Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 725
Filtrar
1.
JBMR Plus ; 8(10): ziae107, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39224569

RESUMO

Hypophosphatasia (HPP) is characterized by low activity of tissue nonspecific alkaline phosphatase (TNSALP). The enzyme replacement therapy asfotase alfa has been approved for childhood-onset forms of HPP. MicroRNAs (miRNAs) have emerged as a novel disease biomarker, with potential application in therapy monitoring. Circulating miRNAs were analyzed at baseline, months 1, 2, 4, and 16 in a 49-yr-old woman with childhood-onset HPP, chronic musculoskeletal pain, and non-traumatic fractures prior to enzyme replacement therapy. Serum RNA was extracted and sequenced using miRNeasy Mini Kit (Qiagen, Germany), RealSeq Biosciences Kit (Santa Cruz, US) together with miND spike-in control kit (TAmiRNA, Austria) and Illumina NovaSeq 6000 SP1 flow cell (San Diego, US). Brief Pain Inventory Severity and Interference scores (BPI-S/BPI-I), fatigue severity scale (FSS), Patient Global Impression of Improvement (PGI-I), Western Ontario and McMaster university hip disability and osteoarthritis outcome score (WOMAC), fibromyalgia impact questionnaire (FIQ), 6-Minute Walking Test (6-MWT), chair-rise-test (CRT), and handgrip dynamometry (HD) were performed at baseline and different timepoints during the therapy. Out of >800 screened, 84 miRNAs were selected based on differences in expression profiles between 24 HPP patients and 24 healthy controls. Six miRNAs showed a clear graphic trend and were up- or downregulated by ≥50% reads per million (rpm). These included hsa-let-7i-5p (+50%), hsa-miR-1-3p (-66.66%), hsa-miR-1294 (+63.63%), hsa-miR-206 (-85.57%), hsa-miR-375-3p (-71.43%), and hsa-miR-624-5p (+69.44%). hsa-miR-1-3p and hsa-miR-206 were identified as muscle-specific miRNAs. hsa-mir-375-3p, which negatively regulates osteogenesis, was significantly downregulated. In terms of patient-reported outcomes, BPI-S, BPI-I, FSS, PGI-I, WOMAC, and FIQ showed a reduction by -58.62%, -68.29%, -33.33%, -75.00%, -63.29%, and -43.02%, respectively. 6-MWT improved by +33.89% and CRT by -44.46%. Mean hand grip strength of the right/left hand measured by HD improved by +12.50% and + 23.53%, respectively. miRNA profile changes during the therapy with asfotase alfa, accompanying improvements in functionality tests and quality of life scores.

2.
J Periodontal Res ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225294

RESUMO

AIM: Ascorbic acid (AA) is a water-soluble vitamin that has antioxidant properties and regulates homeostasis of connective tissue through controlling various enzymatic activities. Two cell surface glycoproteins, sodium-dependent vitamin C transporter (SVCT) 1 and SVCT2, are known as ascorbate transporters. The purpose of this study was to investigate the expression pattern and functions of SVCTs in periodontal ligament (PDL) and PDL fibroblast (PDLF). METHODS: Gene expression was examined using real-time polymerase chain reaction (PCR) and reverse transcription PCR. SVCT2 expression was determined by immunofluorescence staining, western blot and flow cytometry. ALP activity and collagen production were examined using ALP staining and collagen staining. Short interfering RNA was used to knock down the gene level of SVCT2. Change of comprehensive gene expression under SVCT2 knockdown condition was examined by RNA-sequencing analysis. RESULTS: Real-time PCR, fluorescent immunostaining, western blot and flowy cytometry showed that SVCT2 was expressed in PDLF and PDL. ALP activity, collagen production, and SVCT2 expression were enhanced upon AA stimulation in PDLF. The enhancement of ALP activity, collagen production, and SVCT2 expression by AA was abolished under SVCT2 knockdown condition. RNA-sequencing revealed that gene expression of CLDN4, Cyclin E2, CAMK4, MSH5, DMC1, and Nidgen2 were changed by SVCT2 knockdown. Among them, the expression of MSH5 and DMC1, which are related to DNA damage sensor activity, was enhanced by AA, suggesting the new molecular target of AA in PDLF. CONCLUSION: Our study reveals the SVCT2 expression in PDL and the pivotal role of SVCT2 in mediating AA-induced enhancements of ALP activity and collagen production in PDLF. Additionally, we identify alterations in gene expression profiles, highlighting potential molecular targets influenced by AA through SVCT2. These findings deepen our understanding of periodontal tissue homeostasis mechanisms and suggest promising intervention targeting AA metabolism.

3.
Anal Bioanal Chem ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107581

RESUMO

This study introduces an innovative approach for the real-time and efficient detection of alkaline phosphatase (ALP) activity, using a calcein fluorescence probe and leveraging the static quenching properties of calcein fluorescence by Ce3+ metal ions. In this method, calcein serves as the signal element, with its fluorescence effectively preserved through energy transfer or charge transfer when coordinated with Ce3+. Conversely, ALP catalyzes the phosphopeptide substrate to generate a substantial amount of Pi, preventing calcein fluorescence quenching due to the higher affinity between Pi and Ce3+ compared with that between calcein and Ce3+. The fluorescence intensity ratio (F-F0/F0) exhibited excellent linearity, facilitating sensitive ALP detection. The proposed ALP detection method covers a range from 0 to 1.4 mU/mL (R2 = 0.9942), with the limit of detection at 0.069 mU/mL (S/N = 3). Additionally, this method was successfully applied for detecting ALP in serum samples and studying its inhibitors. This research introduces a novel clinical diagnosis approach for ALP sensing while broadening the potential applications of calcein.

4.
J Mol Med (Berl) ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136767

RESUMO

One of the hallmarks of chronic kidney disease (CKD) is the development of vascular calcification. Inorganic pyrophosphate is a potent inhibitor of calcification, and previous studies have reported low plasma pyrophosphate levels in hemodialysis patients. A long-term mouse model of CKD-accelerated vascular calcification was developed to study pyrophosphate metabolism and to test whether oral pyrophosphate supplementation attenuates the propensity for arterial calcification. CKD was induced by repeated injections of aristolochic acid in wild-type and Abcc6-/- mice, which tend to develop vascular calcifications. CKD accelerated the development of vascular calcifications in Abcc6-/- mice, in the aorta and small renal arteries, and decreased circulating pyrophosphate levels. Oral pyrophosphate supplementation for 6 months attenuated CKD-induced vascular calcification in this model. These results show that oral pyrophosphate may be of interest in preventing vascular calcification in patients with CKD. KEY MESSAGES: Chronic kidney disease accelerates the development of vascular calcification in pyrophosphate-deficient mice. Oral pyrophosphate supplementation for 6 months attenuates chronic kidney disease-induced vascular calcification in a mouse model. Oral pyrophosphate may be of interest in preventing vascular calcification in patients with chronic kidney disease.

5.
Transl Cancer Res ; 13(7): 3328-3337, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39145085

RESUMO

Background: Alkaline phosphatase (ALP) reflects changes in the condition of multiple myeloma (MM) patients to some extent. However, the relationship of ALP in MM remains uncertain. Our study aimed to determine the association between initial ALP levels and overall survival in newly diagnosed MM patients. Methods: Clinical data from 202 newly diagnosed MM patients at Beijing Chaoyang Hospital between 2012 and 2016 were collected. Baseline characteristics, disease progression staging, serum markers, and patient survival data were recorded. The cut-off value for ALP was calculated based on patient survival data, and patients were divided into groups. Differences in patients' 3- and 5-year survival rates, liver function, bone disease and other indicators among different groups were compared. Independent risk factors influencing newly diagnosed MM patients were identified using COX regression analysis. Results: Patients were categorized into three groups based on ALP cut-off points: Group 1 (ALP <70 U/L), Group 2 (ALP 70 to <120 U/L), and Group 3 (ALP ≥120 U/L). Significant differences were observed in lactate dehydrogenase, serum calcium, white blood cell count, hemoglobin, and liver function indicators (including alanine aminotransferase, aspartate aminotransferase, albumin, and γ-glutamyl transferase) among different ALP groups (P<0.05). ALP levels varied significantly among patients with different bone disease grades (P<0.05). Median survival times for Groups 1, 2, and 3 were 25, 52, and 31 months, respectively. Group 2 exhibited significantly higher 3-year survival compared to the other two groups (P=0.006), while no significant difference was observed in 5-year survival among the three groups (P=0.51). Age, International Staging System staging, aspartate aminotransferase, ß2-microglobulin, ALP grading, and severe bone disease were identified as independent factors influencing survival in newly diagnosed patients (P<0.05). Conclusions: ALP levels are correlated with the prognosis of MM patients, and an ALP range of 70 to <120 U/L reflects a better survival expectation.

6.
J Mech Behav Biomed Mater ; 159: 106683, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39180891

RESUMO

Intermittent and continuous mechanical loads are known to influence osteogenic activity. The present study examines the effects of matched intermittent and continuous load in vitro on bone formation markers. MC3T3 (mouse pre-osteoblasts) were cultured and placed in a bioreactor to undergo continuous, intermittent, or unloading for 1, 3 and 12 days. Loading conditions were matched for magnitude, duration and frequency. Each time point was analysed for alkaline phosphatase (ALP) activity, procollagen 1 N-terminal propeptide (PINP) and alizarin red staining (ARS). Intermittent load caused an increase in ALP activity across all time points compared to continuous loading (↑30%-59%) and unloaded conditions (↑70%-90%). PINP concentrations from intermittent load were lower than continuous load (↓112%) on day 3. However, no differences were observed in PINP concentrations between loading conditions at other time points. No differences were observed for ARS between loading conditions. Intermittent load caused an increase in bone formation marker ALP, but not PINP, when compared to continuous loading and unloaded conditions. These findings further our knowledge in bone formation response and provide additional tools for the analysis of osteogenesis in vitro.

7.
J Pak Med Assoc ; 74(7): 1374-1375, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39028076

RESUMO

This review delves into relatively less discussed role of alkaline phosphatase (ALP) as an accessible alternative to intact parathyroid hormone (iPTH) in the context of bone health assessment, particularly focussing on its potential boon for underprivileged individuals with chronic kidney disease (CKD) in South Asia. The financial constraints faced by this demographic often hinder regular monitoring of iPTH levels. ALP emerges as a promising surrogate, offering a cost-effective and practical solution for bone health evaluation in resource-constrained settings.


Assuntos
Fosfatase Alcalina , Hormônio Paratireóideo , Humanos , Fosfatase Alcalina/sangue , Hormônio Paratireóideo/sangue , Insuficiência Renal Crônica/sangue , Biomarcadores/sangue , Densidade Óssea
8.
Cureus ; 16(6): e63374, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39077288

RESUMO

Background In the contemporary era, where science and technology know no boundaries, this in vivo study explores the impact of growth modulation therapy using Twin Block, Forsus Fatigue Resistant, and Clear Block appliances on alkaline phosphatase (ALP) levels in gingival crevicular fluid (GCF). Bone physiology involves modeling and remodeling, with orthodontics applying forces to teeth, influencing tissue reactivity and bone modeling. ALP, a marker of osteoblast function, plays a crucial role in bone growth. GCF reflects immunological and inflammatory responses during orthodontic force application, making it a valuable medium for studying ongoing metabolic processes related to bone turnover. Aim The study aims to comparatively analyze ALP levels in GCF during growth modulation therapy, assessing the efficacy of Twin Block, Forsus Fatigue Resistant, and Clear Block appliances. The research involves 30 experimental samples divided into three study groups and a control group. The samples are collected at various time intervals, and ALP levels are analyzed using a spectrophotometer. Statistical analysis includes paired and unpaired t-tests, one-way analysis of variance (ANOVA), and multiple comparisons. Results Results demonstrate a significant increase in ALP levels during the growth modulation therapy, indicating a positive correlation with bone remodeling. Twin Block appears to be the most effective appliance, exhibiting higher ALP activity compared to Clear Block and Forsus groups. Conclusion In conclusion, this study provides valuable insights into the biochemical responses during growth modulation therapy, emphasizing the potential of GCF analysis in understanding orthodontic treatment effects.

9.
Mikrochim Acta ; 191(7): 439, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954110

RESUMO

A Pyrococcus furiosus Argonaute (PfAgo)-based biosensor is presented for alkaline phosphatase (ALP) activity detection in which the ALP-catalyzed hydrolysis of 3'-phosphate-modified functional DNA activates the strand displacement amplification, and the amplicon mediates the fluorescent reporter cleavage as a guide sequence of PfAgo. Under the dual amplification mode of PfAgo-catalyzed multiple-turnover cleavage activity and pre-amplification technology, the developed method was successfully applied to ALP activity determination with a detection limit (LOD) of 0.0013 U L-1 (3σ) and a detection range of 0.0025 to 1 U L-1 within 90 min. The PfAgo-based method exhibits satisfactory analytic performance in the presence of potential interferents and in complex human serum samples. The proposed method shows several advantages, such as rapid analysis, high sensitivity, low-cost, and easy operation, and has great potential in disease evolution fundamental studies and clinical diagnosis applications.


Assuntos
Fosfatase Alcalina , Técnicas Biossensoriais , Limite de Detecção , Pyrococcus furiosus , Técnicas Biossensoriais/métodos , Fosfatase Alcalina/sangue , Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Humanos , Pyrococcus furiosus/enzimologia , Proteínas Argonautas/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos , Ensaios Enzimáticos/métodos
10.
Cardiovasc Toxicol ; 24(9): 955-967, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38990500

RESUMO

Aluminum phosphide (AlP) is the main component of rice tablets (a pesticide), which produces phosphine gas (PH3) when exposed to stomach acid. The most important symptoms of PH3 toxicity include, lethargy, tachycardia, hypotension, and cardiac shock. It was shown that Iodine can chemically react with PH3, and the purpose of this study is to investigate the protective effects of Lugol solution in poisoning with rice tablets. Five doses (12, 15, 21, 23, and 25 mg/kg) of AlP were selected, for calculating its lethal dose (LD50). Then, the rats were divided into 4 groups: AlP, Lugol, AlP + Lugol, and Almond oil (as a control). After 4 h, the blood pressure and electrocardiogram (ECG) were recorded, and blood samples were obtained for biochemical tests, then liver, lung, kidney, heart, and brain tissues were removed for histopathological examination. The results of the blood pressure showed no significant changes (P > 0.05). In ECG, the PR interval showed a significant decrease in the AlP + Lugol group (P < 0.05). In biochemical tests, LDH, Ca2+, Creatinine, ALP, Mg2+, and K+ represented significant decreases in AlP + Lugol compared to the AlP group (P < 0.05). Also, the administration of Lugol's solution to AlP-poisoned rats resulted in a significant decrease in malondialdehyde levels and a significant increase in catalase activity (P < 0.05). Histopathological evaluation indicates that Lugol improves changes in the lungs, kidneys, brain, and heart. Our results showed that the Lugol solution could reduce tissue damage and oxidative stress in AlP-poisoned rats. We assume that the positive effects of Lugol on pulmonary and cardiac tissues are due to its ability to react directly with PH3.


Assuntos
Compostos de Alumínio , Fosfinas , Ratos Wistar , Animais , Fosfinas/toxicidade , Compostos de Alumínio/toxicidade , Masculino , Estresse Oxidativo/efeitos dos fármacos , Biomarcadores/sangue , Modelos Animais de Doenças , Pressão Sanguínea/efeitos dos fármacos , Antídotos/farmacologia , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Eletrocardiografia , Intoxicação/prevenção & controle , Antioxidantes/farmacologia , Praguicidas/toxicidade , Comprimidos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Ratos , Dose Letal Mediana , Miocárdio/patologia , Miocárdio/metabolismo , Iodetos
11.
Biomedicines ; 12(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38927478

RESUMO

The purpose of the present study was to evaluate the concentrations of some bone turnover markers in preterm neonates with uncomplicated clinical course in the first month of life. Samples from 13 preterm neonates were collected at three different times: at birth (T0) from umbilical cord blood (UCB); and at 15 (T1) and 30 (T2) days of life from peripheral blood (PB). The concentrations of calcium (Ca), phosphate (P), total alkaline phosphatase (ALP), Collagen Type 1 Amino-terminal Propeptide (PINP), osteocalcin (OC), Collagen Type 1 Carboxyl-Terminal Telopeptide (CTX) and Leptin were assessed. A statistically significant difference for ALP concentration at birth versus T1 and T2 was found. An evident increase in the median concentrations of CTX, OC and PINP from T0 to T2 were observed. A significant difference was also found for Leptin concentration at T0 compared to T1. In preterm infants, in the absence of acute or chronic medical conditions and without risk factors for metabolic bone disease (MBD) of prematurity, there is a significant increase in bone turnover markers during the first month of life. The knowledge of the variations in these markers in the first weeks of life, integrated by the variations in the biochemical indicators of bone metabolism, could help in recognizing any conditions at risk of developing bone diseases.

12.
ACS Nano ; 18(27): 17837-17851, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38938113

RESUMO

Currently, specific cancer-responsive fluorogenic probes with activatable imaging and therapeutic functionalities are in great demand in the accurate diagnostics and efficient therapy of malignancies. Herein, an all-in-one strategy is presented to realize fluorescence (FL) imaging-guided and synergetic chemodynamic-photodynamic cancer therapy by using a multifunctional alkaline phosphatase (ALP)-response aggregation-induced emission (AIE) probe, TPE-APP. By responding to the abnormal expression levels of an ALP biomarker in cancer cells, the phosphate groups on the AIE probe are selectively hydrolyzed, accompanied by in situ formation of strong emissive AIE aggregates for discriminative cancer cell imaging over normal cells and highly active quinone methide species with robust chemodynamic-photodynamic activities. Consequently, the activated AIE probes can efficiently destroy cancer cell membranes and lead to the death of cancer cells within 30 min. A superior efficacy in cancer cell ablation is demonstrated in vitro and in vivo. The cancer-associated biomarker response-derived discriminative FL imaging and synergistic chemodynamic-photodynamic therapy are expected to provide a promising avenue for precise image-guided cancer therapy.


Assuntos
Fosfatase Alcalina , Corantes Fluorescentes , Fotoquimioterapia , Humanos , Fosfatase Alcalina/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Corantes Fluorescentes/síntese química , Animais , Imagem Óptica , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Camundongos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Camundongos Nus , Ensaios de Seleção de Medicamentos Antitumorais
13.
Pharmacol Ther ; 260: 108680, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878974

RESUMO

Ubiquitin-fold modifier 1 (UFM1) is covalently conjugated to protein substrates via a cascade of enzymatic reactions, a process known as UFMylation. UFMylation orchestrates an array of vital biological functions, including maintaining endoplasmic reticulum (ER) homeostasis, facilitating protein biogenesis, promoting cellular differentiation, regulating DNA damage response, and participating in cancer-associated signaling pathways. UFMylation has rapidly evolved into one of the forefront research areas within the last few years, yet much remains to be uncovered. In this review, first, UFMylation and its cellular functions associated with diseases are briefly introduced. Then, we summarize the proteomic approaches for identifying UFMylation substrates and explore the impact of UFMylation on gene transcription, protein translation, and maintenance of ER homeostasis. Next, we highlight the intricate regulation between UFMylation and two protein degradation pathways, the ubiquitin-proteasome system and the autophagy-lysosome pathway, and explore the potential of UFMylation system as a drug target. Finally, we discuss emerging perspectives in the UFMylation field. This review may provide valuable insights for drug discovery targeting the UFMylation system.


Assuntos
Processamento de Proteína Pós-Traducional , Proteostase , Humanos , Proteostase/fisiologia , Animais , Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas
14.
Hum Genomics ; 18(1): 71, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915066

RESUMO

OBJECTIVE: To investigate the association between liver enzymes and ovarian cancer (OC), and to validate their potential as biomarkers and their mechanisms in OC. Methods Genome-wide association studies for OC and levels of enzymes such as Alkaline phosphatase (ALP), Aspartate aminotransferase (AST), Alanine aminotransferase, and gamma-glutamyltransferase were analyzed. Univariate and multivariate Mendelian randomization (MR), complemented by the Steiger test, identified enzymes with a potential causal relationship to OC. Single-cell transcriptomics from the GSE130000 dataset pinpointed pivotal cellular clusters, enabling further examination of enzyme-encoding gene expression. Transcription factors (TFs) governing these genes were predicted to construct TF-mRNA networks. Additionally, liver enzyme levels were retrospectively analyzed in healthy individuals and OC patients, alongside the evaluation of correlations with cancer antigen 125 (CA125) and Human Epididymis Protein 4 (HE4). RESULTS: A total of 283 single nucleotide polymorphisms (SNPs) and 209 SNPs related to ALP and AST, respectively. Using the inverse-variance weighted method, univariate MR (UVMR) analysis revealed that ALP (P = 0.050, OR = 0.938) and AST (P = 0.017, OR = 0.906) were inversely associated with OC risk, suggesting their roles as protective factors. Multivariate MR (MVMR) confirmed the causal effect of ALP (P = 0.005, OR = 0.938) on OC without reverse causality. Key cellular clusters including T cells, ovarian cells, endothelial cells, macrophages, cancer-associated fibroblasts (CAFs), and epithelial cells were identified, with epithelial cells showing high expression of genes encoding AST and ALP. Notably, TFs such as TCE4 were implicated in the regulation of GOT2 and ALPL genes. OC patient samples exhibited decreased ALP levels in both blood and tumor tissues, with a negative correlation between ALP and CA125 levels observed. CONCLUSION: This study has established a causal link between AST and ALP with OC, identifying them as protective factors. The increased expression of the genes encoding these enzymes in epithelial cells provides a theoretical basis for developing novel disease markers and targeted therapies for OC.


Assuntos
Fosfatase Alcalina , Biomarcadores Tumorais , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Neoplasias Ovarianas , Polimorfismo de Nucleotídeo Único , Análise de Célula Única , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Polimorfismo de Nucleotídeo Único/genética , Análise de Célula Única/métodos , Fosfatase Alcalina/genética , Fosfatase Alcalina/sangue , Biomarcadores Tumorais/genética , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos/genética , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos/metabolismo , Aspartato Aminotransferases/genética , Aspartato Aminotransferases/sangue , Fígado/patologia , Fígado/metabolismo , Alanina Transaminase/sangue , Alanina Transaminase/genética , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/sangue , Antígeno Ca-125/genética , Regulação Neoplásica da Expressão Gênica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Membrana/genética , Pessoa de Meia-Idade
15.
Sci Rep ; 14(1): 11389, 2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762518

RESUMO

Phosphorus (P) use efficiency in alkaline/calcareous soils is only 20% due to precipitation of P2O5 with calcium and magnesium. However, coating Diammonium Phosphate (DAP) with phosphorus solubilizing bacteria (PSB) is more appropriate to increase fertilizer use efficiency. Therefore, with the aim to use inorganic fertilizers more effectively present study was conducted to investigate comparative effect of coated DAP with PSB strains Bacillus subtilis ZE15 (MN003400), Bacillus subtilis ZR3 (MN007185), Bacillus megaterium ZE32 (MN003401) and Bacillus megaterium ZR19 (MN007186) and their extracted metabolites with uncoated DAP under axenic conditions. Gene sequencing was done against various sources of phosphorus to analyze genes responsible for phosphatase activity. Alkaline phosphatase (ALP) gene amplicon of 380bp from all tested strains was showed in 1% w/v gel. Release pattern of P was also improved with coated fertilizer. The results showed that coated phosphatic fertilizer enhanced shoot dry weight by 43 and 46% under bacterial and metabolites coating respectively. Shoot and root length up to 44 and 42% with metabolites coated DAP and 41% with bacterial coated DAP. Physiological attributes also showed significant improvement with coated DAP over conventional. The results supported the application of coated DAP as a useful medium to raise crop yield even at lower application rates i.e., 50 and 75% DAP than non-coated 100% DAP application which advocated this coating technique a promising approach for advancing circular economy and sustainable development in modern agriculture.


Assuntos
Bacillus megaterium , Fertilizantes , Fosfatos , Fósforo , Microbiologia do Solo , Solo , Zea mays , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Fósforo/metabolismo , Solo/química , Bacillus megaterium/metabolismo , Bacillus megaterium/genética , Bacillus megaterium/crescimento & desenvolvimento , Fosfatos/metabolismo , Bacillus subtilis/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética
16.
Cureus ; 16(4): e58888, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38800224

RESUMO

Aluminum phosphide (ALP) poisoning poses a significant public health concern worldwide, with a high mortality rate and no established definitive treatment. This case report highlights a 30-year-old male with G6PD deficiency who ingested ALP tablets, presenting with jaundice and anemia. Despite the severity of ALP poisoning, the concurrent G6PD deficiency appeared to confer a protective effect, potentially mitigating complications. Laboratory investigations revealed characteristic findings, including unconjugated hyperbilirubinemia and normocytic hypochromic anemia. Treatment involved supportive measures and transfusion, leading to clinical improvement and discharge. The discussion focuses on the pathophysiology of G6PD deficiency and its protective role against ALP poisoning, supported by a literature review and experimental evidence. Moreover, potential therapeutic interventions targeting oxidative stress are discussed. This case underscores the importance of considering G6PD deficiency in ALP poisoning management and highlights avenues for further research into protective mechanisms and treatment strategies.

17.
Curr Issues Mol Biol ; 46(5): 4489-4505, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38785540

RESUMO

In this work, we propose a new technique involving the modification of commercial screen-printed carbon electrodes with electrochemically reduced graphene oxide to serve as the starting point of a future electrochemical biosensor for the detection of two osteogenic biomarkers: alkaline phosphatase (ALP) and Runt-related transcription factor 2 (RUNX2). The electrodes were characterized after each modification by cyclic voltammetry and electrochemical impedance spectroscopy, showing the appropriate electrochemical characteristics for each modification type. The results obtained from scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and contact angle measurements are well correlated with each other, demonstrating the successful modification of the electrodes with graphene oxide and its subsequent reduction. The bioreceptors were immobilized on the electrodes by physical adsorption, which was confirmed by electrochemical methods, structural characterization, and contact angle measurements. Finally, the functionalized electrodes were incubated with the specific target analytes and the detection relied on monitoring the electrochemical changes occurring after the hybridization process. Our results indicated that the pilot platform has the ability to detect the two biomarkers up to 1 nM, with increased sensitivity observed for RUNX2, suggesting that after further optimizations, it has a high potential to be employed as a future biosensor.

18.
Heliyon ; 10(8): e29639, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644839

RESUMO

Objectives: The value of biochemical markers of bone turnover (BTMs) in predicting survival and disease remains unclear. In a prospective study we evaluated the novel biomarkers for bone turnover sclerostin, dickkopf-1 (DKK-1), osteopontin (OPN), osteoprotegerin (OPG) and osteocalcin (OC), as well as a traditional biomarker, alkaline phosphatase (ALP) in relation to risk of mortality, cardiovascular events and fractures. Participants: and Methods:Routine blood tests and serum BTMs, including ALP, were analyzed in patients with hip fracture n = 97, stroke n = 71 and healthy volunteers n = 83 (mean age 86, 83 and 77, respectively), followed for 7 years. Hazard Ratios (HR) were calculated for mortality, cardiovascular events and fractures in relation to these biomarkers. After adding the albumin-to-ALP ratio (AAPR) a post hoc analysis was performed. Results: 120 participants died during the study. In the entire group of patients and volunteers (n = 251) higher AAPR (HR 0.28, 95 % CI 0.14-0.59, p < 0.001) was associated with decreased mortality. OPN and OPG were associated with mortality risk only in the univariate statistical analysis. HR for high AAPR in relation to new cardiovascular events was borderline significant (HR 0.29, 95 % CI 0.08-1.06, p = 0.061). None of the examined biomarkers were associated with new fractures, nor with an increased risk of a new cardiovascular event. Conclusions: AAPR may be a better predictor of mortality than the more novel BTMs, and higher AAPR could be associated with longer life expectancy. Further studies should determine the clinical usefulness of AAPR as a biomarker of mortality and cardiovascular disease.

19.
Cureus ; 16(3): e56536, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38646303

RESUMO

OBJECTIVE: This study intended to assess plasma ghrelin levels in individuals with chronic periodontitis and analyze potential associations with bone turnover indicators, serum cytokines, and periodontal parameters. MATERIAL AND METHODS: The research contained 80 patients each with 40 individuals with periodontally healthy controls (C) (28 males, 12 females) and 40 chronic periodontitis (CP) patients (29 males, 11 females). The blood samples were analyzed for soluble receptor activator nuclear factor kappa B ligand (sRANKL), interleukin-1 beta (IL-1ß), total and acylated ghrelin, tumor necrosis factor-alpha (TNF-α), osteocalcin (OSC) and alkaline phosphatase (ALP), and periodontal parameters were recorded. RESULTS: The CP group had considerably higher plasma concentrations of both acylated and total ghrelin than the C group (p<0.05). Gender-based investigation showed substantial differences only among men in both groups (p<0.05). Hence, no significant modifications were identified in serum sRANKL, TNFα, and ALP levels between the groups. However, there was a notable difference in serum OSC and IL-1ß levels in the CP group (p<0.05). Furthermore, total ghrelin/acylated ghrelin and total ghrelin/ALP revealed positive correlations. No significant association was found between symptoms and ghrelin levels. CONCLUSION: The study findings indicate elevated levels of ghrelin and acylated ghrelin in male CP patients.

20.
JBMR Plus ; 8(5): ziae033, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38623484

RESUMO

Vitamin D deficiency during infancy has been associated with increased bone turnover rate and bone mineral loss. However, few studies have examined bone turnover markers (BTMs) for both bone formation and resorption in infants with vitamin D deficiency. Here, we analyzed serum concentrations of 25OHD, intact parathormone (iPTH), and BTMs including total alkaline phosphatase (ALP), tartrate-resistant acid phosphatase isoform 5b (TRACP-5b), and serum type I collagen N-telopeptide (NTx) as well as basic clinical characteristics of 456 infants (626 samples) aged less than 12 mo born at Saitama City Hospital, Japan (latitude 35.9° North) between January 2021 and December 2022. One hundred sixteen infants (147 samples) were classified as having vitamin D deficiency (25OHD < 12.0 ng/mL), and 340 infants (479 samples) had sufficient vitamin D levels (25OHD ≥ 12.0 ng/mL). In addition to 25OHD and ALP, both TRACP-5b and sNTx were measured in 331 infants (418 samples), while 90 infants (105 samples) had only TRACP-5b measured and 101 infants (103 samples) had only sNTx measured. Statistical comparison of 104 subjects each in the vitamin D deficiency and sufficiency groups after matching for the background characteristics revealed that the vitamin D deficiency group had significantly higher levels of ALP and iPTH compared with the sufficiency group (P = <.0001, .0012, respectively). However, no significant differences were found in TRACP-5b and NTx levels between the 2 groups (P = .19, .08, respectively). Our findings suggest discordant responses between bone formation and resorption markers in subclinical vitamin D deficiency during infancy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA