noduli, and 4 innervating multiple substructures. Cell bodies of these neurons were located in 11 different clusters in the cell body rind. Judging from the presence of fine versus beaded terminals, the vast majority of these neurons provide input into the CX, especially from the lateral complex (LX), the superior protocerebrum, the posterior slope, and other surrounding brain areas, but not directly from the mushroom bodies. Connections are largely subunit- and partly layer-specific. No direct connections were found between the CBU and the CBL. Instead, both subdivisions are connected in parallel with the PB and distinct layers of the noduli.


Assuntos
Gafanhotos/anatomia & histologia , Neurônios/citologia , Neurópilo/citologia , Animais , Feminino , Masculino
6.
J Comp Neurol ; 528(6): 972-988, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31617943

RESUMO

Whereas our understanding of the dopaminergic system in mammals allows for a distinction between ventral tegmental area (VTA) and substantia nigra pars compacta (SNc), no clear evidence for separate structures in anamniotes has been presented to date. To broaden the insight into the organization and regulation of neuromodulatory systems in anuran amphibians, tracing and immunohistochemical investigations were performed in the Oriental fire-bellied toad, Bombina orientalis. Topographically organized catecholaminergic "nigrostriatal," "mesolimbic," "mesocortical," and spinal cord projections arising from the posterior tubercle and mesencephalic tegmentum were identified. We compared these results with published data from lampreys, chondrichthyes, teleosts, amphibians, reptiles, birds, and mammals. Based on the pattern of organization, as well as the differential innervation by the habenular nuclei, domains gradually comparable to the mammalian paranigral VTA, ventral tier of the SNc, interfascicular nucleus of the VTA, and supramamillary/retromamillary area were identified. Additionally, we could demonstrate topographic separate populations of habenula neurons projecting via a direct excitatory or indirect GABAergic pathway onto the catecholaminergic VTA/SNc homologs and serotonergic raphe nuclei. The indirect GABAergic habenula pathway derives from neurons in the superficial mamillary area, which in terms of its connectivity and chemoarchitecture resembles the mammalian rostromedial tegmental nucleus. These results demonstrate a much more elaborate interconnection principle of the anuran dopaminergic system than previously assumed. Based on the data presented it seems that most features of the dopaminergic system of amniotes had already evolved when the amphibian line of evolution diverged from that leading up to mammals, reptiles, and birds.


Assuntos
Anuros/anatomia & histologia , Encéfalo/citologia , Neurônios Dopaminérgicos/citologia , Vias Neurais/citologia , Medula Espinal/citologia , Animais , Feminino , Masculino
7.
J Comp Neurol ; 528(5): 705-728, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31566737

RESUMO

Based on anatomical and functional data, the habenula-a phylogenetically old brain structure present in all vertebrates-takes part in the integration of limbic, sensory, and basal ganglia information to guide effective response strategies appropriate to environmental conditions. In the present study, we investigated the connections of the habenular nuclei of the oriental fire-bellied toad, Bombina orientalis, and compared them with published data from lampreys, chondrichthyes, teleosts, reptiles, birds, and mammals. During phylogenetic development, the primordial habenula circuitry underwent various evolutionary adaptations and in the tetrapod line, the circuit complexity increased. The habenula circuitry of anuran amphibians, decedents of the first land-living tetrapods, seem to exhibit a mix of ancient as well as modern features. The anuran medial and lateral habenula homologs receive differential input from the septum, nucleus of the diagonal band of Broca, preoptic area, hypothalamus, rostral pallium, nucleus accumbens, ventral pallidum, and bed nucleus of the stria terminalis. Additional input arises from a border region in the ventral prethalamus, here discussed as a putative homolog of the entopeduncular nucleus of rodents. The habenular subnuclei also differentially innervate the interpeduncular nucleus, raphe nuclei, substantia nigra pars compacta and ventral tegmental area homologs, superficial mamillary area, laterodorsal tegmental nucleus, locus coeruleus, inferior and superior colliculus homologs, hypothalamus, preoptic area, septum, nucleus of the diagonal band of Broca, and main olfactory bulb. It seems likely that the main connectivity between the habenula and the basal ganglia, limbic, and sensory systems was already present in the common tetrapod ancestor.


Assuntos
Anuros/anatomia & histologia , Habenula/anatomia & histologia , Vias Neurais/anatomia & histologia , Animais , Evolução Biológica , Filogenia
8.
J Comp Neurol ; 526(8): 1368-1388, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29424431

RESUMO

Vocalization is a behavioral feature that is shared among multiple vertebrate lineages, including fish. The temporal patterning of vocal communication signals is set, in part, by central pattern generators (CPGs). Toadfishes are well-established models for CPG coding of vocalization at the hindbrain level. The vocal CPG comprises three topographically separate nuclei: pre-pacemaker, pacemaker, motor. While the connectivity between these nuclei is well understood, their neurochemical profile remains largely unexplored. The highly vocal Gulf toadfish, Opsanus beta, has been the subject of previous behavioral, neuroanatomical and neurophysiological studies. Combining transneuronal neurobiotin-labeling with immunohistochemistry, we map the distribution of inhibitory neurotransmitters and neuromodulators along with gap junctions in the vocal CPG of this species. Dense GABAergic and glycinergic label is found throughout the CPG, with labeled somata immediately adjacent to or within CPG nuclei, including a distinct subset of pacemaker neurons co-labeled with neurobiotin and glycine. Neurobiotin-labeled motor and pacemaker neurons are densely co-labeled with the gap junction protein connexin 35/36, supporting the hypothesis that transneuronal neurobiotin-labeling occurs, at least in part, via gap junction coupling. Serotonergic and catecholaminergic label is also robust within the entire vocal CPG, with additional cholinergic label in pacemaker and prepacemaker nuclei. Likely sources of these putative modulatory inputs are neurons within or immediately adjacent to vocal CPG neurons. Together with prior neurophysiological investigations, the results reveal potential mechanisms for generating multiple classes of social context-dependent vocalizations with widely divergent temporal and spectral properties.


Assuntos
Batracoidiformes/fisiologia , Geradores de Padrão Central/citologia , Geradores de Padrão Central/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Vocalização Animal/fisiologia , Animais , Batracoidiformes/anatomia & histologia , Biotina/análogos & derivados , Biotina/metabolismo , Colina O-Acetiltransferase/metabolismo , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Glicina/metabolismo , Neurotransmissores/metabolismo , Estatísticas não Paramétricas , Tirosina 3-Mono-Oxigenase/metabolismo
9.
J Comp Neurol ; 525(10): 2343-2357, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28295329

RESUMO

The praying mantis is an insect which relies on vision for capturing prey, avoiding being eaten and for spatial orientation. It is well known for its ability to use stereopsis for estimating the distance of objects. The neuronal substrate mediating visually driven behaviors, however, is not very well investigated. To provide a basis for future functional studies, we analyzed the anatomical organization of visual neuropils in the brain of the praying mantis Hierodula membranacea and provide supporting evidence from a second species, Rhombodera basalis, with particular focus on the lobula complex (LOX). Neuropils were three-dimensionally reconstructed from synapsin-immunostained whole mount brains. The neuropil organization and the pattern of γ-aminobutyric acid immunostaining of the medulla and LOX were compared between the praying mantis and two related polyneopteran species, the Madeira cockroach and the desert locust. The investigated visual neuropils of the praying mantis are highly structured. Unlike in most insects the LOX of the praying mantis consists of five nested neuropils with at least one neuropil not present in the cockroach or locust. Overall, the mantis LOX is more similar to the LOX of the locust than the more closely related cockroach suggesting that the sensory ecology plays a stronger role than the phylogenetic distance of the three species in structuring this center of visual information processing.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Neurópilo/citologia , Neurópilo/fisiologia , Animais , Encéfalo/diagnóstico por imagem , Baratas , Feminino , Gafanhotos , Imageamento Tridimensional/métodos , Masculino , Mantódeos , Especificidade da Espécie
10.
J Comp Neurol ; 525(6): 1347-1362, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26801010

RESUMO

The claustrum is a telencephalic gray matter structure with various proposed functions, including sensory integration and attentional allocation. Underlying these concepts is the reciprocal connectivity of the claustrum with most, if not all, areas of the cortex. What remains to be elucidated to inform functional hypotheses further is whether a pattern exists in the strength of connectivity between a given cortical area and the claustrum. To this end, we performed a series of retrograde neuronal tract tracer injections into rat cortical areas along the cortical processing hierarchy, from primary sensory and motor to frontal cortices. We observed that the number of claustrocortical projections increased as a function of processing hierarchy; claustrum neurons projecting to primary sensory cortices were scant and restricted in distribution across the claustrum, whereas neurons projecting to the cingulate cortex were densely packed and more evenly distributed throughout the claustrum. This connectivity pattern suggests that the claustrum may preferentially subserve executive functions orchestrated by the cingulate cortex. J. Comp. Neurol. 525:1347-1362, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Gânglios da Base/anatomia & histologia , Vias Neurais/anatomia & histologia , Neurônios/citologia , Animais , Imuno-Histoquímica , Masculino , Ratos , Ratos Sprague-Dawley
11.
J Comp Neurol ; 523(11): 1589-607, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25557150

RESUMO

Migrating desert locusts, Schistocerca gregaria, are able to use the skylight polarization pattern for navigation. They detect polarized light with a specialized dorsal rim area in their compound eye. After multistage processing, polarization signals are transferred to the central complex, a midline-spanning brain area involved in locomotor control. Polarization-sensitive tangential neurons (TB-neurons) of the protocerebral bridge, a part of the central complex, give rise to a topographic arrangement of preferred polarization angles in the bridge, suggesting that the central complex acts as an internal sky compass. TB-neurons connect the protocerebral bridge with two adjacent brain areas, the posterior optic tubercles. To analyze the polarotopic organization of the central complex further, we investigated the number and morphologies of TB-neurons and the presence and colocalization of three neuroactive substances in these neurons. Triple immunostaining with antisera against Diploptera punctata allatostatin (Dip-AST), Manduca sexta allatotropin (Mas-AT), and serotonin (5HT) raised in the same host species revealed three spatially distinct TB-neuron clusters, each consisting of 10 neurons per hemisphere: cluster 1 and 3 showed Dip-AST/5HT immunostaining, whereas cluster 2 showed Dip-AST/Mas-AT immunostaining. Five subtypes of TB-neuron could be distinguished based on ramification patterns. Corresponding to ramification domains in the protocerebral bridge, the neurons invaded distinct but overlapping layers within the posterior optic tubercle. Similarly, neurons interconnecting the tubercles of the two hemispheres also targeted distinct layers of these neuropils. From these data we propose a neuronal circuit that may be suited to stabilize the internal sky compass in the central complex of the locust.


Assuntos
Gafanhotos/anatomia & histologia , Gafanhotos/fisiologia , Vias Visuais/anatomia & histologia , Vias Visuais/fisiologia , Animais , Biotina/análogos & derivados , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Imunofluorescência , Imageamento Tridimensional , Hormônios de Inseto/metabolismo , Microeletrodos , Microscopia Confocal , Neurônios/citologia , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Serotonina/metabolismo , Percepção Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA