RESUMO
Synaptic proteins are essential for neuronal development, synaptic transmission, and synaptic plasticity. The postsynaptic density (PSD) is a membrane-associated structure at excitatory synapses, which is composed of a huge protein complex. To understand the interactions and functions of PSD proteins, researchers have employed a variety of imaging and biochemical approaches including sophisticated mass spectrometry. However, the field is lacking a systematic comparison of different experimental conditions and how they might influence the study of the PSD interactome isolated from various tissue preparations. To evaluate the efficiency of several common solubilization conditions, we isolated receptors, scaffolding proteins, and adhesion molecules from brain tissue or primary cultured neurons or human forebrain neurons differentiated from induced pluripotent stem cells (iPSCs). We observed some striking differences in solubility. We found that N-methyl-d-aspartate receptors (NMDARs) and PSD-95 are relatively insoluble in brain tissue, cultured neurons, and human forebrain neurons compared to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptors (AMPARs) or SAP102. In general, synaptic proteins were more soluble in primary neuronal cultures and human forebrain neurons compared to brain tissue. Interestingly, NMDARs are relatively insoluble in HEK293T cells suggesting that insolubility does not directly represent the synaptic fraction but rather it is related to a detergent-insoluble fraction such as lipid rafts. Surprisingly, truncation of the intracellular carboxyl-terminal tail (C-tail) of NMDAR subunits increased NMDAR solubility in HEK293T cells. Our findings show that detergent, pH, and temperature are important for protein preparations to study PSD protein complexes, and NMDAR solubility is regulated by its C-tail, thus providing a technical guide to study synaptic interactomes and subcellular localization of synaptic proteins.
RESUMO
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (AMPARs) mediate rapid excitatory synaptic transmission in the mammalian brain, primarily driven by the neurotransmitter glutamate. The modulation of AMPAR activity, particularly calcium-permeable AMPARs (CP-AMPARs), is crucially influenced by various auxiliary subunits. These subunits are integral membrane proteins that bind to the receptor's core and modify its functional properties, including ion channel kinetics and receptor trafficking. This review comprehensively catalogs all known AMPAR auxiliary proteins, providing vital insights into the biochemical mechanisms governing synaptic modulation and the specific impact of CP-AMPARs compared to their calcium-impermeable AMPA receptor (CI-AMPARs). Understanding the complex interplay between AMPARs and their auxiliary subunits in different brain regions is essential for elucidating their roles in cognitive functions such as learning and memory. Importantly, alterations in these auxiliary proteins' expression, function or interactions have been implicated in various neurological disorders. Aberrant signaling through CP-AMPARs, in particular, is associated with severe synaptic dysfunctions across neurodevelopmental, neurodegenerative and psychiatric conditions. Targeting the distinct properties of AMPAR-auxiliary subunit complexes, especially those involving CP-AMPARs, could disclose new therapeutic strategies, potentially allowing for more precise interventions in treating complex neuronal disorders.
RESUMO
Excitotoxicity linked either to environmental causes (pesticide and cyanotoxin exposure), excitatory neurotransmitter imbalance, or to intrinsic neuronal hyperexcitability, is a pathological mechanism central to neurodegeneration in amyotrophic lateral sclerosis (ALS). Investigation of excitotoxic mechanisms using in vitro and in vivo animal models has been central to understanding ALS mechanisms of disease. In particular, advances in induced pluripotent stem cell (iPSC) technologies now provide human cell-based models that are readily amenable to environmental and network-based excitotoxic manipulations. The cell-type specific differentiation of iPSC, combined with approaches to modelling excitotoxicity that include editing of disease-associated gene variants, chemogenetics, and environmental risk-associated exposures make iPSC primed to examine gene-environment interactions and disease-associated excitotoxic mechanisms. Critical to this is knowledge of which neurotransmitter receptor subunits are expressed by iPSC-derived neuronal cultures being studied, how their activity responds to antagonists and agonists of these receptors, and how to interpret data derived from multi-parameter electrophysiological recordings. This review explores how iPSC-based studies have contributed to our understanding of ALS-linked excitotoxicity and highlights novel approaches to inducing excitotoxicity in iPSC-derived neurons to further our understanding of its pathological pathways.
Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Neurônios , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Animais , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologiaRESUMO
Objective: Anxiety disorder (AD) is a common mental disorder related to cardiovascular disease morbidity. Oxidative stress plays a crucial role in the anxiety state and can lead to cardiac remodeling. Over-activation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in cardiomyocytes and neurons can cause oxidative stress. Additionally, the AMPAR inhibitor-2,3-dihydroxy-6-nitro-7-sulfamoyl-benzoquinoxaline-2,3-dione (NBQX) plays an important role in ameliorating oxidative stress. This study aimed to explore the anti-arrhythmic effects of NBQX in a rat model of anxiety. Methods: The AD model was induced using empty bottle stimulation. Male Sprague Dawley rats were randomly divided into four groups: control + saline, control + NBQX, AD + saline, and AD + NBQX. Open field test was conducted to measure anxiety-like behavior. Electrophysiological experiments, histological analysis, biochemical detection and molecular biology were performed to verify the effects of NBQX on the amelioration of electrical remodeling and structural remodeling. Furthermore, the nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor (ML385) was used in vitro to demonstrate the signaling pathway. Results: Oxidative stress levels increased with AMPAR over-activation in AD rats, leading to heightened vulnerability to ventricular fibrillation (VF). NBQX reverses anxiety and VF susceptibility. Our results showed that NBQX activated the Nrf2/heme oxygenase-1 (HO-1) pathway, leading to a decline in oxidative stress levels. Connexin 43 and ion channel expression was upregulated. NBQX treatment attenuated fibrosis and apoptosis. This effect was diminished by ML385 treatment in vitro. Conclusion: NBQX can alleviate VF susceptibility in rat models of anxiety by alleviating electrical remodeling, structural remodeling via regulating the Nrf2/HO-1 pathway to some extent.
RESUMO
BACKGROUND: Synaptic dysfunction, characterized by synapse loss and structural alterations, emerges as a prominent correlate of cognitive decline in Alzheimer's disease (AD). Actin cytoskeleton, which serves as the structural backbone of synaptic architecture, is observed to be lost from synapses in AD. Actin cytoskeleton loss compromises synaptic integrity, affecting glutamatergic receptor levels, neurotransmission, and synaptic strength. Understanding these molecular changes is crucial for developing interventions targeting synaptic dysfunction, potentially mitigating cognitive decline in AD. METHODS: In this study, we investigated the synaptic actin interactome using mass spectrometry in a mouse model of AD, APP/PS1. Our objective was to explore how alterations in synaptic actin dynamics, particularly the interaction between PSD-95 and actin, contribute to synaptic and cognitive impairment in AD. To assess the impact of restoring F-actin levels on synaptic and cognitive functions in APP/PS1 mice, we administered F-actin stabilizing agent, jasplakinolide. Behavioral deficits in the mice were evaluated using the contextual fear conditioning paradigm. We utilized primary neuronal cultures to study the synaptic levels of AMPA and NMDA receptors and the dynamics of PSD-95 actin association. Furthermore, we analyzed postmortem brain tissue samples from subjects with no cognitive impairment (NCI), mild cognitive impairment (MCI), and Alzheimer's dementia (AD) to determine the association between PSD-95 and actin. RESULTS: We found a significant reduction in PSD-95-actin association in synaptosomes from middle-aged APP/PS1 mice compared to wild-type (WT) mice. Treatment with jasplakinolide, an actin stabilizer, reversed deficits in memory recall, restored PSD-95-actin association, and increased synaptic F-actin levels in APP/PS1 mice. Additionally, actin stabilization led to elevated synaptic levels of AMPA and NMDA receptors, enhanced dendritic spine density, suggesting improved neurotransmission and synaptic strength in primary cortical neurons from APP/PS1 mice. Furthermore, analysis of postmortem human tissue with NCI, MCI and AD subjects revealed disrupted PSD-95-actin interactions, underscoring the clinical relevance of our preclinical studies. CONCLUSION: Our study elucidates disrupted PSD-95 actin interactions across different models, highlighting potential therapeutic targets for AD. Stabilizing F-actin restores synaptic integrity and ameliorates cognitive deficits in APP/PS1 mice, suggesting that targeting synaptic actin regulation could be a promising therapeutic strategy to mitigate cognitive decline in AD.
Assuntos
Actinas , Doença de Alzheimer , Camundongos Transgênicos , Sinapses , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Actinas/metabolismo , Camundongos , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Humanos , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos C57BL , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismoRESUMO
Chronic pain, as a social public health problem, has a serious impact on the quality of patients' life. Currently, the main drugs used to treat chronic pain are opioids, antipyretic, and nonsteroidal anti-inflammatory drugs (NSAIDs). But the obvious side effects limit their use, so it is urgent to find new therapeutic targets. Postsynaptic density (PSD)-95 protein plays an important role in the occurrence and development of chronic pain. The over-expression of the PSD-95 protein and its interaction with other proteins are closely related to the chronic pain. Besides, the PSD-95-related drugs that inhibit the expression of PSD-95 as well as the interaction with other protein have been proved to treat chronic pain significantly. In conclusion, although more deep studies are needed in the future, these studies indicate that PSD-95 and the related proteins, such as NMDA receptor (NMDAR) subunit 2B (GluN2B), AMPA receptor (AMPAR), calmodulin-dependent protein kinase II (CaMKII), 5-hydroxytryptamine 2A receptor (5-HT2AR), and neuronal nitric oxide synthase (nNOS), are the promising therapeutic targets for chronic pain.
RESUMO
Background: Shank3, a gene encoding a synaptic scaffolding protein, is implicated in autism spectrum disorder (ASD) and is disrupted in Phelan-McDermid syndrome (PMS). Despite evidence of regression or worsening of ASD-like symptoms in individuals with PMS, the underlying mechanisms remain unclear. Although shank3 is highly expressed in the cerebellar cortical granule cells, its role in cerebellar function and contribution to behavioral deficits in ASD models are unknown. This study investigates behavioral changes and cerebellar synaptic alterations in shank3 Δex4-22 mice at two developmental stages. Methods: Shank3 Δex4-22 wildtype, heterozygous, and homozygous knockout mice lacking exons 4-22 (all functional isoforms) were subjected to a behavioral battery in both juvenile (5-7 weeks old) and adult (3-5 months old) mouse cohorts of both sexes. Immunostaining was used to show the expression of SHANK3 in the cerebellar cortex. Spontaneous excitatory postsynaptic currents (sEPSCs) from cerebellar granule cells (CGCs) were recorded by whole-cell patch-clamp electrophysiology. Results: Deletion of shank3 ex4-22 caused deficits in motor function, heightened anxiety, and repetitive behaviors. These genotype-dependent behavioral alterations were more prominent in adult mice than in juveniles. Reduced social preference was only identified in adult shank3 Δex4-22 knockout mice and self-grooming was uniquely elevated only in males across both age groups. Immunofluorescence staining indicates the presence of SHANK3 predominantly in the dendrite-containing rosette-like structures in CGCs, colocalizing with presynaptic markers of glutamatergic mossy fiber. Electrophysiological findings identify a parallel relationship between the age-related exacerbation of behavioral impairments and the enhancement of sEPSC amplitude in CGCs. Limitations: Other behavioral tests of muscle strength (grip strength test), memory (Barnes/water maze), and communication (ultrasonic vocalization), were not performed. Further study is necessary to elucidate how SHANK3 modulates synaptic function at the mossy fiber-granule cell synapse in the cerebellum. Conclusions: Our findings reveal an age-related exacerbation of behavioral impairments in shank3 Δex4-22 mutant mice. These results suggest that SHANK3 may play a role in maintaining glutamatergic receptors and synapses in CGCs, as well as the potential involvement of the cerebellum in ASD.
RESUMO
Background: Early life stress (ELS) is an important risk factor in the aetiology of depression. Developmental glucocorticoid exposure impacts multiple brain regions with the hippocampus being particularly vulnerable. Hippocampal mediated behaviours are dependent upon the ability of neurones to undergo long-term potentiation (LTP), an N-methyl-D-aspartate receptor (NMDAR) mediated process. In this study we investigated the effect of ELS upon hippocampal NMDAR function. Methods: Hooded Long-Evans rat pups (n=82) were either undisturbed or maternally separated for 180 minutes per day (MS180) between post-natal day (PND) 1 and PND14. Model validation consisted of sucrose preference (n=18) and novelty supressed feeding (NSFT, n=34) tests alongside assessment of corticosterone (CORT) and paraventricular nucleus (PVN) cFos reactivity to stress and hippocampal neurogenesis (all n=18). AMPA/NMDA ratios (n=19), miniEPSC currents (n=19) and LTP (n=15) were assessed in whole-cell patch clamp experiments in CA1 pyramidal neurones. Results: MS180 animals showed increased feeding latency in the NSFT alongside increased overall CORT in the restraint stress experiment and increased PVN cFos expression in males but no changes in neurogenesis or sucrose preference. MS180 was associated with a lower AMPA/NMDA ratio with no change in miniEPSC amplitude or area. There was no difference in short- or long-term potentiation between MS180 and control animals nor were there any changes during the induction protocol. Conclusions: The MS180 model showed a behavioural phenotype consistent with previous work. MS180 animals showed increased NMDAR function with preliminary evidence suggesting that this was not concurrent with an increase in LTP.
Highly stressful early life events are the biggest risk factor for developing depression in adulthood. The hippocampus is a brain region that is highly susceptible to this stress and is crucial for coordinating learning and memory which underpins many aspects of cognitive function. Our study investigated if changes in the way that the neurons in the hippocampus communicate could provide explanations as to why early life stress predisposes to depression. We used an animal model of early life stress where rat pups are separated from their mother for three hours per day during their early life. Upon adulthood this resulted in the rats being slower to eat food in a new environment, a standard test of anxiety behaviour. We then used a technique called ex-vivo patch clamp electrophysiology to study how the individual neurons in their hippocampi and their connections functioned after early life stress. We measured the relative power of the signals from two key synaptic receptors essential for communication between neurons: AMPA and NMDA receptors. AMPA receptors are the key receptors enabling communication between neurons at synapses whereas NMDA receptors allow a neuron to become more sensitive to input signals and adapt synaptic strength. Animals with early life stress had more NMDA receptor function relative to AMPA function compared to control animals. We used a technique called miniEPSC recordings to rule out any change in AMPA receptor function in ELS animals meaning an effect specific to NMDA receptors. However, we found no changes to the ability for synapses to adapt their strength between groups. This work presents evidence for changes in hippocampal neurons and synapses caused by early life stress but further work is needed to understand how this relates to depression.
RESUMO
In mammalian central neurons AMPARs are clustered at glutamatergic synapses where they mediate fast excitatory transmission. In addition to four pore-forming subunits (GluA1-4), AMPARs contain auxiliary transmembrane AMPAR regulatory proteins (γ2, γ3, γ4, γ5, γ7 or γ8) whose incorporation can vary between neuron types, brain regions, and stages of development. As well as modulating the functional properties of AMPARs, these auxiliary subunits play a central role in AMPAR trafficking. Directly visualizing TARPs could therefore provide a valuable insight into mechanisms underlying these processes. Although antibodies are routinely used for the detection of surface proteins, our experience suggests anti-TARP antibodies are too bulky to access their target, possibly due to close interactions between the extracellular domains of TARP and AMPAR subunits. We therefore assessed the utility of a small monovalent probe - fluorescent α-bungarotoxin (α-Btx) - for TARP labelling in living neurons. We inserted the bungarotoxin binding site (BBS) within the extracellular domain of TARPs to enable their detection in cells exposed to fluorescent α-Btx. Focusing on the prototypical TARP γ2, we demonstrate that the small size of fluorescent α-Btx allows it to bind to the BBS-tagged TARP when associated with AMPARs. Importantly, labelled γ2 enhances AMPAR function in the same way as unmodified γ2. In living neurons, fluorescent α-Btx-labelled γ2 associates with AMPAR clusters at synapses. As a proof-of-principle, we employed our method to compare the surface trafficking of γ2 and γ7 in cerebellar stellate neurons. Our approach provides a simple way to visualize TARPs within AMPARs in living cells.
RESUMO
An optimal balance between excitatory and inhibitory transmission in the central nervous system provides essential neurotransmission for good functioning of the neurons. In the neurology field, a disturbed balance can lead to neurological diseases like epilepsy, Alzheimer's, and Autism. One of the critical agents mediating excitatory neurotransmission is α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors, which are concerned with synaptic plasticity, memory, and learning. An imbalance in neurotransmission finally results in excitotoxicity and neurological pathologies that should be corrected through specific compounds. Hence, the current study will prove to be an evaluation of new thiazole-carboxamide derivatives concerning AMPAR-modulating activity and extended medicinal potential. In the current project, five previously synthesized thiazole-carboxamide derivatives, i.e., TC-1 to TC-5, were used to interact with the AMPARs expressed in HEK293T cells, which overexpress different subunits of the AMPAR. Patch-clamp analysis was carried out while the effect of the drugs on AMPAR-mediated currents was followed with a particular emphasis on the kinetics of inhibition, desensitization, and deactivation. All tested TC compounds, at all subunits, showed potent inhibition of AMPAR-mediated currents, with TC-2 being the most powerful for all subunits. These compounds shifted the receptor kinetics efficiently, mainly enhancing the deactivation rates, and hence acted as a surrogate for their neuroprotective potentials. Additionally, recently published structure-activity relationship studies identified particular substituent groups as necessary for improving the pharmacologic profiles of these compounds. In this regard, thiazole-carboxamide derivatives, particularly those classified as TC-2, have become essential negative allosteric modulators of AMPAR function and potential therapeutics in neurological disturbances underlain by the dysregulation of excitatory neurotransmission. Given their therapeutic effectiveness and safety profiles, these in vivo studies need to be further validated, although computational modeling can be further developed for drug design and selectivity. This will open possibilities for new drug-like AMPAR negative allosteric modulators with applications at the clinical level toward neurology.
Assuntos
Fármacos Neuroprotetores , Receptores de AMPA , Tiazóis , Humanos , Receptores de AMPA/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Tiazóis/química , Tiazóis/farmacologia , Células HEK293 , Relação Estrutura-AtividadeRESUMO
To address the need for objective tests of concussion in athletes, we conducted a prospective clinical study in National Collegiate Athletic Association athletes of the relationship between neurocognitive performance and blood levels of the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor peptides and autoantibodies to GluA1. Specifically, we compared 44 contact sport athletes to 16 noncontact sport athletes, with Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT), as well as blood sample collection, before the start of the season and at the end of the season. Contact sport athletes exhibited significantly elevated serum GluA1 autoantibodies at the end of season, compared with preseason levels, irrespective of whether they sustained a concussion. Noncontact sport athletes showed no change in serum GluA1 autoantibodies, and neither group showed differences in GluA1 peptides. Amongst contact-sport athletes, the 'high GluA1 autoantibody group' (≥4 ng/mL) displayed impaired reaction time, a measure of cognitive impairment, while the 'low GluA1 autoantibody group' (<4 ng/mL) displayed normal reaction time. Our results reveal that contact sport athletes are at risk for developing cognitive impairment even without sustaining a diagnosed concussion and that serum GluA1 autoantibodies provide a blood-based biomarker of this risk. This could guide future studies on the differing susceptibility to cognitive impairment in contact sport athletes and facilitate efficient allocation of resources to contact sport athletes identified as having increased risk of developing cognitive impairment.
RESUMO
Parkinson's disease (PD), an age-associated neurodegenerative motor disorder, is associated with dementia and cognitive decline. However, the precise molecular insight into PD-induced cognitive decline is not fully understood. Here, we have investigated the possible alterations in the expression of glutamate receptor and its trafficking/scaffolding/regulatory proteins underlying the memory formation and neuroprotective effects of a specialized Bacopa monnieri extract, CDRI-08 (BME) in the hippocampus of the rotenone-induced PD mouse model. Our Western blotting and qRT-PCR data reveal that the PD-induced recognition memory decline is associated with significant upregulation of the AMPA receptor subunit GluR1 and downregulation of GluR2 subunit genes in the hippocampus of rotenone-affected mice as compared to the vehicle control. Further, expressions of the trafficking proteins are significantly upregulated in the hippocampus of rotenone-affected mice compared to the vehicle control. Our results also reveal that the above alterations in the hippocampus are associated with similar expression patterns of total CREB, pCREB, and BDNF. BME (CDRI-08, 200 mg/kg BW) reverses the expression of AMPA receptor subunits, their trafficking proteins differentially, and the transcriptional modulatory proteins depending on whether the BME treatment was given before or after the rotenone treatment. Our data suggest that expression of the above genes is significantly reversed in the BME pre-treated mice subjected to rotenone treatment towards their levels in the control mice compared to its treatment after rotenone administration. Our results provide the possible molecular basis underlying the rotenone-induced recognition memory decline, conditions mimicking the PD symptoms in mouse model and neuroprotective action of bacoside A and bacoside B (58%)-enriched Bacopa monnieri extract (BME) in the hippocampus.
RESUMO
Ionotropic glutamate receptors (iGluRs), specifically α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), play a crucial role in orchestrating excitatory neurotransmission in the brain. AMPARs are intricate assemblies of subunits encoded by four paralogous genes: GRIA1-4. Functional studies have established that rare GRIA variants can alter AMPAR currents leading to a loss- or gain-of-function. Patients affected by rare heterozygous GRIA variants tend to have family specific variants and only few recurrent variants have been reported. We deep-phenotyped a cohort comprising eight unrelated children and adults, harboring a recurrent and well-established disease-causing GRIA1 variant (NM_001114183.1: c.1906G>A, p.(Ala636Thr)). Recurrent symptoms included motor and/or language delay, mild-severe intellectual disability, behavioral and psychiatric comorbidities, hypotonia and epilepsy. We also report challenges in social skills, autonomy, living and work situation, and occupational levels. Furthermore, we compared their clinical manifestations in relation to those documented in patients presenting with rare heterozygous variants at analogous positions within paralogous genes. This study provides unprecedented details on the neurodevelopmental outcomes, cognitive abilities, seizure profiles, and behavioral abnormalities associated with p.(Ala636Thr) refining and broadening the clinical phenotype.
Assuntos
Transtornos do Neurodesenvolvimento , Receptores de AMPA , Humanos , Transtornos do Neurodesenvolvimento/genética , Feminino , Masculino , Criança , Receptores de AMPA/genética , Adulto , Pré-Escolar , Adolescente , Fenótipo , Mutação , Deficiência Intelectual/genética , Predisposição Genética para Doença , Adulto JovemRESUMO
This review focuses on the activity-dependent diffusion trapping of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as a crucial mechanism for the expression of early long-term potentiation (LTP), a process central to learning and memory. Despite decades of research, the precise mechanisms by which LTP induction leads to an increase in AMPAR responses at synapses have been elusive. We review the different hypotheses that have been put forward to explain the increased AMPAR responsiveness during LTP. We discuss the dynamic nature of AMPAR complexes, including their constant turnover and activity-dependent modifications that affect their synaptic accumulation. We highlight a hypothesis suggesting that AMPARs are diffusively trapped at synapses through activity-dependent interactions with protein-based binding slots in the post-synaptic density (PSD), offering a potential explanation for the increased synaptic strength during LTP. Furthermore, we outline the challenges still to be addressed before we fully understand the functional roles and molecular mechanisms of AMPAR dynamic nanoscale organization in LTP. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Assuntos
Potenciação de Longa Duração , Receptores de AMPA , Potenciação de Longa Duração/fisiologia , Receptores de AMPA/metabolismo , Animais , Sinapses/fisiologia , Sinapses/metabolismo , Difusão , Humanos , Densidade Pós-Sináptica/metabolismoRESUMO
Introduction: Epileptiform activity is the most striking result of hyperexcitation of a group of neurons that can occur in different brain regions and then spread to other sites. Later it was shown that these rhythms have a cellular correlate in vitro called paroxysmal depolarization shift (PDS). In 13-15 DIV neuron-glial cell culture, inhibition of the GABA(A) receptors induces bursts of action potential in the form of clasters PDS and oscillations of intracellular Ca2+ concentration ([Ca2+]i). We demonstrate that GABAergic neurons expressing calcium-permeable AMPA receptors (CP-AMPARs) as well as Kv7-type potassium channels regulate hippocampal glutamatergic neurons' excitability during epileptiform activity in culture. Methods: A combination of whole-cell patch-clamp in current clamp mode and calcium imaging microscopy was used to simultaneously register membrane potential and [Ca2+]i level. To identify GABAergic cell cultures were fixed and stained with antibodies against glutamate decarboxylase GAD 65/67 and neuron-specific enolase (NSE) after vital [Ca2+]i imaging. Results and discussion: It was shown that CP-AMPARs are involved in the regulation of the PDS clusters and [Ca2+]i pulses accompanied them. Activation of CP-AMPARs of GABAergic neurons is thought to cause the release of GABA, which activates the GABA(B) receptors of other GABAergic interneurons. It is assumed that activation of these GABA(B) receptors leads to the release of beta-gamma subunits of Gi protein, which activate potassium channels, resulting in hyperpolarization and inhibition of these interneurons. The latter causes disinhibition of glutamatergic neurons, the targets of these interneurons. In turn, the CP-AMPAR antagonist, NASPM, has the opposite effect. Measurement of membrane potential in GABAergic neurons by the patch-clamp method in whole-cell configuration demonstrated that NASPM suppresses hyperpolarization in clusters and individual PDSs. It is believed that Kv7-type potassium channels are involved in the control of hyperpolarization during epileptiform activity. The blocker of Kv7 channels, XE 991, mimicked the effect of the CP-AMPARs antagonist on PDS clusters. Both drugs increased the duration of the PDS cluster. In turn, the Kv7 activator, retigabine, decreased the duration of the PDS cluster and Ca2+ pulse. In addition, retigabine led to deep posthyperpolarization at the end of the PDS cluster. The Kv7 channel is believed to be involved in the formation of PDS, as the channel blocker reduced the rate of hyperpolarization in the PDS almost three times. Thus, GABAergic neurons expressing CP-AMPARs, regulate the membrane potential of innervated glutamatergic neurons by modulating the activity of postsynaptic potassium channels of other GABAergic neurons.
RESUMO
Rapid, synapse-specific neurotransmission requires the precise alignment of presynaptic neurotransmitter release and postsynaptic receptors. How postsynaptic glutamate receptor accumulation is induced during maturation is not well understood. We find that in cultures of dissociated hippocampal neurons at 11 days in vitro (DIV) numerous synaptic contacts already exhibit pronounced accumulations of the pre- and postsynaptic markers synaptotagmin, synaptophysin, synapsin, bassoon, VGluT1, PSD-95, and Shank. The presence of an initial set of AMPARs and NMDARs is indicated by miniature excitatory postsynaptic currents (mEPSCs). However, AMPAR and NMDAR immunostainings reveal rather smooth distributions throughout dendrites and synaptic enrichment is not obvious. We found that brief periods of Ca2+ influx through NMDARs induced a surprisingly rapid accumulation of NMDARs within 1 min, followed by accumulation of CaMKII and then AMPARs within 2-5 min. Postsynaptic clustering of NMDARs and AMPARs was paralleled by an increase in their mEPSC amplitudes. A peptide that blocked the interaction of NMDAR subunits with PSD-95 prevented the NMDAR clustering. NMDAR clustering persisted for 3 days indicating that brief periods of elevated glutamate fosters permanent accumulation of NMDARs at postsynaptic sites in maturing synapses. These data support the model that strong glutamatergic stimulation of immature glutamatergic synapses results in a fast and substantial increase in postsynaptic NMDAR content that required NMDAR binding to PSD-95 or its homologues and is followed by recruitment of CaMKII and subsequently AMPARs.
RESUMO
Introduction: Limbic encephalitis is a rapidly progressing disease that presents with seizures, psychiatric symptoms, and recent memory loss. Detection of more than one autoantibody is a rare condition in this disease where an underlying autoantibody is frequently detected. Although different autoantibodies have been reported in the literature, no case has been reported regarding the association of anti-γ-aminobutyric acid-beta-receptor (anti-GABABR) and anti-α-amino-3 hydroxy-5-methyl-4-isoxazolepropionic acid (anti-AMPAR). Case: In this presentation, a 46-year-old female patient with subacute development of short-term memory loss and behavioral symptoms will be described. Anti-GABABR and anti-AMPAR were positive in the anti-neuronal antibody panel sent from the cerebrospinal fluid and serum. Small cell lung cancer was detected as a result of malignancy screening tests. The patient's complaints and autoantibody positivity regressed after immunotherapy. Conclusion: In this case report, a case with coexistence of anti-GABABR and anti-AMPAR antibodies, which has not been previously reported in the literature, is described. As more cases with the coexistence of these two antibodies are detected, knowledge on clinical aspect, laboratory and treatment will increase.
RESUMO
Temporal lobe epilepsy (TLE), the most common type of drug-resistant epilepsy, severely affects quality of life. However, the underlying mechanism of TLE remains unclear and deserves further exploration. Sorbs2, a key synaptic regulatory protein, plays an important role in the regulation of synaptic transmission in the mammalian brain. In this study, we aimed to investigate the expression pattern of Sorbs2 in a kainic acid (KA)-induced TLE mouse model and in patients with TLE to further determine whether Sorbs2 is involved in seizure activity and to explore the potential mechanism by which Sorbs2 affects seizures in this TLE mouse model. First, we found that the expression of Sorbs2 was obviously increased in the hippocampus and cortex of a TLE mouse model and in the temporal cortex of TLE patients, indicating an abnormal expression pattern of Sorbs2 in TLE. Importantly, subsequent behavioral analyses and local field potential (LFP) analyses of a TLE mouse model demonstrated that the downregulation of hippocampal Sorbs2 could prolong the latency to spontaneous recurrent seizures (SRSs) and protect against SRSs. We also found that the knockdown of Sorbs2 in the hippocampus could decrease excitatory synaptic transmission in pyramidal neurons (PNs) in the hippocampal CA1 region and reduce the expression levels of the AMPAR subunits GluA1 and GluA2. Thus, we speculated that Sorbs2 may promote epileptogenesis and the development of TLE by affecting AMPAR-mediated excitatory synaptic transmission in PNs in the CA1 region. Therefore, reducing the expression of hippocampal Sorbs2 could restrain epileptogenesis and the development of TLE.
Assuntos
Epilepsia do Lobo Temporal , Proteínas de Ligação a RNA , Receptores de AMPA , Convulsões , Transmissão Sináptica , Animais , Feminino , Humanos , Masculino , Camundongos , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Ácido Caínico/farmacologia , Ácido Caínico/toxicidade , Camundongos Endogâmicos C57BL , Receptores de AMPA/metabolismo , Convulsões/metabolismo , Convulsões/induzido quimicamente , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
AMPA-type ionotropic glutamate receptors (AMPARs) are central to various neurological processes, including memory and learning. They assemble as homo- or heterotetramers of GluA1, GluA2, GluA3, and GluA4 subunits, each consisting of an N-terminal domain (NTD), a ligand-binding domain, a transmembrane domain, and a C-terminal domain. While AMPAR gating is primarily controlled by reconfiguration in the ligand-binding domain layer, our study focuses on the NTDs, which also influence gating, yet the underlying mechanism remains enigmatic. In this investigation, we employ molecular dynamics simulations to evaluate the NTD interface strength in GluA1, GluA2, and NTD mutants GluA2-H229N and GluA1-N222H. Our findings reveal that GluA1 has a significantly weaker NTD interface than GluA2. The NTD interface of GluA2 can be weakened by a single point mutation in the NTD dimer-of-dimer interface, namely H229N, which renders GluA2 more GluA1-like. Electrophysiology recordings demonstrate that this mutation also leads to slower recovery from desensitization. Moreover, we observe that lowering the pH induces more splayed NTD states and enhances desensitization in GluA2. We hypothesized that H229 was responsible for this pH sensitivity; however, GluA2-H229N was also affected by pH, meaning that H229 is not solely responsible and that protons exert their effect across multiple domains of the AMPAR. In summary, our work unveils an allosteric connection between the NTD interface strength and AMPAR desensitization.