Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cancers (Basel) ; 16(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39123453

RESUMO

Osteosarcoma is an aggressive bone malignancy, molecularly characterized by acquired genome complexity and frequent loss of TP53 and RB1. Obtaining a molecular understanding of the initiating mutations of osteosarcomagenesis has been challenged by the difficulty of parsing between passenger and driver mutations in genes. Here, a forward genetic screen in a genetic mouse model of osteosarcomagenesis initiated by Trp53 and Rb1 conditional loss in pre-osteoblasts identified that Arid1a loss contributes to OS progression. Arid1a is a member of the canonical BAF (SWI/SNF) complex and a known tumor suppressor gene in other cancers. We hypothesized that the loss of Arid1a increases the rate of tumor progression and metastasis. Phenotypic evaluation upon in vitro and in vivo deletion of Arid1a validated this hypothesis. Gene expression and pathway analysis revealed a correlation between Arid1a loss and genomic instability, and the subsequent dysregulation of genes involved in DNA DSB or SSB repair pathways. The most significant of these transcriptional changes was a concomitant decrease in DCLRE1C. Our findings suggest that Arid1a plays a role in genomic instability in aggressive osteosarcoma and a better understanding of this correlation can help with clinical prognoses and personalized patient care.

2.
Gastric Cancer ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028418

RESUMO

BACKGROUND: The purpose of the study was to conduct a comprehensive genomic characterization of gene alterations, microsatellite instability (MSI), and tumor mutational burden (TMB) in submucosal-penetrating (Pen) early gastric cancers (EGCs) with varying prognoses. METHODS: Samples from EGC patients undergoing surgery and with 10-year follow-up data available were collected. Tissue genomic alterations were characterized using Trusight Oncology panel (TSO500). Pathway instability (PI) scores for a selection of 218 GC-related pathways were calculated both for the present case series and EGCs from the TCGA cohort. RESULTS: Higher age and tumor location in the upper-middle tract are significantly associated with an increased hazard of relapse or death from any cause (p = 0.006 and p = 0.032). Even if not reaching a statistical significance, Pen A tumors more frequently present higher TMB values, higher frequency of MSI-subtypes and an overall increase in PI scores, along with an enrichment in immune pathways. ARID1A gene was observed to be significantly more frequently mutated in Pen A tumors (p = 0.006), as well as in patients with high TMB (p = 0.027). Tumors harboring LRP1B alterations seem to have a higher hazard of relapse or death from any cause (p = 0.089), being mutated mainly in relapsed patients (p = 0.093). CONCLUSIONS: We found that the most aggressive subtype Pen A is characterized by a higher frequency of ARID1A mutations and a higher genetic instability, while LRP1B alterations seem to be related to a lower disease-free survival. Further investigations are needed to provide a rationale for the use of these markers to stratify prognosis in EGC patients.

3.
J Gastrointest Oncol ; 15(3): 862-872, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38989399

RESUMO

Background: Defects in DNA damage repair can cause genetic mutations, which in turn can cause different types of cancers. Chromatin remodeling complexes, which help repair damaged DNA, can cause the chromatin structure to change as a result of DNA damage. ARID1A may play a role in the process of DNA damage repair, and arid1a may be related to the occurrence and development of gastric cancer (GC). This study aimed to investigate the mechanism of ARID1A regulating the DNA damage repair of gastric adenocarcinoma cell lines AGS and SGC-7901 and its effect on migration, proliferation and apoptosis. Methods: The expression of ARID1A plasmid was detected by Western blot and real-time polymerase chain reaction (PCR). The effect of etoposide (ETO) on the survival rate of AGS and SGC-7901 gastric adenocarcinoma cell lines was detected by MTT assay. The DNA double-strand break model was established by ETO and then passed through the comet assay and immunofluorescence co-localization to observe DNA damage; western blot method was used to detect the effect of ARID1A on the expression of related proteins in DNA damage repair pathway in gastric adenocarcinoma cells; scratch test and colony formation experiments were used to observe ARID1A migration and proliferation of gastric adenocarcinoma cells. The flow cytometry was used to detect the effect of ARID1A on apoptosis of gastric adenocarcinoma cells. Results: The expression of mRNA and protein was increased after transfection of ARID1A plasmid. ETO was confirmed by MTT assay to inhibit cell survival in a dose-dependent manner. After the DNA double-strand break model was established by ETO, the expression levels of phospho-ataxia telangiectasia mutated (p-ATM) protein increased in the overexpressed ARID1A group. Meanwhile, the overexpressed ARID1A group had a shortened tail moment, and γ-H2AX and ARID1A co-localized in the DNA damage site of the nucleus. The over-expressed ARID1A group had weaker wound healing ability, reduced number of clone formation, and increased apoptosis rate. Conclusions: ARID1A may repair DNA double-strand breaks caused by ETO by p-ATM pathway; ARID1A can inhibit the migration and proliferation of gastric adenocarcinoma cells and promote apoptosis. Our findings indicate that ARID1A could serve as a therapeutic target and biomarker for GC patients.

4.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062866

RESUMO

Endometriosis is a hormone-dependent, chronic inflammatory condition that affects 5-10% of reproductive-aged women. It is a complex disorder characterized by the growth of endometrial-like tissue outside the uterus, which can cause chronic pelvic pain and infertility. Despite its prevalence, the underlying molecular mechanisms of this disease remain poorly understood. Current treatment options are limited and focus mainly on suppressing lesion activity rather than eliminating it entirely. Although endometriosis is generally considered a benign condition, substantial evidence suggests that it increases the risk of developing specific subtypes of ovarian cancer. The discovery of cancer driver mutations in endometriotic lesions indicates that endometriosis may share molecular pathways with cancer. Moreover, the application of single-cell and spatial genomics, along with the development of organoid models, has started to illuminate the molecular mechanisms underlying disease etiology. This review aims to summarize the key genetic mutations and alterations that drive the development and progression of endometriosis to malignancy. We also review the significant recent advances in the understanding of the molecular basis of the disorder, as well as novel approaches and in vitro models that offer new avenues for improving our understanding of disease pathology and for developing new targeted therapies.


Assuntos
Endometriose , Endometriose/patologia , Endometriose/genética , Endometriose/etiologia , Endometriose/metabolismo , Humanos , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/etiologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Mutação , Animais
5.
Trends Immunol ; 45(8): 568-570, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39060141

RESUMO

In a recent article, Maxwell et al. report that loss of tumor cell-specific AT-rich interaction domain 1A (ARID1A), a component of the chromatin remodeling SWI/SNF complex, triggers antitumor immunity via R-loop-mediated upregulation of the type-I interferon (IFN) pathway. These recent findings uncover a molecular mechanism underlying improved responses to immune checkpoint therapy (ICT) seen in patients harboring an ARID1A loss-of-function mutation.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Membrana , Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Neoplasias/imunologia , Neoplasias/genética , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Transdução de Sinais , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Montagem e Desmontagem da Cromatina
6.
Discov Oncol ; 15(1): 213, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847966

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs), especially those targeting programmed cell death-1 (PD-1) and programmed cell death ligand-1 (PD-L1), have introduced a new treatment landscape for many types of tumors. However, they only achieve a limited therapeutic response. Hence, identifying patients who may benefit from ICIs is currently a challenge. METHODS: 47 tumor patients harboring ARID1A mutations were retrospectively studied. The genomic profiling data through next-generation sequencing (NGS) and relevant clinical information were collected and analyzed. Additionally, bioinformatics analysis of the expression of immune checkpoints and immune cell infiltration levels was conducted in ARID1A-mutant gastric cancer (GC). RESULTS: ARID1A mutations frequently co-occur with mutations in DNA damage repair (DDR)-associated genes. Among the 35 ARID1A-mutant patients who received immunotherapy, 27 were evaluable., with the objective response rate (ORR) was 48.15% (13/27), and the disease control rate (DCR) was 92.59% (25/27). Moreover, survival assays revealed that ARID1A-mutant patients had longer median overall survival (mOS) after immunotherapy. In ARID1A-mutated GC patients, receiving ICIs treatment indicated longer progressive-free survival (PFS). Additionally, the incidence of microsatellite instability-high (MSI-H), high tumor mutation burden (TMB-H) and Epstein‒Barr virus (EBV) infection was elevated. Bioinformatic analysis showed significant enrichment of immune response and T cell activation pathway within differentially expressed genes in ARID1A-mutant GC group. Finally, ARID1A mutations status was considered to be highly correlated with the level of tumor infiltrating lymphocytes (TILs) and high expression of immune checkpoints. CONCLUSIONS: Patients with tumors harboring ARID1A mutations may achieve better clinical outcomes from immunotherapy, especially in GC. ARID1A mutations can lead to genomic instability and reshape the tumor immune microenvironment (TIME), which can be used as a biomarker for immunotherapy.

7.
BMC Biol ; 22(1): 132, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835016

RESUMO

BACKGROUND: ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, is thought to play a significant role both in tumor suppression and tumor initiation, which is highly dependent upon context. Previous studies have suggested that ARID1A deficiency may contribute to cancer development. The specific mechanisms of whether ARID1A loss affects tumorigenesis by RNA editing remain unclear. RESULTS: Our findings indicate that the deficiency of ARID1A leads to an increase in RNA editing levels and alterations in RNA editing categories mediated by adenosine deaminases acting on RNA 1 (ADAR1). ADAR1 edits the CDK13 gene at two previously unidentified sites, namely Q113R and K117R. Given the crucial role of CDK13 as a cyclin-dependent kinase, we further observed that ADAR1 deficiency results in changes in the cell cycle. Importantly, the sensitivity of ARID1A-deficient tumor cells to SR-4835, a CDK12/CDK13 inhibitor, suggests a promising therapeutic approach for individuals with ARID1A-mutant tumors. Knockdown of ADAR1 restored the sensitivity of ARID1A deficient cells to SR-4835 treatment. CONCLUSIONS: ARID1A deficiency promotes RNA editing of CDK13 by regulating ADAR1.


Assuntos
Adenosina Desaminase , Quinases Ciclina-Dependentes , Proteínas de Ligação a DNA , Edição de RNA , Proteínas de Ligação a RNA , Fatores de Transcrição , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Linhagem Celular Tumoral , Proteína Quinase CDC2
8.
Open Med (Wars) ; 19(1): 20240976, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859878

RESUMO

Borderline ovarian tumours (BOTs) show intriguing characteristics distinguishing them from other ovarian tumours. The aim of the systematic review was to analyse the spectrum of molecular changes found in BOTs and discuss their significance in the context of the overall therapeutic approach. The systematic review included articles published between 2000 and 2023 in the databases: PubMed, EMBASE, and Cochrane. After a detailed analysis of the available publications, we qualified for the systematic review: 28 publications on proto-oncogenes: BRAF, KRAS, NRAS, ERBB2, and PIK3CA, 20 publications on tumour suppressor genes: BRCA1/2, ARID1A, CHEK2, PTEN, 4 on adhesion molecules: CADM1, 8 on proteins: B-catenin, claudin-1, and 5 on glycoproteins: E-Cadherin. In addition, in the further part of the systematic review, we included eight publications on microsatellite instability and three describing loss of heterozygosity in BOT. Molecular changes found in BOTs can vary on a case-by-case basis, identifying carcinogenic mutations through molecular analysis and developing targeted therapies represent significant advancements in the diagnosis and treatment of ovarian malignancies. Molecular studies have contributed significantly to our understanding of BOT pathogenesis, but substantial research is still required to elucidate the relationship between ovarian neoplasms and extraneous disease, identify accurate prognostic indicators, and develop targeted therapeutic approaches.

9.
Cancers (Basel) ; 16(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893118

RESUMO

BACKGROUND: AT-rich interaction domain 1A (ARID1A) has been proposed as a new biomarker for predicting response to immune checkpoint inhibitors (ICIs). The predictive value of ARID1A for predicting ICI effectiveness has not been reported for endometrial cancer. Therefore, we investigated whether ARID1A negativity predicts ICI effectiveness for endometrial cancer treatment. METHODS: We evaluated ARID1A expression, tumor-infiltrating lymphocytes (CD8+), and immune checkpoint molecules (PD-L1/PD-1) by immunostaining endometrial samples from patients with endometrial cancer. Samples in which any of the four mismatch repair proteins (MLH1, MSH2, MSH6, and PMS2) were determined to be negative via immunostaining were excluded. In the ARID1A-negative group, microsatellite instability (MSI) status was confirmed via MSI analysis. RESULTS: Of the 102 samples investigated, 25 (24.5%) were ARID1A-negative. CD8 and PD-1 expression did not differ significantly between the ARID1A-negative group and the ARID1A-positive group; however, the ARID1A-negative group showed significantly lower PD-L1 expression. Only three samples (14.2%) in the ARID1A-negative group showed high MSI. Sanger sequencing detected three cases of pathological mutation in the MSH2-binding regions. We also established an ARID1A-knockout human ovarian endometriotic epithelial cell line (HMOsisEC7 ARID1A KO), which remained microsatellite-stable after passage. CONCLUSION: ARID1A negativity is not suitable as a biomarker for ICI effectiveness in treating endometrial cancer.

10.
Cancers (Basel) ; 16(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38893181

RESUMO

AT-rich interaction domain 1 (ARID1A) is a pivotal gene with a significant role in gastrointestinal tumors which encodes a protein referred to as BAF250a or SMARCF1, an integral component of the SWI/SNF (SWItch/sucrose non-fermentable) chromatin remodeling complex. This complex is instrumental in regulating gene expression by modifying the structure of chromatin to affect the accessibility of DNA. Mutations in ARID1A have been identified in various gastrointestinal cancers, including colorectal, gastric, and pancreatic cancers. These mutations have the potential to disrupt normal SWI/SNF complex function, resulting in aberrant gene expression and potentially contributing to the initiation and progression of these malignancies. ARID1A mutations are relatively common in gastric cancer, particularly in specific adenocarcinoma subtypes. Moreover, such mutations are more frequently observed in specific molecular subtypes, such as microsatellite stable (MSS) cancers and those with a diffuse histological subtype. Understanding the presence and implications of ARID1A mutations in GC is of paramount importance for tailoring personalized treatment strategies and assessing prognosis, particularly given their potential in predicting patient response to novel treatment strategies including immunotherapy, poly(ADP) ribose polymerase (PARP) inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) inhibitors.

11.
J Transl Med ; 22(1): 556, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858765

RESUMO

BACKGROUND: The poor chemo-response and high DNA methylation of ovarian clear cell carcinoma (OCCC) have attracted extensive attentions. Recently, we revealed the mutational landscape of the human kinome and additional cancer-related genes and found deleterious mutations in ARID1A, a component of the SWI/SNF chromatin-remodeling complex, in 46% of OCCC patients. The present study aims to comprehensively investigate whether ARID1A loss and genome-wide DNA methylation are co-regulated in OCCC and identify putative therapeutic targets epigenetically regulated by ARID1A. METHODS: DNA methylation of ARID1Amt/ko and ARID1Awt OCCC tumors and cell lines were analyzed by Infinium MethylationEPIC BeadChip. The clustering of OCCC tumors in relation to clinical and mutational status of tumors were analyzed by hierarchical clustering analysis of genome-wide methylation. GEO expression profiles were used to identify differentially methylated (DM) genes and their expression level in ARID1Amt/ko vs ARID1Awt OCCCs. Combining three pre-ranked GSEAs, pathways and leading-edge genes epigenetically regulated by ARID1A were revealed. The leading-edge genes that passed the in-silico validation and showed consistent ARID1A-related methylation change in tumors and cell lines were regarded as candidate genes and finally verified by bisulfite sequencing and RT-qPCR. RESULTS: Hierarchical clustering analysis of genome-wide methylation showed two clusters of OCCC tumors. Tumor stage, ARID1A/PIK3CA mutations and TP53 mutations were significantly different between the two clusters. ARID1A mutations in OCCC did not cause global DNA methylation changes but were related to DM promoter or gene-body CpG islands of 2004 genes. Three pre-ranked GSEAs collectively revealed the significant enrichment of EZH2- and H3K27me3-related gene-sets by the ARID1A-related DM genes. 13 Leading-edge DM genes extracted from the enriched gene-sets passed the expression-based in-silico validation and showed consistent ARID1A-related methylation change in tumors and cell lines. Bisulfite sequencing and RT-qPCR analysis showed promoter hypermethylation and lower expression of IRX1, TMEM101 and TRIP6 in ARID1Amt compared to ARID1Awt OCCC cells, which was reversed by 5-aza-2'-deoxycytidine treatment. CONCLUSIONS: Our study shows that ARID1A loss is related to the differential methylation of a number of genes in OCCC. ARID1A-dependent DM genes have been identified as key genes of many cancer-related pathways that may provide new candidates for OCCC targeted treatment.


Assuntos
Adenocarcinoma de Células Claras , Metilação de DNA , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares , Neoplasias Ovarianas , Fatores de Transcrição , Humanos , Metilação de DNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Linhagem Celular Tumoral , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/patologia , Genoma Humano , Mutação/genética , Epigênese Genética , Análise por Conglomerados
12.
Immunity ; 57(8): 1780-1795.e6, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38843835

RESUMO

Macrophages elicit immune responses to pathogens through induction of inflammatory genes. Here, we examined the role of three variants of the SWI/SNF nucleosome remodeling complex-cBAF, ncBAF, and PBAF-in the macrophage response to bacterial endotoxin (lipid A). All three SWI/SNF variants were prebound in macrophages and retargeted to genomic sites undergoing changes in chromatin accessibility following stimulation. Cooperative binding of all three variants associated with de novo chromatin opening and latent enhancer activation. Isolated binding of ncBAF and PBAF, in contrast, associated with activation and repression of active enhancers, respectively. Chemical and genetic perturbations of variant-specific subunits revealed pathway-specific regulation in the activation of lipid A response genes, corresponding to requirement for cBAF and ncBAF in inflammatory and interferon-stimulated gene (ISG) activation, respectively, consistent with differential engagement of SWI/SNF variants by signal-responsive transcription factors. Thus, functional diversity among SWI/SNF variants enables increased regulatory control of innate immune transcriptional programs, with potential for specific therapeutic targeting.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona , Elementos Facilitadores Genéticos , Inflamação , Macrófagos , Fatores de Transcrição , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Inflamação/imunologia , Inflamação/genética , Elementos Facilitadores Genéticos/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Imunidade Inata , Humanos
13.
Cancer Genomics Proteomics ; 21(4): 414-420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38944423

RESUMO

BACKGROUND/AIM: Clear cell carcinoma is a prevalent histological type of ovarian cancer in East Asia, particularly in Japan, known for its resistance to chemotherapeutic agents and poor prognosis. ARID1A gene mutations, commonly found in ovarian clear cell carcinoma (OCCC), contribute to its pathogenesis. Recent data revealed that the ARID1A mutation is related to better outcomes of cancer immunotherapy. Thus, this study aimed to investigate the immunotherapy treatment susceptibility of OCCC bearing ARID1A mutations. MATERIALS AND METHODS: Expression of ARID1A was analyzed using western blotting in ovarian cancer cell lines. OCCC cell lines JHOC-9 and RMG-V were engineered to overexpress NY-ESO-1, HLA-A*02:01, and ARID1A. Sensitivity to chemotherapy and T cell receptor-transduced T (TCR-T) cells specific for NY-ESO-1 was assessed in ARID1A-restored cells compared to ARID1A-deficient wild-type cells. RESULTS: JHOC-9 cells and RMG-V cells showed no expression of ARID1A protein. Overexpression of ARID1A in JHOC-9 and RMG-V cells did not impact sensitivity to gemcitabine. While ARID1A overexpression decreased sensitivity to cisplatin in RMG-V cells, it had no such effect in JHOC-9 cells. ARID1A overexpression reduced the reactivity of NY-ESO-1-specific TCR-T cells, as observed by the IFNγ ESLIPOT assay. CONCLUSION: Cancer immunotherapy is an effective approach to target ARID1A-deficient clear cell carcinoma of the ovary.


Assuntos
Adenocarcinoma de Células Claras , Proteínas de Ligação a DNA , Neoplasias Ovarianas , Linfócitos T Citotóxicos , Fatores de Transcrição , Humanos , Feminino , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Adenocarcinoma de Células Claras/patologia , Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/imunologia , Adenocarcinoma de Células Claras/metabolismo , Linfócitos T Citotóxicos/imunologia , Linhagem Celular Tumoral , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/imunologia , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/metabolismo , Proteínas de Membrana
14.
Cancer Cell ; 42(7): 1185-1201.e14, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38906156

RESUMO

Multiple myeloma (MM) is an incurable plasma cell malignancy that exploits transcriptional networks driven by IRF4. We employ a multi-omics approach to discover IRF4 vulnerabilities, integrating functional genomics screening, spatial proteomics, and global chromatin mapping. ARID1A, a member of the SWI/SNF chromatin remodeling complex, is required for IRF4 expression and functionally associates with IRF4 protein on chromatin. Deleting Arid1a in activated murine B cells disrupts IRF4-dependent transcriptional networks and blocks plasma cell differentiation. Targeting SWI/SNF activity leads to rapid loss of IRF4-target gene expression and quenches global amplification of oncogenic gene expression by MYC, resulting in profound toxicity to MM cells. Notably, MM patients with aggressive disease bear the signature of SWI/SNF activity, and SMARCA2/4 inhibitors remain effective in immunomodulatory drug (IMiD)-resistant MM cells. Moreover, combinations of SWI/SNF and MEK inhibitors demonstrate synergistic toxicity to MM cells, providing a promising strategy for relapsed/refractory disease.


Assuntos
Proteínas de Ligação a DNA , Fatores Reguladores de Interferon , Mieloma Múltiplo , Plasmócitos , Fatores de Transcrição , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Animais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Humanos , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Plasmócitos/efeitos dos fármacos , Plasmócitos/metabolismo , Plasmócitos/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Diferenciação Celular/efeitos dos fármacos
15.
Cell ; 187(13): 3390-3408.e19, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38754421

RESUMO

Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.


Assuntos
Linfócitos T CD8-Positivos , Proteínas de Ligação a DNA , Interferon Tipo I , Proteínas de Membrana , Neoplasias , Transdução de Sinais , Fatores de Transcrição , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Mutação , Neoplasias/imunologia , Neoplasias/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Masculino , Quimiocinas/genética , Quimiocinas/metabolismo
16.
HGG Adv ; 5(3): 100309, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38751117

RESUMO

Analysis of genomic DNA methylation by generating epigenetic signature profiles (episignatures) is increasingly being implemented in genetic diagnosis. Here we report our experience using episignature analysis to resolve both uncomplicated and complex cases of neurodevelopmental disorders (NDDs). We analyzed 97 NDDs divided into (1) a validation cohort of 59 patients with likely pathogenic/pathogenic variants characterized by a known episignature and (2) a test cohort of 38 patients harboring variants of unknown significance or unidentified variants. The expected episignature was obtained in most cases with likely pathogenic/pathogenic variants (53/59 [90%]), a revealing exception being the overlapping profile of two SMARCB1 pathogenic variants with ARID1A/B:c.6200, confirmed by the overlapping clinical features. In the test cohort, five cases showed the expected episignature, including (1) novel pathogenic variants in ARID1B and BRWD3; (2) a deletion in ATRX causing MRXFH1 X-linked mental retardation; and (3) confirmed the clinical diagnosis of Cornelia de Lange (CdL) syndrome in mutation-negative CdL patients. Episignatures analysis of the in BAF complex components revealed novel functional protein interactions and common episignatures affecting homologous residues in highly conserved paralogous proteins (SMARCA2 M856V and SMARCA4 M866V). Finally, we also found sex-dependent episignatures in X-linked disorders. Implementation of episignature profiling is still in its early days, but with increasing utilization comes increasing awareness of the capacity of this methodology to help resolve the complex challenges of genetic diagnoses.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento , Humanos , Metilação de DNA/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Masculino , Feminino , Fatores de Transcrição/genética , Criança , Epigênese Genética , Pré-Escolar , Proteínas de Ligação a DNA/genética , Mutação , Adolescente
17.
Cells ; 13(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38727317

RESUMO

mTOR is a central regulator of cell growth and metabolism in response to mitogenic and nutrient signals. Notably, mTOR is not only found in the cytoplasm but also in the nucleus. This review highlights direct involvement of nuclear mTOR in regulating transcription factors, orchestrating epigenetic modifications, and facilitating chromatin remodeling. These effects intricately modulate gene expression programs associated with growth and metabolic processes. Furthermore, the review underscores the importance of nuclear mTOR in mediating the interplay between metabolism and epigenetic modifications. By integrating its functions in nutrient signaling and gene expression related to growth and metabolism, nuclear mTOR emerges as a central hub governing cellular homeostasis, malignant transformation, and cancer progression. Better understanding of nuclear mTOR signaling has the potential to lead to novel therapies against cancer and other growth-related diseases.


Assuntos
Núcleo Celular , Proliferação de Células , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Núcleo Celular/metabolismo , Animais , Epigênese Genética , Transcrição Gênica , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia
18.
Eur J Med Genet ; 69: 104948, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735569

RESUMO

Anorectal malformations (ARMs) represent a wide spectrum of congenital anomalies of the anus and rectum, of which more than half are syndromic. Their etiology is highly heterogeneous and still poorly understood. We report a 4-year-old girl who initially presented with an isolated ARM, and subsequently developed a global developmental delay as part of an ARID1B-related Coffin-Siris syndrome (CSS). A co-occurrence of ARMs and CSS in an individual by chance is unexpected since both diseases are very rare. A review of the literature enabled us to identify 10 other individuals with both CSS and ARMs. Among the ten individuals reported in this study, 8 had a variant in ARID1A, 2 in ARID1B, and 1 in SMARCA4. This more frequent than expected association between CSS and ARM indicates that some ARMs are most likely part of the CSS spectrum, especially for ARID1A-related CSS.


Assuntos
Anormalidades Múltiplas , Malformações Anorretais , Proteínas de Ligação a DNA , Face , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Pescoço , Fatores de Transcrição , Humanos , Feminino , Micrognatismo/genética , Micrognatismo/patologia , Pré-Escolar , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Fatores de Transcrição/genética , Pescoço/anormalidades , Pescoço/patologia , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/patologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Proteínas de Ligação a DNA/genética , Malformações Anorretais/genética , Face/anormalidades , Face/patologia , DNA Helicases/genética , Proteínas Nucleares/genética , Canal Anal/anormalidades , Canal Anal/patologia , Fenótipo
19.
Reprod Sci ; 31(8): 2150-2162, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38740655

RESUMO

The highest frequency of genetic alterations in the tumor suppressor ARID1A occurs in malignancies of the female reproductive tract. The prevalence of ARID1A alterations in gynecologic precancers and cancers is summarized from the literature, and the putative mechanisms of tumor suppressive action examined both in benign/precursor lesions including endometriosis and atypical hyperplasia and in malignancies of the ovary, uterus, cervix and vagina. ARID1A alterations in gynecologic cancers are usually loss-of-function mutations, resulting in diminished or absent protein expression. ARID1A deficiency results in pleiotropic downstream effects related not only to its role in transcriptional regulation as a SWI/SNF complex subunit, but also related to the functions of ARID1A in DNA replication and repair, immune modulation, cell cycle progression, endoplasmic reticulum (ER) stress and oxidative stress. The most promising actionable signaling pathway interactions and therapeutic vulnerabilities of ARID1A mutated cancers are presented with a critical review of the currently available experimental and clinical evidence. The role of ARID1A in response to chemotherapeutic agents, radiation therapy and immunotherapy is also addressed. In summary, the multi-faceted role of ARID1A mutation in precancer and cancer is examined through a clinical lens focused on development of novel preventive and therapeutic interventions for gynecological cancers.


Assuntos
Proteínas de Ligação a DNA , Neoplasias dos Genitais Femininos , Fatores de Transcrição , Humanos , Feminino , Neoplasias dos Genitais Femininos/genética , Neoplasias dos Genitais Femininos/terapia , Neoplasias dos Genitais Femininos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Mutação , Animais
20.
J Agric Food Chem ; 72(20): 11733-11745, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38725145

RESUMO

Amino acids are essential for the activation of the mechanistic target of rapamycin (mTOR), but the corresponding molecular mechanism is not yet fully understood. We previously found that Met stimulated eukaryotic elongation factor α (eEF1Bα) nuclear localization in bovine mammary epithelial cells (MECs). Herein, we explored the role and molecular mechanism of eEF1Bα in methionine (Met)- and leucine (Leu)-stimulated mTOR gene transcription and milk synthesis in MECs. eEF1Bα knockdown decreased milk protein and fat synthesis, cell proliferation, and mTOR mRNA expression and phosphorylation, whereas eEF1Bα overexpression had the opposite effects. QE-MS analysis detected that eEF1Bα was phosphorylated at Ser106 in the nucleus and Met and Leu stimulated p-eEF1Bα nuclear localization. eEF1Bα knockdown abrogated the stimulation of Met and Leu by mTOR mRNA expression and phosphorylation, and this regulatory role was dependent on its phosphorylation. Akt knockdown blocked the stimulation of Met and Leu by eEF1Bα and p-eEF1Bα expression. ChIP-PCR detected that p-eEF1Bα bound only to the -548 to -793 nt site in the mTOR promoter, and ChIP-qPCR further detected that Met and Leu stimulated this binding. eEF1Bα mediated Met and Leu' stimulation on mTOR mRNA expression and phosphorylation through inducing AT-rich interaction domain 1A (ARID1A) ubiquitination degradation, and this process depended on eEF1Bα phosphorylation. p-eEF1Bα interacted with ARID1A and ubiquitin protein ligase E3 module N-recognition 5 (UBR5), and UBR5 knockdown rescued the decrease of the ARID1A protein level by eEF1Bα overexpression. Both eEF1Bα and p-eEF1Bα were highly expressed in mouse mammary gland tissues during the lactating period. In summary, we reveal that Met and Leu stimulate mTOR transcriptional activation and milk protein and fat synthesis in MECs through eEF1Bα-UBR5-ARID1A signaling.


Assuntos
Células Epiteliais , Leucina , Metionina , Leite , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Bovinos , Feminino , Camundongos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Leucina/farmacologia , Leucina/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Metionina/metabolismo , Metionina/farmacologia , Leite/química , Leite/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA