Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000396

RESUMO

Latrophilins (LPHNs), a group of the G-protein-coupled receptor to which a spider venom latrotoxin (LTX) is known to bind, remain largely uncharacterized in neoplastic diseases. In the present study, we aimed to determine the role of LPHNs in the progression of prostate cancer. We assessed the actions of LPHNs, including LPHN1, LPHN2, and LPHN3, in human prostate cancer lines via their ligand (e.g., α-LTX, FLRT3) treatment or shRNA infection, as well as in surgical specimens. In androgen receptor (AR)-positive LNCaP/C4-2/22Rv1 cells, dihydrotestosterone considerably increased the expression levels of LPHNs, while chromatin immunoprecipitation assay revealed the binding of endogenous ARs, including AR-V7, to the promoter region of each LPHN. Treatment with α-LTX or FLRT3 resulted in induction in the cell viability and migration of both AR-positive and AR-negative lines. α-LTX and FLRT3 also enhanced the expression of Bcl-2 and phosphorylated forms of JAK2 and STAT3. Meanwhile, the knockdown of each LPHN showed opposite effects on all of those mediated by ligand treatment. Immunohistochemistry in radical prostatectomy specimens further showed the significantly elevated expression of each LPHN in prostate cancer, compared with adjacent normal-appearing prostate, which was associated with a significantly higher risk of postoperative biochemical recurrence in both univariate and multivariable settings. These findings indicate that LPHNs function as downstream effectors of ARs and promote the growth of androgen-sensitive, castration-resistant, or even AR-negative prostate cancer.


Assuntos
Progressão da Doença , Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Movimento Celular/genética , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Receptores de Peptídeos/metabolismo , Receptores de Peptídeos/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Transdução de Sinais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Processamento Alternativo
2.
Cell Commun Signal ; 22(1): 339, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898473

RESUMO

BACKGROUND: Endocrine resistance driven by sustained activation of androgen receptor (AR) signaling pathway in advanced prostate cancer (PCa) is fatal. Characterization of mechanisms underlying aberrant AR pathway activation to search for potential therapeutic strategy is particularly important. Rac GTPase-activating protein 1 (RACGAP1) is one of the specific GTPase-activating proteins. As a novel tumor proto-oncogene, overexpression of RACGAP1 was related to the occurrence of various tumors. METHODS: Bioinformatics methods were used to analyze the relationship of expression level between RACGAP1 and AR as well as AR pathway activation. qRT-PCR and western blotting assays were performed to assess the expression of AR/AR-V7 and RACGAP1 in PCa cells. Immunoprecipitation and immunofluorescence experiments were conducted to detect the interaction and co-localization between RACGAP1 and AR/AR-V7. Gain- and loss-of-function analyses were conducted to investigate the biological roles of RACGAP1 in PCa cells, using MTS and colony formation assays. In vivo experiments were conducted to evaluate the effect of RACGAP1 inhibition on the tumor growth. RESULTS: RACGAP1 was a gene activated by AR, which was markedly upregulated in PCa patients with CRPC and enzalutamide resistance. AR transcriptionally activated RACGAP1 expression by binding to its promoter region. Reciprocally, nuclear RACGAP1 bound to the N-terminal domain (NTD) of both AR and AR-V7, blocking their interaction with the E3 ubiquitin ligase MDM2. Consequently, this prevented the degradation of AR/AR-V7 in a ubiquitin-proteasome-dependent pathway. Notably, the positive feedback loop between RACGAP1 and AR/AR-V7 contributed to endocrine therapy resistance of CRPC. Combination of enzalutamide and in vivo cholesterol-conjugated RIG-I siRNA drugs targeting RACGAP1 induced potent inhibition of xenograft tumor growth of PCa. CONCLUSION: In summary, our results reveal that reciprocal regulation between RACGAP1 and AR/AR-V7 contributes to the endocrine resistance in PCa. These findings highlight the therapeutic potential of combined RACGAP1 inhibition and enzalutamide in treatment of advanced PCa.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas Ativadoras de GTPase , Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Animais , Proto-Oncogene Mas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Feniltioidantoína/farmacologia , Camundongos Nus , Nitrilas/farmacologia , Camundongos , Benzamidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
3.
BMC Cancer ; 24(1): 482, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627648

RESUMO

BACKGROUND: Therapies for metastatic castration-resistant prostate cancer (mCRPC) include targeting the androgen receptor (AR) with androgen receptor inhibitors (ARIs) and prostate-specific membrane antigen (PSMA). Having the ability to detect AR, AR splice variant 7 (AR-V7), or PSMA in circulating tumor cells (CTCs) or circulating exosomal cell-free RNA (cfRNA) could be helpful to guide selection of the appropriate therapy for each individual patient. The Vortex Biosciences VTX-1 system is a label-free CTC isolation system that enables the detection of the expression of multiple genes in both CTCs and exosomal cfRNA from the same blood sample in patients with mCRPC. Detection of both AR-V7 and PSMA gene expression in both CTCs and cfRNA simultaneously has not yet been reported. METHODS: To characterize the combined VTX-1-AdnaDetect workflow, 22Rv1 cancer cells were spiked into blood from healthy donors and processed with the VTX-1 to mimic patient samples and assess performances (capture efficiency, purity, AR and AR-V7 expression). Then, we collected 19 blood samples from 16 patients with mCRPC and therapeutic resistance to androgen receptor inhibitors (ARIs). Plasma was separated and the plasma-depleted blood was processed further with the VTX-1 to collect CTCs. Both plasma exosomal cfRNA and CTCs were subsequently analyzed for AR, AR-V7, PSMA, and prostate-specific antigen (PSA) mRNA expression using the AdnaTest ProstateCancerPanel AR-V7 assay. RESULTS: AR-V7 expression could be detected in 22Rv1 cells spiked into blood from healthy volunteers as well as in CTCs and plasma-derived exosomal cfRNA from patients with mCRPC by processing blood with the VTX-1 CTC isolation system followed by the AdnaTest ProstateCancerPanel AR-V7 assay. 94.7% of patient blood samples (18/19) had detectable AR expression in either CTCs or exosomal cfRNA (16 in CTCs, 12 in cfRNA). 15.8% of the 19 patient blood samples (3/19) were found to have AR-V7-positive (AR-V7+) CTCs, one of which was also AR-V7+ in the exosomal cfRNA analysis. 42.1% of patient blood samples (8/19) were found to be PSMA positive (PSMA+): 26.3% (5/19) were PSMA+ in the CTC analysis and 31.6% (6/19) were PSMA+ in the exosomal cfRNA analysis. Of those 8 PSMA+ samples, 2 had detectable PSMA only in CTCs, and 3 had detectable PSMA only in exosomal cfRNA. CONCLUSION: VTX-1 enables isolation of CTCs and plasma exosomes from a single blood draw and can be used for detecting AR-V7 and PSMA mRNA in both CTCs and cfRNA in patients with mCRPC and resistance to ARIs. This technology facilitates combining RNA measurements in CTCs and exosomal cfRNA for future studies to develop potentially clinically relevant cancer biomarker detection in blood.


Assuntos
Ácidos Nucleicos Livres , Exossomos , Células Neoplásicas Circulantes , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/metabolismo , Exossomos/genética , Exossomos/metabolismo , Células Neoplásicas Circulantes/patologia , Próstata/patologia , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Isoformas de Proteínas/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , RNA Mensageiro/genética
4.
Exp Cell Res ; 438(1): 114026, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604522

RESUMO

The emergence of AR-V7, a truncated isoform of AR upon androgen deprivation therapy treatment, leads to the development of castration resistant prostate cancer (CRPC). Understanding mechanisms that regulate AR-V7 expression is critical for developing newer therapeutic strategies. In this study, we have investigated the regulation of AR-V7 during cell cycle and identified a distinct pattern of periodic fluctuation, peaking during G2/M phase. This fluctuation correlates with the expression of Cdc-2 like kinase 1 (CLK1) and phosphorylated serine/arginine-rich splicing factor 1 (p-SRSF1) during these phases, pointing towards their role in AR-V7 generation. Functional assays reveal that CLK1 knockdown prolongs the S phase, leading to altered cell cycle distribution and increased accumulation of AR-V7 and pSRSF1 in G1/S phase. Conversely, CLK1 overexpression rescues AR-V7 and p-SRSF1 levels in the G2/M phase, consistent with observed cell cycle alterations upon AR-V7 knockdown and overexpression in CRPC cells. Furthermore, overexpression of kinase-deficient CLK1 mutant leads to diminished AR-V7 levels during G2/M, underlining the essential contribution of CLK1's kinase activity in modulating AR-V7 expression. Collectively, our findings, for the first time, show periodic regulation of AR-V7 expression, its effect on cell cycle progression and the critical role of CLK1-pSRSF1 axis in modulating AR-V7 expression throughout the cell cycle.


Assuntos
Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Humanos , Masculino , Linhagem Celular Tumoral , Proliferação de Células/genética , Fase G2/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Fosforilação , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética
5.
Am J Clin Exp Urol ; 12(1): 1-7, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500864

RESUMO

High-risk localized prostate cancer (PCa) has the potential of recurrence and progression to a lethal phenotype, and neoadjuvant therapy followed by radical prostatectomy (RP) may be an option for these patients. Docetaxel has been recently shown to be an effective chemotherapeutic agent for high-volume metastatic hormone-sensitive PCa and metastatic castration-resistant PCa, and these increased efficacy create the impetus to assess the potential role of preoperative docetaxel in high-risk localized PCa. In this mini-review, we found that neoadjuvant chemohormonal therapy (NCHT) may be an effective neoadjuvant regimen to improve oncological outcome of high-risk PCa. However, the addition of docetaxel in the neoadjuvant setting would unavoidably increase the rate of adverse events, impose additional economic burdens. Therefore, suitable patient selection is crucial and pathological response might be a surrogate endpoint. Furthermore, we also found that molecular imaging prostate-specific membrane antigen (PSMA) PET/CT was a promising tool to evaluation the effectiveness of NCHT, and the expression status of AR, AR-V7, Ki-67, PTEN and TP53 might be helpful for urologists to identify more suitable candidates for NCHT.

6.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339092

RESUMO

Breast cancer is a major cause of death worldwide. The complexity of endocrine regulation in breast cancer may allow the cancer cells to escape from a particular treatment and result in resistant and aggressive disease. These breast cancers usually have fewer treatment options. Targeted therapies for cancer patients may offer fewer adverse side effects because of specificity compared to conventional chemotherapy. Signaling pathways of nuclear receptors, such as the estrogen receptor (ER), have been intensively studied and used as therapeutic targets. Recently, the role of the androgen receptor (AR) in breast cancer is gaining greater attention as a therapeutic target and as a prognostic biomarker. The expression of constitutively active truncated AR splice variants in breast cancer is a possible mechanism contributing to treatment resistance. Therefore, targeting both the full-length AR and AR variants, either through the activation or suppression of AR function, depending on the status of the ER, progesterone receptor, or human epidermal growth factor receptor 2, may provide additional treatment options. Studies targeting AR in combination with other treatment strategies are ongoing in clinical trials. The determination of the status of nuclear receptors to classify and identify patient subgroups will facilitate optimized and targeted combination therapies.


Assuntos
Neoplasias da Mama , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Receptores Androgênicos/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico
7.
Endocr Oncol ; 4(1): e230017, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38410785

RESUMO

Androgen receptor (AR) and its constitutively active splice variant, AR Variant 7 (AR-V7), regulate genes essential for the development and progression of prostate cancer. Degradation of AR and AR-V7 by the ubiquitination proteasomal pathway is important for the regulation of both their protein stability. Our published results demonstrate that the interaction of TM4SF3 with either AR or AR-V7 leads to mutual stabilization due to a reduction in their ubiquitination and proteasomal degradation. These results led us to search for a common E3 ligase for AR, AR-V7, and TM4SF3. Depletion by siRNA of several E3 ligases identified MDM2 as the common E3 ligase. MDM2 inhibition by siRNA depletion or using a pharmacological inhibitor (MDM2i) of its E3 ligase activity led to elevated levels of endogenous AR, AR-V7, and TM4SF3 in prostate cancer cells. MDM2 knockdown in PC-3 cells, which do not express AR, also increased TM4SF3, demonstrating that MDM2 affects the TM4SF3 protein independent of AR. We further demonstrate that MDM2i treatment reduced the ubiquitination of AR and TM4SF3, suggesting that MDM2 can induce the ubiquitination of these proteins. Increased AR and AR-V7 protein levels induced by MDM2i treatment resulted in the expected increased expression of AR-regulated genes and enhanced proliferation and migration of both LNCaP and Enzalutamide-resistant CWR-22Rv1 prostate cancer cells. Thus, our study expands the known roles of MDM2 in prostate cancer to include its potential involvement in the important mutual stabilization that TM4SF3 exhibits when interacting with either AR or AR-V7.

8.
Cells ; 13(1)2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38201308

RESUMO

Therapeutic options for advanced prostate cancer have vastly expanded over the last decade and will continue to expand in the future. Drugs targeting the androgen receptor (AR) signaling pathway, i.e., androgen receptor targeting agents (ARTAs), remain the mainstream treatments that are increasingly transforming the disease into one that can be controlled for an extended period of time. Prostate cancer is inherently addicted to AR. Under the treatment pressure of ARTA, molecular alterations occur, leading to the clonal expansion of resistant cells in a disease state broadly categorized as castration-resistant prostate cancer (CRPC). One castration resistance mechanism involves AR splice variants (AR-Vs) lacking the ligand-binding domain. Some AR-Vs have been identified as constitutively active, capable of activating AR signaling pathways without androgenic ligands. Among these variants, AR-V7 is the most extensively studied and may be measured non-invasively using validated circulating tumor cell (CTC) tests. In the context of the evolving prostate cancer treatment landscape, novel agents are developed and evaluated for their efficacy in targeting AR-V7. In patients with metastatic CRPC (mCRPC), the availability of the AR-V7 tests will make it possible to determine whether the treatments are effective for CTC AR-V7-positive disease, even though the treatments may not be specifically designed to target AR-V7. In this review, we will first outline the current prostate cancer treatment landscape, followed by an in-depth review of relatively newer prostate cancer therapeutics, focusing on AR-targeting agents under clinical development. These drugs are categorized from the standpoint of their activities against AR-V7 through direct or indirect mechanisms.


Assuntos
Células Neoplásicas Circulantes , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Receptores Androgênicos/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Androgênios , Próstata
9.
Cell Rep ; 42(12): 113461, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37979170

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype with no targeted therapeutics. The luminal androgen receptor (LAR) subtype constitutes 15% of TNBC and is enriched for androgen receptor (AR) and AR target genes. Here, we show that a cohort of TNBC not only expresses AR at a much higher rate (∼80%) but also expresses AR splice variants (AR-SVs) (∼20%), further subclassifying LAR-TNBC. Higher AR and AR-SV expression and corresponding aggressive phenotypes are observed predominantly in specimens obtained from African American women. LAR TNBC specimens are enriched for interferon, Janus kinase (JAK)-signal activator and transducer (STAT), and androgen signaling pathways, which are exclusive to AR-expressing epithelial cancer cells. AR- and AR-SV-expressing TNBC cell proliferation and xenograft and patient-tumor explant growth are inhibited by AR N-terminal domain-binding selective AR degrader or by a JAK inhibitor. Biochemical analysis suggests that STAT1 is an AR coactivator. Collectively, our work identifies pharmacologically targetable TNBC subtypes and identifies growth-promoting interaction between AR and JAK-STAT signaling.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
10.
Mol Nutr Food Res ; 67(24): e2300479, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863824

RESUMO

SCOPE: Resistance of castrate-resistant prostate cancer (CRPC) to enzalutamide (Enz) involves the expression of constitutively active androgen receptor splice variant (AR-V7). In addition to altered AR pathways, CRPC is characterized by "non-AR-driven" signaling, which includes an overexpression of metastasis-associated protein 1 (MTA1). Combining natural compounds with anticancer drugs may enhance drug effectiveness while reducing adverse effects. In this study, the in vitro and in vivo anticancer effects of Gnetin C (GnC) alone and in combination with Enz against CRPC are examined. METHODS AND RESULTS: The effects of GnC alone and in combination with Enz are assessed by cell viability, clonogenic survival, cell migration, and AR and MTA1 expression using 22Rv1 cells. The tumor growth in vivo is assessed by bioluminescent imaging, western blots, RT-PCR, and IHC. GnC alone and in combined treatment inhibit cell viability, clonogenic survival and migration, and AR and MTA1 expression in 22Rv1 cells. The underlying AR- and MTA1-targeted anticancer mechanisms of treatments in vivo involve inhibition of proliferation and angiogenesis, and induction of apoptosis. CONCLUSION: The findings demonstrate that GnC alone and GnC combined with Enz effectively inhibits AR- and MTA1-promoted tumor-progression in advanced CRPC, which indicates its potential as a novel therapeutic approach for CRPC.


Assuntos
Antineoplásicos , Benzofuranos , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Linhagem Celular Tumoral , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/uso terapêutico , Antineoplásicos/farmacologia , Nitrilas/farmacologia , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos
11.
Endocr Oncol ; 3(1): e230010, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37822366

RESUMO

Androgen receptor (AR) plays a vital role in the development and progression of prostate cancer from the primary stage to the usually lethal stage known as castration-resistant prostate cancer (CRPC). Constitutively active AR splice variants (AR-Vs) lacking the ligand-binding domain are partially responsible for the abnormal activation of AR and may be involved in resistance to AR-targeting drugs occurring in CRPC. There is increasing consensus on the potential of drugs targeting protein-protein interactions. Our lab has recently identified transmembrane 4 superfamily 3 (TM4SF3) as a critical interacting partner for AR and AR-V7 and mapped the minimal interaction regions. Thus, we hypothesized that these interaction domains can be used to design peptides that can disrupt the AR/TM4SF3 interaction and kill prostate cancer cells. Peptides TA1 and AT1 were designed based on the TM3SF3 or AR interaction domain, respectively. TA1 or AT1 was able to decrease AR/TM4SF3 protein interaction and protein stability. Peptide TA1 reduced the recruitment of AR and TM4SF3 to promoters of androgen-regulated genes and subsequent activation of these AR target genes. Peptides TA1 and AT1 were strongly cytotoxic to prostate cancer cells that express AR and/or AR-V7. Peptide TA1 inhibited the growth and induced apoptosis of both enzalutamide-sensitive and importantly enzalutamide-resistant prostate cancer cells. TA1 also blocked the migration and malignant transformation of prostate cancer cells. Our data clearly demonstrate that using peptides to target the important interaction AR has with TM4SF3 provides a novel method to kill enzalutamide-resistant prostate cancer cells that can potentially lead to new more effective therapy for CRPC.

12.
Bioorg Chem ; 139: 106700, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37392559

RESUMO

Galeterone, 3ß-(hydroxy)-17-(1H-benzimidazole-1-yl)androsta-5,16-diene (Gal, 1) and VNPP433-3ß, 3ß-(1H-imidazole-1-yl-17-(1H-benzimidazole-1-yl)androsta-5,16-diene (2) are potent molecular glue degrader modulators of AR/AR-V7 and Mnk1/2-eIF4E signaling pathways, and are promising Phase 3 and Phase 1 drug candidates, respectively. Because appropriate salts can be utilized to create new chemical entities with enhanced aqueous solubility, in vivo pharmacokinetics, and enhanced in vitro and in vivo efficacies, the monohydrochloride salt of Gal (3) and the mono- and di-hydrochlorides salts of compound 2, compounds 4 and 5, respectively, were synthesized. The salts were characterized using 1H NMR, 13C NMR and HRMS analyses. Compound 3 displayed enhanced in vitro antiproliferative activity (7.4-fold) against three prostate cancer cell lines but surprisingly decreased plasma exposure in the pharmacokinetics study. The antiproliferative activities of the compound 2 salts (4 and 5) were equivalent to that of compound 2, but their oral pharmacokinetic profiles were significantly enhanced. Finally, and most importantly, oral administration of the parent compounds (1 and 2) and their corresponding salts (3, 4 and 5) caused dose-dependent potent inhibition/regression of aggressive and difficult-to-treat CWR22Rv1 tumor xenografts growth, with no apparent host toxicities and were highly more efficacious than the blockbuster FDA-approved prostate cancer drugs, Enzalutamide (Xtandi) and Docetaxel (Taxotere). Thus, the HCl salts of Gal (3) and VNPP433-3ß (4 and 5) are excellent orally bioavailable candidates for clinical development.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Animais , Camundongos , Docetaxel/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Xenoenxertos , Sais , Receptores Androgênicos/metabolismo , Nitrilas , Benzimidazóis/uso terapêutico , Linhagem Celular Tumoral
13.
Cell Rep ; 42(7): 112798, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37453063

RESUMO

In castration-resistant prostate cancer (CRPC), clinical response to androgen receptor (AR) antagonists is limited mainly due to AR-variants expression and restored AR signaling. The metabolite spermine is most abundant in prostate and it decreases as prostate cancer progresses, but its functions remain poorly understood. Here, we show spermine inhibits full-length androgen receptor (AR-FL) and androgen receptor splice variant 7 (AR-V7) signaling and suppresses CRPC cell proliferation by directly binding and inhibiting protein arginine methyltransferase PRMT1. Spermine reduces H4R3me2a modification at the AR locus and suppresses AR binding as well as H3K27ac modification levels at AR target genes. Spermine supplementation restrains CRPC growth in vivo. PRMT1 inhibition also suppresses AR-FL and AR-V7 signaling and reduces CRPC growth. Collectively, we demonstrate spermine as an anticancer metabolite by inhibiting PRMT1 to transcriptionally inhibit AR-FL and AR-V7 signaling in CRPC, and we indicate spermine and PRMT1 inhibition as powerful strategies overcoming limitations of current AR-based therapies in CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Espermina/farmacologia , Transdução de Sinais , Antagonistas de Receptores de Andrógenos/uso terapêutico , Linhagem Celular Tumoral , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo
14.
Pharmaceuticals (Basel) ; 16(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37242518

RESUMO

Niclosamide effectively downregulates androgen receptor variants (AR-Vs) for treating enzalutamide and abiraterone-resistant prostate cancer. However, the poor pharmaceutical properties of niclosamide due to its solubility and metabolic instability have limited its clinical utility as a systemic treatment for cancer. A novel series of niclosamide analogs was prepared to systematically explore the structure-activity relationship and identify active AR-Vs inhibitors with improved pharmaceutical properties based on the backbone chemical structure of niclosamide. Compounds were characterized using 1H NMR, 13C NMR, MS, and elemental analysis. The synthesized compounds were evaluated for antiproliferative activity and downregulation of AR and AR-V7 in two enzalutamide-resistant cell lines, LNCaP95 and 22RV1. Several of the niclosamide analogs exhibited equivalent or improved anti-proliferation effects in LNCaP95 and 22RV1 cell lines (B9, IC50 LNCaP95 and 22RV1 = 0.130 and 0.0997 µM, respectively), potent AR-V7 down-regulating activity, and improved metabolic stability. In addition, both a traditional structure-activity relationship (SAR) and 3D-QSAR analysis were performed to guide further structural optimization. The presence of two -CF3 groups of the most active B9 in the sterically favorable field and the presence of the -CN group of the least active B7 in the sterically unfavorable field seem to make B9 more potent than B7 in the antiproliferative activity.

15.
Cancers (Basel) ; 15(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37046780

RESUMO

A major limitation of current prostate cancer pharmacotherapy approaches is the inability of these compounds to target androgen receptor variants or mutants that develop during prostate cancer progression. The demand for novel therapeutics to prevent, slow, and treat prostate cancer is significant because FDA approved anti-androgens are associated with adverse events and can eventually drive drug-resistant prostate cancer. This study evaluated α-mangostin for its novel ability to degrade the androgen receptor and androgen receptor variants. α-Mangostin is one of more than 70 isoprenylated xanthones isolated from Garcinia mangostana that we have been evaluating for their anticancer potential. Prostate cancer cells treated with α-mangostin exhibited decreased levels of wild-type and mutated androgen receptors. Immunoblot, immunoprecipitation, and transfection experiments demonstrated that the androgen receptor was ubiquitinated and subsequently degraded via the proteasome, which we hypothesize occurs with the assistance of BiP, an ER chaperone protein that we have shown to associate with the androgen receptor. We also evaluated α-mangostin for its antitumor activity and promotion of androgen receptor degradation in vivo. In summary, our study demonstrates that androgen receptor degradation occurs through the novel activation of BiP and suggests a new therapeutic approach for prostate cancer.

16.
Front Oncol ; 13: 1129140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937454

RESUMO

Persistent androgen receptor (AR) signalling is the main driver of prostate cancer (PCa). Truncated isoforms of the AR called androgen receptor variants (AR-Vs) lacking the ligand binding domain often emerge during treatment resistance against AR pathway inhibitors such as Enzalutamide. This review discusses how AR-Vs drive a more aggressive form of PCa through the regulation of some of their target genes involved in oncogenic pathways, enabling disease progression. There is a pressing need for the development of a new generation of AR inhibitors which can repress the activity of both the full-length AR and AR-Vs, for which the knowledge of differentially expressed target genes will allow evaluation of inhibition efficacy. This review provides a detailed account of the most common variant, AR-V7, the AR-V7 regulated genes which have been experimentally validated, endeavours to understand their relevance in aggressive AR-V driven PCa and discusses the utility of the downstream protein products as potential drug targets for PCa treatment.

17.
EBioMedicine ; 90: 104500, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36893587

RESUMO

BACKGROUND: Despite the advent of improved therapeutic options for advanced prostate cancer, the durability of clinical benefits is limited due to inevitable development of resistance. By constitutively sustaining androgen receptor (AR) signaling, expression of ligand-binding domain truncated AR variants (AR-V(ΔLBD)) accounts for the major mechanism underlying the resistance to anti-androgen drugs. Strategies to target AR and its LBD truncated variants are needed to prevent the emergence or overcome drug resistance. METHODS: We utilize Proteolysis Targeting Chimeras (PROTAC) technology to achieve induced degradation of both full-length AR (AR-FL) and AR-V(ΔLBD) proteins. In the ITRI-PROTAC design, an AR N-terminal domain (NTD) binding moiety is appended to von-Hippel-Lindau (VHL) or Cereblon (CRBN) E3 ligase binding ligand with linker. FINDINGS: In vitro studies demonstrate that ITRI-PROTAC compounds mechanistically degrade AR-FL and AR-V(ΔLBD) proteins via ubiquitin-proteasome system, leading to impaired AR transactivation on target gene expression, and inhibited cell proliferation accompanied by apoptosis activation. The compounds also significantly inhibit enzalutamide-resistant growth of castration resistant prostate cancer (CRPC) cells. In castration-, enzalutamide-resistant CWR22Rv1 xenograft model without hormone ablation, ITRI-90 displays a pharmacokinetic profile with decent oral bioavailability and strong antitumor efficacy. INTERPRETATION: AR NTD that governs the transcriptional activities of all active variants has been considered attractive therapeutic target to block AR signaling in prostate cancer cells. We demonstrated that utilizing PROTAC for induced AR protein degradation via NTD represents an efficient alternative therapeutic strategy for CRPC to overcome anti-androgen resistance. FUNDING: The funding detail can be found in the Acknowledgements section.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Quimera de Direcionamento de Proteólise , Ligantes , Nitrilas/uso terapêutico , Linhagem Celular Tumoral , Proteólise
18.
Endocrinology ; 164(5)2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36951301

RESUMO

Prostate cancer transitions from an early treatable form to the lethal castration-resistant prostate cancer (CRPC). Androgen receptor (AR) and constitutively active AR splice variants, such as AR-V7, may be major drivers of CRPC. Our laboratory recently identified a novel mechanism of AR regulation via the transmembrane protein transmembrane 4 superfamily 3 (TM4SF3), which exhibits a physical interaction, nuclear colocalization, and mutual stabilization with AR. Here, we have mapped the interaction domains within AR and TM4SF3 and discovered that TM4SF3 also physically interacts with AR-V7, regulating its protein stability and the viability of CRPC cells expressing AR-V7. Ubiquitination of TM4SF3 and AR-V7 was detected for the first time and TM4SF3 interaction with either AR or AR-V7 resulted in mutual deubiquitination of both proteins, showing that mutual stabilization results from deubiquitination. Interestingly, nuclear TM4SF3 was co-recruited to the promoters of AR- and AR-V7-regulated genes and required for their expression, showing that TM4SF3 interaction is critical for their transcriptional functions. The results collectively show the multiple critical regulatory functions of TM4SF3 on AR or AR-V7 in prostate cancer cells.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Humanos , Masculino , Linhagem Celular Tumoral , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Isoformas de Proteínas/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
19.
Cancers (Basel) ; 15(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36980655

RESUMO

BACKGROUND: Epigenetic modification influences androgen receptor (AR) activation, often resulting in prostate cancer (PCa) development and progression. Silencing histone-modifying enzymes (histone deacetylases-HDACs) either genetically or pharmacologically suppresses PCa proliferation in preclinical models of PCa; however, results from clinical studies were not encouraging. Similarly, PCa patients eventually become resistant to androgen ablation therapy (ADT). Our goal is to develop dual-acting small molecules comprising antiandrogen and HDAC-inhibiting moieties that may overcome the resistance of ADT and effectively suppress the growth of castration-resistant prostate cancer (CRPC). METHODS: Several rationally designed antiandrogen-equipped HDAC inhibitors (HDACi) were synthesized, and their efficacy on CRPC growth was examined both in vitro and in vivo. RESULTS: While screening our newly developed small molecules, we observed that SBI-46 significantly inhibited the proliferation of AR+ CRPC cells but not AR- CRPC and normal immortalized prostate epithelial cells (RWPE1) or normal kidney cells (HEK-293 and VERO). Molecular analysis confirmed that SBI-46 downregulated the expressions of both AR+ and AR-splice variants (AR-SVs) in CRPC cells. Further studies revealed the downregulation of AR downstream (PSA) events in CRPC cells. The oral administration of SBI-46 abrogated the growth of C4-2B and 22Rv1 CRPC xenograft tumors that express AR or both AR and AR-SV in xenotransplanted nude mice models. Further, immunohistochemical analysis confirmed that SBI-46 inhibits AR signaling in xenografted tumor tissues. CONCLUSION: These results demonstrate that SBI-46 is a potent agent that inhibits preclinical models of CRPC by downregulating the expressions of both AR and AR-SV. Furthermore, these results suggest that SBI-46 may be a potent compound for treating CRPC.

20.
Cancers (Basel) ; 15(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36831540

RESUMO

Targeted protein degradation is a fast-evolving therapeutic strategy to target even the traditionally undruggable target proteins. Contrary to the traditional small-molecule inhibitors of enzyme or receptor antagonists that bind the active site pockets in the target protein, molecular glue degraders facilitate interaction of target proteins with E3 ubiquitin ligases by stabilizing the ternary complex and induce physical proximity, thereby triggering ubiquitination and subsequent proteasomal degradation. AR plays a key role in all stages of prostate cancer. It is activated by the binding of androgenic hormones and transcriptionally regulates multiple genes including the ones that regulate cell cycle. Using HiBiT CRISPR cell line, biochemical methods, and RNA sequencing, we report the potential role of VNPP433-3ß, the next generation galeterone analog as molecular glue that brings together AR, the key driver of prostate cancer and MDM2, an E3 ubiquitin ligase leading to ubiquitination and subsequent degradation of f-AR and AR-V7 in prostate cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA