Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Cell ; 40(9): 1060-1069.e7, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36099883

RESUMO

Immunotargeting of tumor-specific antigens is a powerful therapeutic strategy. Immunotherapies directed at MHC-I complexes have expanded the scope of antigens and enabled the direct targeting of intracellular oncoproteins at the cell surface. We asked whether covalent drugs that alkylate mutated residues on oncoproteins could act as haptens to generate unique MHC-I-restricted neoantigens. Here, we report that KRAS G12C mutant cells treated with the covalent inhibitor ARS1620 present ARS1620-modified peptides in MHC-I complexes. Using ARS1620-specific antibodies identified by phage display, we show that these haptenated MHC-I complexes can serve as tumor-specific neoantigens and that a bispecific T cell engager construct based on a hapten-specific antibody elicits a cytotoxic T cell response against KRAS G12C cells, including those resistant to direct KRAS G12C inhibition. With multiple K-RAS G12C inhibitors in clinical use or undergoing clinical trials, our results present a strategy to enhance their efficacy and overcome the rapidly arising tumor resistance.


Assuntos
Antineoplásicos , Antígenos de Histocompatibilidade Classe I/imunologia , Neoplasias , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Anticorpos , Antineoplásicos/farmacologia , Humanos , Fatores Imunológicos , Imunoterapia , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética
2.
Front Pharmacol ; 13: 843829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281897

RESUMO

The KRAS-G12C inhibitor ARS-1620, is a novel specific covalent inhibitor of KRAS-G12C, possessing a strong targeting inhibitory effect on KRAS-G12C mutant tumors. Overexpression of ATP-binding cassette super-family B member 1 (ABCB1/P-gp) is one of the pivotal factors contributing to multidrug resistance (MDR), and its association with KRAS mutations has been extensively studied. However, the investigations about the connection between the inhibitors of mutant KRAS and the level of ABC transporters are still missing. In this study, we investigated the potential drug resistance mechanism of ARS-1620 associated with ABCB1. The desensitization effect of ARS-1620 was remarkably intensified in both drug-induced ABCB1-overexpressing cancer cells and ABCB1-transfected cells as confirmed by cell viability assay results. This desensitization of ARS-1620 could be completely reversed when co-treated with an ABCB1 reversal agent. In mechanism-based studies, [3H] -paclitaxel accumulation assay revealed that ARS-1620 could be competitively pumped out by ABCB1. Additionally, it was found that ARS-1620 remarkably stimulated ATPase activity of ABCB1, and the HPLC drug accumulation assay displayed that ARS-1620 was actively transported out of ABCB1-overexpressing cancer cells. ARS-1620 acquired a high docking score in computer molecular docking analysis, implying ARS-1620 could intensely interact with ABCB1 transporters. Taken all together, these data indicated that ARS-1620 is a substrate for ABCB1, and the potential influence of ARS-1620-related cancer therapy on ABCB1-overexpressing cancer cells should be considered in future clinical applications.

3.
Mol Imaging Biol ; 24(3): 498-509, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34905147

RESUMO

PURPOSE: Macropinocytosis serves as a highly conserved endocytotic process that has recently been shown as a critical mechanism by which RAS-transformed cells transport extracellular protein into intracellular amino acid pathways to support their unique metabolic needs. We developed NIR fluorescently labeled molecular imaging probes to monitor macropinocytosis-mediated uptake of albumin in a K-RAS-dependent manner. PROCEDURES: Using western blot analysis, immunofluorescence, and flow cytometry, albumin retention was characterized in vitro across several RAS-activated lung and pancreatic cancer cell lines. AF790-albumin was synthesized and administered to mice bearing K-RAS mutant xenograft tumors of H460 (K-RAS p.Q61H) and H358 (K-RAS p.G12C) non-small cell lung cancers on each flank. Mice were treated daily with 2 mg/kg of ARS-1620, a targeted RAS p.G12C inhibitor, for 2 days and imaged following each treatment. Subsequently, the mice were then treated daily with 10 mg/kg of amiloride, a general inhibitor of macropinocytosis, for 2 days and imaged. Intratumoral distribution of AF790-albumin was assessed in vivo using near-infrared (NIR) fluorescence imaging. RESULTS: Albumin retention was observed as a function of K-RAS activity and macropinocytosis across several lung and pancreatic cancer cell lines. We documented that ARS-1620-induced inhibition of K-RAS activity or amiloride-mediated inhibition of macropinocytosis significantly reduced albumin uptake. Tumor retention in vivo of AF790-albumin was both RAS inhibition-dependent as well as abrogated by inhibition of macropinocytosis. CONCLUSIONS: These data provide a novel approach using NIR-labeled human serum albumin to identify and monitor RAS-driven tumors as well as evaluate the on-target efficacy in vivo of inhibitors, such as ARS-1620.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Neoplasias Pancreáticas , Albuminas/metabolismo , Albuminas/farmacologia , Amilorida , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Dextranos , Humanos , Camundongos , Mutação/genética , Imagem Óptica , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Piperazinas , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinazolinas , Neoplasias Pancreáticas
4.
Pharmacol Res ; 139: 503-511, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366101

RESUMO

RAS has long been viewed as undruggable due to its lack of deep pockets for binding of small molecule inhibitors. However, recent successes in the development of direct RAS inhibitors suggest that the goal of pharmacological inhibition of RAS in patients may soon be realized. This review will discuss the role of RAS in cancer, the approaches used to develop direct RAS inhibitors, and highlight recent successes in the development of novel RAS inhibitory compounds that target different aspects of RAS biochemistry. In particular, this review will discuss the different properties of RAS that have been targeted by various inhibitors including membrane localization, the different activation states of RAS, effector binding, and nucleotide exchange. In addition, this review will highlight the recent success with mutation-specific inhibitors that exploit the unique biochemistry of the RAS(G12C) mutant. Although this mutation in KRAS accounts for 11% of all KRAS mutations in cancer, it is the most prominent KRAS mutant in lung cancer suggesting that G12C-specific inhibitors may provide a new approach for treating the subset of lung cancer patients harboring this mutant allele. Finally, this review will discuss the involvement of dimerization in RAS function and highlight new approaches to inhibit RAS by specifically interfering with RAS:RAS interaction.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Proteínas ras/antagonistas & inibidores , Animais , Membrana Celular/metabolismo , Humanos , Neoplasias/metabolismo , Multimerização Proteica , Proteínas ras/química , Proteínas ras/metabolismo
5.
Cell ; 172(3): 578-589.e17, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29373830

RESUMO

KRASG12C was recently identified to be potentially druggable by allele-specific covalent targeting of Cys-12 in vicinity to an inducible allosteric switch II pocket (S-IIP). Success of this approach requires active cycling of KRASG12C between its active-GTP and inactive-GDP conformations as accessibility of the S-IIP is restricted only to the GDP-bound state. This strategy proved feasible for inhibiting mutant KRAS in vitro; however, it is uncertain whether this approach would translate to in vivo. Here, we describe structure-based design and identification of ARS-1620, a covalent compound with high potency and selectivity for KRASG12C. ARS-1620 achieves rapid and sustained in vivo target occupancy to induce tumor regression. We use ARS-1620 to dissect oncogenic KRAS dependency and demonstrate that monolayer culture formats significantly underestimate KRAS dependency in vivo. This study provides in vivo evidence that mutant KRAS can be selectively targeted and reveals ARS-1620 as representing a new generation of KRASG12C-specific inhibitors with promising therapeutic potential.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Quinazolinas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Células HCT116 , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Mutação , Piperazinas/química , Piperazinas/uso terapêutico , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinazolinas/química , Quinazolinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA