Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biomedicines ; 12(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39062052

RESUMO

One of the major causes of vision impairment among elderly people in developed nations is age-related macular degeneration (AMD). The distinctive features of AMD are the accumulation of extracellular deposits called drusen and the gradual deterioration of photoreceptors and nearby tissues in the macula. AMD is a complex and multifaceted disease influenced by several factors such as aging, environmental risk factors, and a person's genetic susceptibility to the condition. The interaction among these factors leads to the initiation and advancement of AMD, where genetic predisposition plays a crucial role. With the advent of high-throughput genotyping technologies, many novel genetic loci associated with AMD have been identified, enhancing our knowledge of its genetic architecture. The common genetic variants linked to AMD are found on chromosome 1q32 (in the complement factor H gene) and 10q26 (age-related maculopathy susceptibility 2 and high-temperature requirement A serine peptidase 1 genes) loci, along with several other risk variants. This review summarizes the common genetic variants of complement pathways, lipid metabolism, and extracellular matrix proteins associated with AMD risk, highlighting the intricate pathways contributing to AMD pathogenesis. Knowledge of the genetic underpinnings of AMD will allow for the future development of personalized diagnostics and targeted therapeutic interventions, paving the way for more effective management of AMD and improved outcomes for affected individuals.

2.
Ophthalmology ; 131(2): 208-218, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37717737

RESUMO

PURPOSE: To analyze ARMS2/HTRA1 as a risk factor for faster geographic atrophy (GA) enlargement according to (1) GA area and (2) contiguous enlargement versus progression to multifocality. DESIGN: Age-Related Eye Disease Study 2 (AREDS2) cohort analysis. PARTICIPANTS: Eyes with GA: 546 eyes of 406 participants. METHODS: Geographic atrophy area was measured from color fundus photographs at annual visits. Mixed-model regression of square root of GA area and proportional hazards regression of progression to multifocality were analyzed by ARMS2 genotype. MAIN OUTCOME MEASURES: Change in square root GA area and progression to multifocality. RESULTS: Geographic atrophy enlargement was significantly faster with ARMS2 risk alleles (P < 0.0001) at 0.224 mm/year (95% CI, 0.195-0.252 mm/year), 0.298 mm/year (95% CI, 0.271-0.324 mm/year), and 0.317 mm/year (95% CI, 0.279-0.355 mm/year), for 0 to 2 risk alleles, respectively. However, a significant interaction (P = 0.011) was observed between genotype and baseline area. In eyes with very small area (< 1.9 mm2), enlargement was significantly faster with ARMS2 risk alleles (P < 0.0001) at 0.193 mm/year (95% CI, 0.162-0.225 mm/year) versus 0.304 mm/year (95% CI, 0.280-0.329 mm/year) for 0 versus 1 to 2 risk alleles, respectively. With moderately small (1.9-3.8 mm2) or medium to large (≥ 3.8 mm2) area, enlargement was not significantly faster with ARMS2 risk alleles (P = 0.66 and P = 0.70, respectively). In nonmultifocal GA, enlargement was significantly faster with ARMS2 risk alleles (P = 0.001) at 0.175 mm/year (95% CI, 0.142-0.209 mm/year), 0.226 mm/year (95% CI, 0.193-0.259 mm/year), and 0.287 mm/year (95% CI, 0.237-0.337 mm/year) with 0 to 2 risk alleles, respectively. ARMS2 genotype was not associated significantly with progression to multifocal GA. CONCLUSIONS: The relationship between ARMS2/HTRA1 genotype and faster GA enlargement depends critically on GA area: risk alleles represent a strong risk factor for faster enlargement only in eyes with very small area. They increase the growth rate more through contiguous enlargement than progression to multifocality. ARMS2/HTRA1 genotype is more important in increasing risk of progression to GA and initial GA enlargement (contiguously) than in subsequent enlargement or progression to multifocality. These findings may explain some discrepancies between previous studies and have implications for both research and clinical practice. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Assuntos
Atrofia Geográfica , Degeneração Macular , Humanos , Alelos , Atrofia , Progressão da Doença , Olho , Genótipo , Atrofia Geográfica/diagnóstico , Atrofia Geográfica/genética , Degeneração Macular/genética , Proteínas/genética
3.
Front Genet ; 14: 1064659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911400

RESUMO

Background: Age-related macular degeneration (AMD) is the main cause of severe vision loss in elderly populations of the developed world with limited therapeutic medications available. It is a multifactorial disease with a strong genetic susceptibility which exhibits the differential genetic landscapes among different ethnic groups. Methods: To investigate the Han Chinese-specific genetic variants for AMD development and progression, we have presented a genome-wide association study (GWAS) on 339 AMD cases and 3,390 controls of a Han Chinese population recruited from the Taiwan Precision Medicine Initiative (TPMI). Results: In this study, we have identified several single nucleotide polymorphisms (SNPs) significantly associated with AMD, including rs10490924, rs3750848, and rs3750846 in the ARMS2 gene, and rs3793917, rs11200638, and rs2284665 in the HTRA1 gene, in which rs10490924 was highly linked to the other variants based upon linkage disequilibrium analysis. Moreover, certain systemic comorbidities, including chronic respiratory diseases and cerebrovascular diseases, were also confirmed to be independently associated with AMD. Stratified analysis revealed that both non-exudative and exudative AMD were significantly correlated with these risk factors. We also found that homozygous alternate alleles of rs10490924 could lead to an increased risk of AMD incidence compared to homozygous references or heterozygous alleles in the cohorts of chronic respiratory disease, cerebrovascular disease, hypertension, and hyperlipidemia. Ultimately, we established the SNP models for AMD risk prediction and found that rs10490924 combined with the other AMD-associated SNPs identified from GWAS improved the prediction model performance. Conclusion: These results suggest that genetic variants combined with the comorbidities could effectively identify any potential individuals at a high risk of AMD, thus allowing for both early prevention and treatment.

4.
Hum Genomics ; 15(1): 60, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563268

RESUMO

BACKGROUND: Single-variant associations with age-related macular degeneration (AMD), one of the most prevalent causes of irreversible vision loss worldwide, have been studied extensively. However, because of a lack of refinement of these associations, there remains considerable ambiguity regarding what constitutes genetic risk and/or protection for this disease, and how genetic combinations affect this risk. In this study, we consider the two most common and strongly AMD-associated loci, the CFH-CFHR5 region on chromosome 1q32 (Chr1 locus) and ARMS2/HTRA1 gene on chromosome 10q26  (Chr10 locus). RESULTS: By refining associations within the CFH-CFHR5 locus, we show that all genetic protection against the development of AMD in this region is described by the combination of the amino acid-altering variant CFH I62V (rs800292) and genetic deletion of CFHR3/1. Haplotypes based on CFH I62V, a CFHR3/1 deletion tagging SNP and the risk variant CFH Y402H are associated with either risk, protection or neutrality for AMD and capture more than 99% of control- and case-associated chromosomes. We find that genetic combinations of CFH-CFHR5 haplotypes (diplotypes) strongly influence AMD susceptibility and that individuals with risk/protective diplotypes are substantially protected against the development of disease. Finally, we demonstrate that AMD risk in the ARMS2/HTRA1 locus is also mitigated by combinations of CFH-CFHR5 haplotypes, with Chr10 risk variants essentially neutralized by protective CFH-CFHR5 haplotypes. CONCLUSIONS: Our study highlights the importance of considering protective CFH-CFHR5 haplotypes when assessing genetic susceptibility for AMD. It establishes a framework that describes the full spectrum of AMD susceptibility using an optimal set of single-nucleotide polymorphisms with known functional consequences. It also indicates that protective or preventive complement-directed therapies targeting AMD driven by CFH-CFHR5 risk haplotypes may also be effective when AMD is driven by ARMS2/HTRA1 risk variants.


Assuntos
Proteínas do Sistema Complemento/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Degeneração Macular/genética , Proteínas/genética , Idoso , Cromossomos/genética , Fator H do Complemento/genética , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Haplótipos/genética , Humanos , Desequilíbrio de Ligação , Degeneração Macular/patologia , Masculino , Polimorfismo de Nucleotídeo Único/genética
5.
Exp Eye Res ; 210: 108605, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33930395

RESUMO

Age-related macular degeneration (AMD) is the most common cause of central vision loss among elderly populations in industrialized countries. Genome-wide association studies have consistently associated two genomic loci with progression to late-stage AMD: the complement factor H (CFH) locus on chromosome 1q31 and the age-related maculopathy susceptibility 2-HtrA serine peptidase 1 (ARMS2-HTRA1) locus on chromosome 10q26. While the CFH risk variant has been shown to alter complement activity, the ARMS2-HTRA1 risk haplotype remains enigmatic due to high linkage disequilibrium and inconsistent functional findings spanning two genes that are plausibly causative for AMD risk. In this review, we detail the genetic and functional evidence used to support either ARMS2 or HTRA1 as the causal gene for AMD risk, emphasizing both the historical development and the current understanding of the ARMS2-HTRA1 locus in AMD pathogenesis. We conclude by summarizing the evidence in favor of HTRA1 and present our hypothesis whereby HTRA1-derived ECM fragments mediate AMD pathogenesis.


Assuntos
Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Degeneração Macular/genética , Proteínas/genética , Cromossomos Humanos Par 10/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Desequilíbrio de Ligação
6.
Ann Hum Genet ; 83(4): 285-290, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30895599

RESUMO

Age-related macular degeneration (AMD) is a disease of the elderly in which central vision is lost because of degenerative changes of the macula. The current study investigated the association of single-nucleotide polymorphisms (SNPs) with AMD in the Pakistani population. Four SNPs were analyzed in this study: rs1061170 in the CFH, rs429608 near CFB, rs2230199 in the C3, and rs10490924 in ARMS2/HTRA1. This case-control association study was conducted on 300 AMD patients (125 wet AMD and 175 dry AMD) and 200 unaffected age- and gender-matched control individuals. The association of the SNP genotypes and allele frequency distributions were compared between patients and healthy controls, keeping age, gender, and smoking status as covariates. A significant genotype and variant allele association was found of rs10490924 in ARMS2/HTRA1 with wet AMD, while the SNPs in CFH, CFB, and C3 were not associated with AMD in the current Pakistani cohort. The lack of association of CFH, CFB, and C3 may be attributed to limited sample size. This study demonstrates that genetic causative factors of AMD differ among populations and supports the need for genetic association studies among cohorts from various populations to increase our global understanding of the disease pathogenesis.


Assuntos
Alelos , Predisposição Genética para Doença , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Degeneração Macular/diagnóstico , Degeneração Macular/genética , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Idoso , Estudos de Casos e Controles , Feminino , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Degeneração Macular/epidemiologia , Masculino , Pessoa de Meia-Idade , Razão de Chances
7.
Genetics ; 205(2): 919-924, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27879347

RESUMO

Age-related macular degeneration (AMD) is the leading cause of blindness in ageing societies, triggered by both environmental and genetic factors. The strongest genetic signal for AMD with odds ratios of up to 2.8 per adverse allele was found previously over a chromosomal region in 10q26 harboring two genes, ARMS2 and HTRA1, although with little knowledge as to which gene or genetic variation is functionally relevant to AMD pathology. In this study, we analyzed rare recombinant haplotypes in 16,144 AMD cases and 17,832 controls from the International AMD Genomics Consortium and identified variants in ARMS2 but not HTRA1 to exclusively carry the AMD risk with P-values between 1.0 × 10-773 and 6.7 × 10-5 This now allows prioritization of the gene of interest for subsequent functional studies.


Assuntos
Haplótipos , Degeneração Macular/genética , Proteínas/genética , Serina Endopeptidases/genética , Estudos de Casos e Controles , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Humanos , Polimorfismo Genético
8.
Clin Ophthalmol ; 8: 143-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24403817

RESUMO

BACKGROUND: The purpose of this study was to investigate the association between ARMS2/HTRA1, CFH, and C3 gene polymorphisms and retinal angiomatous proliferation (RAP), an infrequent and severe form of exudative age-related macular degeneration, which is characterized by intraretinal neovascularization. METHODS: Diagnosis of RAP was based on fundus photographs, images of fluorescein and indocyanine green angiographies, and optical coherence tomography findings. Six single nucleotide polymorphisms (SNPs), A69S (rs10490924) in ARMS2, rs11200638 in HTRA1, I62V (rs800292) in CFH, Y402H (rs1061170) in CFH, R80G (rs2230199) in C3, and rs2241394 in C3, were genotyped in eight Japanese patients with RAP. RESULTS: The two SNPs in the ARMS2/HTRA1 were in complete linkage disequilibrium. The frequency of the risk T allele in ARMS2 (the risk A allele in HTRA1) was 93.8% in the RAP patients. The frequency of homozygosity for the risk genotype TT of ARMS2 (the risk genotype AA of HTRA1) was 87.5%. The frequency of the non-risk allele (A) of I62V was 100%. The frequencies of risk alleles of Y402H, R80G, and rs2241394 were 12.5%, 0%, and 18.8%, respectively. CONCLUSION: Our results suggest that the risk alleles of the ARMS2/HTRA1 SNPs may be associated with development of RAP and play a major role in the pathogenesis of intraretinal angiogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA