RESUMO
Abandoned, lost, or otherwise discarded fishing gear is one of the most harmful types of marine litter globally, causing irreversible damage to ocean life and ecosystems. Therefore, global and regional policies are currently being designed and implemented to limit the influx of fishing gear into the marine environment, emphasizing the importance of circular end-of-life management of fishing gear. This study compares the end-of-life circularity potential of the six most used commercial fishing gears in Norway to identify how the heterogeneity of gears impacts their management alternatives. The main findings of the multi-criteria decision analysis (MCDA) applied in this study are that considering the economic and environmental sustainability, as well as technological feasibility of the gears' end-of-life management, purse seines have the most significant circularity potential, followed by trawls and Danish seines, while gillnets, longlines, and traps and pots are most challenging to manage according to circularity principles. Finally, some policy implications of these findings are discussed, considering especially the role of the Extended Producer Responsibility policy in the accommodation for fishing gears' circularity.
RESUMO
Marine debris substantially threatens the world's marine ecosystems, national economies, and human well-being, particularly those living in the coastal areas. Among the types of marine debris, abandoned, lost, and discarded fishing gears (ALDFGs) are the most challenging, contributing substantially to marine pollution. The Sulu-Sulawesi Seas, a region rich in biodiversity but heavily impacted by fishing activities and ALDFGs, is the focus of this study. In proposing trilateral cooperation between the Philippines, Indonesia, and Malaysia, this paper suggests an eco-regional approach to mitigate its effects. An eco-regional approach looks to balancing ecology and societal needs, integrating environmental conservation and biodiversity with human requirements. The paper explores the effects of ALDFGs on the environment and society, reviews existing national and international laws, and advocates for a trilateral cooperation through eco-regional approach as an effective mitigation method.
Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Resíduos , Indonésia , Filipinas , Malásia , Resíduos/análise , Biodiversidade , Oceanos e Mares , Monitoramento Ambiental , Ecossistema , Poluição da Água/estatística & dados numéricosRESUMO
This paper uses a particle tracking model to simulate the distribution of fishing-related marine-sourced plastic litter from demersal trawling activities along the Atlantic coast of Scotland. The modelled fishing litter dispersed widely across the region, with â¼50% of the particles beaching along the northwestern Scottish coast after a year-long simulation. The model was tuned using observations of beached litter loadings along the same coastline to estimate the annual input, by mass, of small (<1 kg) plastic litter. Model results suggest that between 107 g and 280 g of small fishing-related litter enters the ocean per hour of fishing, resulting in an estimated 234 t to 614 t of small fishing-related litter entering the ocean annually on the Scottish west coast. These results suggest that fishing on the Atlantic coast of Scotland may be a significant source of marine plastic. However, more modelled and observational data are required to reduce uncertainty.
Assuntos
Praias , Monitoramento Ambiental , Pesqueiros , Plásticos , Plásticos/análise , Escócia , Poluentes Químicos da Água/análiseRESUMO
Inputs of persistent plastic items to marine environments continue to pose a serious and long-term threat to marine fauna and ecosystem health, justifying further interventions on local and global scales. While Life Cycle Assessment (LCA) is frequently used for sustainability evaluations by industries and policymakers, plastic leakage to the environment and its subsequent impacts remains absent from the framework. Incorporating plastic pollution in the assessments requires development of both inventories and impact assessment methods. Here, we propose spatially explicit Characterization Factors (CF) for quantifying the impacts of plastic entanglement on marine megafauna (mammals, birds and reptiles) on a global scale. We utilize Lagrangian particle tracking and a Species Sensitivity Distribution (SSD) model along with species susceptibility records to estimate potential entanglement impacts stemming from lost plastic-based fishing gear. By simulating plastic losses from fishing hotspots within all Exclusive Economic Zones (EEZs) we provide country-specific impact estimates for use in LCA. The impacts were found to be similar across regions, although the median CF associated with Oceania was higher compared to Europe, Africa and Asia. Our findings underscore the presence of susceptible species across the world and the transboundary issue of plastic pollution. We discuss the application of the factors and identify areas of further refinement that can contribute towards a comprehensive assessment of macroplastic pollution in sustainability assessments. Degradation and beaching rates for different types of fishing gear remain a research gap, along with population-level effects on marine taxa beyond surface breathing megafauna. Increasing the coverage of impacts specific to the marine realm in LCA alongside other stressors can facilitate informed decision-making towards more sustainable marine resource management.
Assuntos
Organismos Aquáticos , Ecossistema , Monitoramento Ambiental , Plásticos , Plásticos/análise , Monitoramento Ambiental/métodos , Animais , Poluentes Químicos da Água/análiseRESUMO
Finding time-efficient and cost-effective data collection methods is a challenge when addressing aquatic litter pollution on a global scale. In this study, we analysed data on aquatic benthic debris collected worldwide by volunteer scuba divers through the Dive Against Debris® citizen science initiative, examining its relationship with spatial and socio-economic factors. Plastic-dominated litter was found in both marine (64 %) and freshwater (48 %) environments, followed by metal and glass. Lower litter abundances have been recorded in high income countries such as in Europe, Central Asia and North America. Plastic fragments and fishing lines were the most abundant seafloor litter items, while takeaway containers (aluminium cans, glass bottles) were dominant in freshwater environments. Single-use plastics, including objects for food and beverage consumption, accounted for about 1/3 of the total benthic aquatic debris. Our findings highlight the need to prioritise the fishing industry and change our fast-paced modern lifestyle. Citizen science initiatives, once data cleanup is conducted to overcome any bias, can provide valuable tools for better understanding and quantifying marine litter pollution. The outcomes gained can be leveraged to improve consumer awareness and inform environmental policies aimed at addressing aquatic litter pollution more effectively.
Assuntos
Plásticos , Monitoramento Ambiental/métodos , Polímeros/química , Poluentes Químicos da Água/análise , Água DoceRESUMO
South-East Asia is among the least studied regions for the growing issue of marine debris pollution, despite being a major contributor towards global marine debris. In the present study, we provide the preliminary results from the MARsCI project, a survey protocol designed to utilise citizen science to facilitate data collection on the ecological impact of discarded fishing gear (DFG) in Thailand. Over a three-year period, 103 surveys were carried out across Thailand, resulting in impact assessment of 606 pieces of DFG. Our findings indicate corals are regularly impacted by DFG in Thai waters and that isolated marine habitats may be more severely impacted than near-shore sites. We further identify crabs, muricid snails, and demersal fish to be among the most regularly entangled animals. We discuss our findings in the context of earlier work from Thailand, and conduct a critical review of the protocol itself, identifying improvements for future efforts.
Assuntos
Ciência do Cidadão , Monitoramento Ambiental , Pesqueiros , Tailândia , Animais , Monitoramento Ambiental/métodos , Peixes , Ecossistema , Resíduos/análise , Resíduos/estatística & dados numéricos , Antozoários , BraquiúrosRESUMO
Purse-seine fishers using drifting fish aggregating devices (dFADs), mainly built with bamboo, plastic buoys, and plastic netting, to aggregate and catch tropical tuna, deploy 46,000-65,000 dFADs per year in the Pacific Ocean. Some of the major concerns associated with this widespread fishing device are potential entanglement of sea turtles and other marine fauna in dFAD netting; marine debris and pollution; and potential ecological damage via stranding on coral reefs, beaches, and other essential habitats for marine fauna. To assess and quantify the potential connectivity (number of dFADs deployed in an area and arriving in another area) between dFAD deployment areas and important oceanic or coastal habitat of critically endangered leatherback (Dermochelys coriacea) and hawksbill (Eretmochelys imbricata) sea turtles in the Pacific Ocean, we conducted passive-drift Lagrangian experiments with simulated dFAD drift profiles and compared them with known important sea turtle areas. Up to 60% of dFADs from equatorial areas were arriving in essential sea turtle habitats. Connectivity was less when only areas where dFADs are currently deployed were used. Our simulations identified potential regions of dFAD interactions with migration and feeding habitats of the east Pacific leatherback turtle in the tropical southeastern Pacific Ocean; coastal habitats of leatherback and hawksbill in the western Pacific (e.g., archipelagic zones of Indonesia, Papua New Guinea, and Solomon Islands); and foraging habitat of leatherback in a large equatorial area south of Hawaii. Additional research is needed to estimate entanglements of sea turtles with dFADs at sea and to quantify the likely changes in connectivity and distribution of dFADs under new management measures, such as use of alternative nonentangling dFAD designs that biodegrade, or changes in deployment strategies, such as shifting locations.
Simulación de las trayectorias de dispositivos de concentración de peces a la deriva para identificar las interacciones potenciales con las tortugas marinas en peligro de extinción Resumen Los pescadores que usan redes de cerco con dispositivos de concentración de peces a la deriva (dFADs), hechos principalmente con bambú, boyas de plástico y redes de plástico, para concentrar y capturar atún, instalan entre 46,000 y 65,000 dFADs al año en el Océano Pacífico. Algunas de las problemáticas principales asociadas con este dispositivo de pesca de uso extenso son el enredamiento potencial de tortugas marinas y otras especies marinas en las redes de los dFADs; los desechos marinos y la contaminación; y el potencial daño ecológico por el varamiento en los arrecifes de coral, playas y otros hábitats esenciales para la fauna marina. Realizamos experimentos lagrangianos de deriva pasiva con la simulación de perfiles de deriva de los dFADs y los comparamos con áreas conocidas de importancia para las tortugas marinas. Esto fue con el objetivo de evaluar y cuantificar la conectividad potencial (número de dFADs instalados en un área que llegan a otra área) entre las áreas de instalación de dFADs y los hábitats oceánicos o costeros importantes para la tortuga laúd (Dermochelys coriacea) y la tortuga de carey (Eretmochelys imbricata), ambas en peligro crítico de extinción, en el Océano Pacífico. Hasta el 60% de los dFADs de las áreas ecuatoriales llegaron a los hábitats esenciales para las tortugas marinas. La conectividad fue menor sólo cuando se usaron áreas en donde actualmente hay dFADs instalados. Nuestras simulaciones identificaron regiones potenciales de interacción entre los dFADs y los hábitats de migración y alimentación de la tortuga laúd en el sureste tropical del Océano Pacífico; los hábitats costeros de ambas especies en el Pacífico occidental (p. ej.: zonas de archipiélagos en Indonesia, Papúa Nueva Guinea y en las Islas Salomón); y en el hábitat de forrajeo de la tortuga laúd en una gran área ecuatorial al sur de Hawái. Se requiere de mayor investigación para estimar el enredamiento de las tortugas marinas con los dFADs en el mar y para cuantificar los cambios probables en la conectividad y la distribución de los dFADs bajo nuevas medidas de manejo, como el uso alternativo de diseños que eviten el enredamiento y sean biodegradables, o cambios en las estrategias de instalación, como la reubicación.
RESUMO
Community-based marine debris removal efforts on the Hawaiian Islands of Kaua'i and Hawai'i, spanning 2013-2022, provided large datasets and documented remarkable variations in annual amounts of debris, mainly from abandoned, lost and derelict fishing gear. To test the hypothesis that the influx of marine debris on Hawaiian shores is determined by the proximity of the North Pacific garbage patch, whose pattern changes under the control of large-scale ocean dynamics, we compared these observational data with the output of an oceanographic drift model. The high correlations between the total mass of debris collected and the model, ranging between r = 0.81 and r = 0.84, validate the attribution of the strong interannual signal to significant migrations of the garbage patch reproduced in the model experiments. Synchronous variations in marine debris fluxes on the two islands, separated by >500 km, confirm the large scale of the interannual changes in the North Pacific marine debris system.
Assuntos
Monitoramento Ambiental , Resíduos , Havaí , Oceano Pacífico , Resíduos/análise , Poluentes da Água/análiseRESUMO
Abandoned, lost and discarded fishing gear (ALDFG), significantly impacts marine ecosystems and biodiversity by incidental capture known as ghost fishing. Such impacts were quantified during the Norwegian Directorate of Fisheries' annual ALDFG cleanup operation in September 2023 by examining the characteristics of retrieved ALDFG and recording the taxonomically sorted catch abundance and biomass. A total of 307 specimens equaling 382 kg of biomass were caught in the recovered gillnets and king crab pots. Gillnets exhibited a 27.3 % greater catch abundance and 50.3 % higher biomass per ALDFG unit mass compared to king crab pots. Margalef, Menhinick, Simpson, Shannon, and Pielou diversity indices showed a more pronounced impact on species richness and biodiversity associated with recovered gillnets. This study introduces an approach to assess the impact of ghost fishing on ecosystems and biodiversity through ALDFG retrieval operations, instrumental in developing estimates of the total ghost fishing capture by ALDFG.
Assuntos
Anomuros , Ecossistema , Animais , Caça , Biomassa , Biodiversidade , PesqueirosRESUMO
Abandoned, lost, or otherwise discarded fishing gear (ALDFG) is a global challenge that negatively affects marine environment through plastic pollution and continued capture of marine animals, so-called "ghost fishing". In different pot fisheries, ghost fishing related to ALDFG is of concern, including pot fishery targeting swimming crab (Portunus trituberculatus). This study quantified the ghost fishing efficiency by comparing it to the catch efficiency of actively fished pots of the commercial fishery. The results showed that the ghost fishing affects both target and bycatch species. On average, the ghost fishing pots captured 12.53 % (confidence intervals: 10.45 %-15.00 %) undersized crab and 15.70 % (confidence intervals: 12.08 %-20.74 %) legal-sized crab compared to the actively fished pots. Few individuals of several bycatch species were also captured by ghost fishing pots. The results of this study emphasized the need to develop new management strategies for reducing marine pollution by ALDFG and associated negative effects in this pot fishery.
Assuntos
Braquiúros , Pesqueiros , Animais , Caça , Natação , Poluição da ÁguaRESUMO
Marine plastic pollution is a growing stressor affecting both marine and terrestrial life. Plastic polymers are widespread in oceans, including sparsely populated Nordic countries. Norway, a fishing-dominant region, faces substantial plastic pollution from fishing ropes, which often end up incinerated, landfilled, or lost in the ocean, contributing to the ghost fishing problem. This research employs a static material flow analysis (MFA) to assess plastic mass flows and the recyclability of 15 rope types used in Norway's commercial fishing sector. Findings reveal that approximately 383 tons of ropes are lost annually in Norwegian waters, endangering fish species. Furthermore, only one-third of the rope types can be efficiently recycled using available recycling technologies, highlighting the need for circularity. The MFA and inventory-based ranking approach shows significant potential as a holistic decision support tool for industry and policymakers in exercising sustainable and circular management for ropes.
Assuntos
Pesqueiros , Caça , Animais , Poluição Ambiental , Oceanos e Mares , Noruega , PlásticosRESUMO
Derelict fishing gear is a global problem, damaging marine ecosystems via habitat degradation and trapping marine life, thereby impacting fisheries. We conducted a global review of reasons for commercial gear loss, and used the findings to design a survey focused on coastal British Columbia (BC), Canada. We conducted dockside and on-line surveys of commercial fishers to record their experiences with lost gear across net, line, and trap gear types. The most common reasons for gear loss from the global review were interactions with other fishing vessels and their gear, marine weather, and snagging on submerged features. Survey results of 29 fishers in BC indicated that snagging gear on rough substrate was the most important reason for loss across all gear categories, followed by seafloor type. Other reasons for gear loss varied by net, line, and trap gear type. Understanding reasons for gear loss is important to reduce losses.
Assuntos
Ecossistema , Caça , Pesqueiros , Colúmbia BritânicaRESUMO
Pinnipeds represent one of the most vulnerable marine groups severely affected by entanglements. However, the lack of standardized data collection poses a challenge when comparing the impacts of fishing gear across various geographic regions. In this study, we employed Generalized Additive Models to predict entanglement incidents stemming from fishing-related activities for 13 pinniped species across the last four decades (1976-2017). The models incorporated reported entanglement numbers, fishing effort covariates based on different gear types, and floating plastic debris distribution for each species. Through this approach, we generated global hotspot maps that pinpoint regions of heightened vulnerability where pinnipeds are susceptible to entanglement in lost gear. The best-performing model highlighted both species characteristics and the presence of floating plastic debris as pivotal factors in predicting pinniped entanglements. Our analysis revealed entanglement hotspots in the North Pacific and Southeastern Australia. This demonstrates the efficacy of our methodology in identifying high-priority geographic areas.
RESUMO
Marine plastic pollution and continuous capture of marine animals, so-called "ghost fishing", by abandoned, lost, or otherwise discarded fishing gear (ALDFG) are global concerns. This study investigated whether biodegradable polylactic acid (PLA) monofilaments can be used to replace conventionally used non-biodegradable polyamide (PA) in trammel net fishery for limiting ALDFG associated effects. It evaluated the physical properties of PLA and PA monofilaments and compared fishing performance of PLA and PA trammel nets in a commercial mullet fishery in the Yellow Sea, China. Although PA monofilament exhibited superior physical properties, no significant differences in catch efficiency between PA and PLA trammel nets were observed. Fish of both species were mainly captured by pocketing which can further explain observed similar catch efficiency. These initial results suggest a potential for applying biodegradable materials in trammel net fisheries. Therefore, further long-term testing is encouraged to investigate whether this promising performance is persistent over long-term.
RESUMO
Beach-cleans conducted on the west coast of Scotland investigated the distribution of land- and marine-sourced litter and compared these with a particle tracking model representing the presumed principal land-based source. Modelled particles dispersed widely, even reaching the remote northwest coast, with 'hotspots' and 'coldspots' on windward and leeward coasts respectively. In beach sampling, however, land-sourced litter represented only 19% of items by count and 8% by weight, while marine-sourced litter represented 46% by count and 62% by weight. The source of the remainder could not be identified. Windward coasts had an average count of 1859 litter items per 100 m, and weight of 14,862 g per 100 m. Leeward coasts had an average count of 32 litter items per 100 m and weight of 738 g per 100 m. Field observations and model predictions were consistent in many respects for land-sourced litter, however marine-sourced litter is dominant on many coastlines.
Assuntos
Poluição Ambiental , Plásticos , EscóciaRESUMO
Abandoned, lost, or discarded fishing gear (ALDFG), represents a significant percentage of the global plastic pollution, currently considered one of the major sources from sea-based activities. However, there is still limited understanding of the quantities of ALDFG present on the seafloor and their impacts. In this study, data on the presence of ALDFG was obtained from a large archive of seafloor video footage (351 dives) collected by different imaging platforms in the Azores region over 15 years (2006-2020). Most ALDFG items observed in the images relate to the local bottom longline fishery operating in the region, and include longlines but also anchors, weights, cables and buoys. A generalized additive mixed model (GAMM) was used to predict the distribution and abundance of ALDFG over the seafloor within the limits of the Azores Exclusive Economic Zone (EEZ) using a suite of environmental and anthropogenic variables. We estimated an average of 113 ± 310 items km-2 (597 ± 756 per km-2 above 1000 m depth), which could imply that over 20 million ALDFG items are present on the deep seafloor of the Azores EEZ. The resulting model identified potential hotspots of ALDFG along the seabed, some of them located over sensitive benthic habitats, such as specific seamounts. In addition, the interactions between ALDFG and benthic organisms were also analysed. Numerous entanglements were observed with several species of large anthozoans and sponges. The use of predictive distribution modelling for ALDFG should be regarded as a useful tool to support ecosystem-based management, which can provide indirect information about fishing pressure and allow the identification of potential high-risk areas. Additional knowledge about the sources, amounts, fates and impacts of ALDFG will be key to address the global issue of plastic pollution and the effects of fishing on marine ecosystems.
RESUMO
Although the seafloor is an important sink for marine litter, its less accessible environment makes seafloor litter the least studied component. Nevertheless, detailed monitoring of its composition and spatial distribution is urgently needed to develop appropriate mitigation strategies in areas exposed to multiple anthropogenic pressures, such as the Adriatic Sea. Commercial fisheries such as bottom trawls can serve as an opportunistic platform for collecting data on seafloor litter and help researchers in addressing the lack of data through Fishing for Litter initiatives. In this study, the crews of twelve trawlers from two Italian Adriatic ports collected seafloor litter as part of their Fishing for Litter initiatives. In addition to the classical scheme, the collected litter was sorted on board into different bags, and speed, duration and geographical coordinates of each haul were recorded to allow an assessment of both densities and spatial distribution. More than 600 kg of litter was removed from the seafloor by the fishers in approximately 1 month and characterised by the researchers on the docks. Most of the found items were made of synthetic polymers and related to packaging, fisheries and aquaculture activities. Abandoned, lost or discarded fishing gear and mussel nets were identified as of particular concern in the maritime compartment of Chioggia and Civitanova Marche, respectively. Three hotspots for marine litter were identified: near the Venice lagoon, in the centre of the northern basin and at greater depth in the central Adriatic. This study provides a detailed picture of the spatial distribution and composition of seafloor litter in the areas studied and highlights the importance of increased cooperation between fishermen and scientists to improve the identification of hotspots and sources while removing marine litter from the seafloor and raising awareness of the problem.
Assuntos
Monitoramento Ambiental , Resíduos , Resíduos/análise , Caça , Mar Mediterrâneo , PlásticosRESUMO
Managing abandoned, lost and otherwise discarded fishing gear (ALDFG) is a critical challenge that can be aided by the establishment of strong provisions for the marking of gear. This study presents an analysis of implementation of the VGMFG in Eastern Caribbean states. It provides a socio-legal review of this issues and an analysis of compliance and implementation gaps. Empirical data was gathered through interviews with 56 fishers in 2 jurisdictions as well as 6 national and regional fisheries management experts. Antigua and Barbuda's Fisheries Regulations provided the strongest support to implementation of the VGMFG, while neither Dominica nor Grenada had weak regulatory support for gear marking. Both fishers and fisheries managers in the region confirmed compliance and implementation gaps in the establishment of gear marking schemes, while regional fisheries experts highlighted the limited human, financial and infrastructural capacity of departments to effectively implement such schemes along with other ALDFG management measures.
Assuntos
Pesqueiros , Caça , Humanos , Região do CaribeRESUMO
Southeast (SE) Asia is a highly biodiverse region, yet it is also estimated to cumulatively contribute a third of the total global marine plastic pollution. This threat is known to have adverse impacts on marine megafauna, however, understanding of its impacts has recently been highlighted as a priority for research in the region. To address this knowledge gap, a structured literature review was conducted for species of cartilaginous fishes, marine mammals, marine reptiles, and seabirds present in SE Asia, collating cases on a global scale to allow for comparison, coupled with a regional expert elicitation to gather additional published and grey literature cases which would have been omitted during the structured literature review. Of the 380 marine megafauna species present in SE Asia, but also studied elsewhere, we found that 9.1 % and 4.5 % of all publications documenting plastic entanglement (n = 55) and ingestion (n = 291) were conducted in SE Asian countries. At the species level, published cases of entanglement from SE Asian countries were available for 10 % or less of species within each taxonomic group. Additionally, published ingestion cases were available primarily for marine mammals and were lacking entirely for seabirds in the region. The regional expert elicitation led to entanglement and ingestion cases from SE Asian countries being documented in 10 and 15 additional species respectively, highlighting the utility of a broader approach to data synthesis. While the scale of the plastic pollution in SE Asia is of particular concern for marine ecosystems, knowledge of its interactions and impacts on marine megafauna lags behind other areas of the world, even after the inclusion of a regional expert elicitation. Additional funding to help collate baseline data are critically needed to inform policy and solutions towards limiting the interactions of marine megafauna and plastic pollution in SE Asia.
Assuntos
Caniformia , Poluentes Químicos da Água , Animais , Ecossistema , Poluentes Químicos da Água/análise , Plásticos , Cetáceos , Poluição da Água , Monitoramento Ambiental , Resíduos/análise , Sudeste AsiáticoRESUMO
Marine debris is an international environmental issue, and the growing amount of abandoned, lost, or otherwise discarded fishing gear (ALDFG) is a particular concern. Despite Taiwan's substantial fishing industry, there is a lack of comprehensive understanding of fishing gear. This work conducted a static material flow analysis to estimate the flows and the stocks of fishing gear in Taiwan in 2020, based on government statistics and interviews with fishing gears producing companies, fishermen, and recycling companies. Our findings reveal that the inflow, outflow, and stock of the fishing gears are 8,846 t/a, 4,271 t/a, and 4,575 t/a, respectively. Only 36 % of end-of-life fishing gear is recycled, while the rest is incinerated or landfilled. Additionally, the stock comprises 27 % in use, 23 % in ports, and 50 % entering the ocean. These results underscore the need to increase recycling capacity, prevent loss in oceans, and promote repairs to extend the lifespan of fishing gear.