Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 30(2): e14599, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38332576

RESUMO

BACKGROUND: Glioblastoma is the most malignant primary brain tumor in adults. Temozolomide (TMZ) stands for the first-line chemotherapeutic agent against glioblastoma. Nevertheless, the therapeutic efficacy of TMZ appears to be remarkably limited, because of low cytotoxic efficiency against glioblastoma. Besides, various mechanical studies and the corresponding strategies fail to enhancing TMZ curative effect in clinical practice. Our previous studies have disclosed remodeling of glial cells by GSCs, but the roles of these transformed cells on promoting TMZ resistance have never been explored. METHODS: Exosomes were extracted from GSCs culture through standard centrifugation procedures, which can activate transformation of normal human astrocytes (NHAs) totumor-associated astrocytes (TAAs) for 3 days through detect the level of TGF-ß, CD44 and tenascin-C. The secretive protein level of ALKBH7 of TAAs was determined by ELISA kit. The protein level of APNG and ALKBH7 of GBM cells were determined by Western blot. Cell-based assays of ALKBH7 and APNG triggered drug resistance were performed through flow cytometric assay, Western blotting and colony formation assay respectively. A xenograft tumor model was applied to investigate the function of ALKBH7 in vivo. Finally, the effect of the ALKBH7/APNG signaling on TMZ resistance were evaluated by functional experiments. RESULTS: Exosomes derived from GSCs can activate transformation of normal human astrocytes (NHAs)to tumor-associated astrocytes (TAAs), as well as up-regulation of ALKBH7expression in TAAs. Besides, TAAs derived ALKBH7 can regulate APNG gene expression of GBM cells. After co-culturing with TAAs for 5 days, ALKBH7 and APNG expression in GBM cells were elevated. Furthermore, Knocking-down of APNG increased the inhibitory effect of TMZ on GBM cells survival. CONCLUSION: The present study illustrated a new mechanism of glioblastoma resistance to TMZ, which based on GSCs-exo educated TAAs delivering ALKBH7 to enhance APNG expression of GBM cells, which implied that targeting on ALKBH7/APNG regulation network may provide a new strategy of enhancing TMZ therapeutic effects against glioblastoma.


Assuntos
Neoplasias Encefálicas , Exossomos , Glioblastoma , Adulto , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/patologia , Astrócitos/metabolismo , Exossomos/metabolismo , Células-Tronco/metabolismo , Neoplasias Encefálicas/genética , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Enzimas AlkB , Proteínas Mitocondriais
2.
Genes Dis ; 3(3): 198-210, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30258889

RESUMO

Temozolomide (TMZ) is an oral alkylating agent used to treat glioblastoma multiforme (GBM) and astrocytomas. However, at least 50% of TMZ treated patients do not respond to TMZ. This is due primarily to the over-expression of O6-methylguanine methyltransferase (MGMT) and/or lack of a DNA repair pathway in GBM cells. Multiple GBM cell lines are known to contain TMZ resistant cells and several acquired TMZ resistant GBM cell lines have been developed for use in experiments designed to define the mechanism of TMZ resistance and the testing of potential therapeutics. However, the characteristics of intrinsic and adaptive TMZ resistant GBM cells have not been systemically compared. This article reviews the characteristics and mechanisms of TMZ resistance in natural and adapted TMZ resistant GBM cell lines. It also summarizes potential treatment options for TMZ resistant GBMs.

3.
Neuro Oncol ; 15(8): 1017-26, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23595628

RESUMO

BACKGROUND: The number of patients age >65 years with malignant gliomas is increasing. Prognosis of these patients is worse compared with younger patients. To determine biological differences among malignant gliomas of different age groups and help to explain the survival heterogeneity seen in the NOA-08 trial, the prevalence and impact of recently established biomarkers for outcome in younger patients were characterized in elderly patients. METHODS: Prevalences of mutations of isocitrate dehydrogenase 1 (IDH1) and histone H3.3 (H3F3A), the glioma cytosine-phosphate-guanine island methylator phenotype (G-CIMP), and methylation of alkylpurine DNA N-glycosylase (APNG) and peroxiredoxin 1 (PRDX1) promoters were determined in a representative biomarker subset (n = 126 patients with anaplastic astrocytoma or glioblastoma) from the NOA-08 trial. RESULTS: IDH1 mutations (R132H) were detected in only 3/126 patients, precluding determination of an association between IDH mutation and outcome. These 3 patients also displayed the G-CIMP phenotype. None of the IDH1 wild-type tumors were G-CIMP positive. Mutations in H3F3A were absent in all 103 patients sequenced for H3F3A. MassARRAY analysis of the APNG promoter revealed generally low methylation levels and failed to confirm any predictive properties for benefit from alkylating chemotherapy. Neither did PRDX1 promoter methylation show differential methylation or association with outcome in this cohort. In a 170-patient cohort from The Cancer Genome Atlas database matched for relevant prognostic factors, age ≥65 years was strongly associated with shorter survival. CONCLUSIONS: Despite an age-independent stable frequency of O(6)-methylguanine-DNA methyltransferase (MGMT) promoter hypermethylation, tumors in this age group largely lack prognostically favorable markers established in younger glioblastoma patients, which likely contributes to the overall worse prognosis of elderly patients. However, the survival differences hint at fundamental further differences among malignant gliomas of different age groups.


Assuntos
Astrocitoma/diagnóstico , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Metilação de DNA , Glioblastoma/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Astrocitoma/genética , Astrocitoma/mortalidade , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Feminino , Seguimentos , Glioblastoma/genética , Glioblastoma/mortalidade , Histonas/genética , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Gradação de Tumores , Fenótipo , Prognóstico , Regiões Promotoras Genéticas/genética , Taxa de Sobrevida , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA