Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
1.
Cell Commun Signal ; 22(1): 388, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095886

RESUMO

Acidic microenvironments is a cancer progression driver, unclear core mechanism hinders the discovery of new diagnostic or therapeutic targets. ASIC3 is an extracellular proton sensor and acid-sensitive, but its role in acidic tumor microenvironment of colorectal cancer is not reported. Functional analysis data show that colorectal cancer cells respond to specific concentration of lactate to accelerate invasion and metastasis, and ASIC3 is the main actor in this process. Mechanism reveal de novo lipid synthesis is a regulatory process of ASIC3, down-regulated ASIC3 increases and interacts with ACC1 and SCD1, which are key enzymes in de novo lipid synthesis pathway, this interaction results in increased unsaturated fatty acids, which in turn induce EMT to promote metastasis, and overexpression of ASIC3 reduces acidic TME-enhanced colorectal cancer metastasis. Clinical samples of colorectal cancer also exhibit decreased ASIC3 expression, and low ASIC3 expression is associated with metastasis and stage of colorectal cancer. This study is the first to identify the role of the ASIC3-ACC1/SCD1 axis in acid-enhanced colorectal cancer metastasis. The expression pattern of ASIC3 in colorectal cancer differs significantly from that in other types of cancers, ASIC3 may serve as a novel and reliable marker for acidic microenvironmental in colorectal cancer, and potentially a therapeutic target.


Assuntos
Canais Iônicos Sensíveis a Ácido , Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Ácido Láctico , Metástase Neoplásica , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Ácido Láctico/metabolismo , Linhagem Celular Tumoral , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Microambiente Tumoral , Animais , Lipídeos , Regulação Neoplásica da Expressão Gênica
2.
Entropy (Basel) ; 26(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38920471

RESUMO

In digital baseband processing, the forward error correction (FEC) unit belongs to the most demanding components in terms of computational complexity and power consumption. Hence, efficient implementation of FEC decoders is crucial for next-generation mobile broadband standards and an ongoing research topic. Quantization has a significant impact on the decoder area, power consumption and throughput. Thus, lower bit widths are preferred for efficient implementations but degrade the error correction capability. To address this issue, a non-uniform quantization based on the Information Bottleneck (IB) method is proposed that enables a low bit width while maintaining the essential information. Many investigations on the use of the IB method for Low-density parity-check code) LDPC decoders exist and have shown its advantages from an implementation perspective. However, for polar code decoder implementations, there exists only one publication that is not based on the state-of-the-art Fast Simplified Successive-Cancellation (Fast-SSC) decoding algorithm, and only synthesis implementation results without energy estimation are shown. In contrast, our paper presents several optimized Fast-SSC polar code decoder implementations using IB-based quantization with placement and routing results using advanced 12 nm FinFET technology. Gains of up to 16% in area and 13% in energy efficiency are achieved with IB-based quantization at a Frame Error Rate (FER) of 10-7 and a polar code of N=1024,R=0.5 compared to state-of-the-art decoders.

3.
Cell Mol Life Sci ; 81(1): 266, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880807

RESUMO

Acid-sensing ion channels (ASICs) are trimeric proton-gated cation channels that play a role in neurotransmission and pain sensation. The snake venom-derived peptides, mambalgins, exhibit potent analgesic effects in rodents by inhibiting central ASIC1a and peripheral ASIC1b. Despite their distinct species- and subtype-dependent pharmacology, previous structure-function studies have focussed on the mambalgin interaction with ASIC1a. Currently, the specific channel residues responsible for this pharmacological profile, and the mambalgin pharmacophore at ASIC1b remain unknown. Here we identify non-conserved residues at the ASIC1 subunit interface that drive differences in the mambalgin pharmacology from rat ASIC1a to ASIC1b, some of which likely do not make peptide binding interactions. Additionally, an amino acid variation below the core binding site explains potency differences between rat and human ASIC1. Two regions within the palm domain, which contribute to subtype-dependent effects for mambalgins, play key roles in ASIC gating, consistent with subtype-specific differences in the peptides mechanism. Lastly, there is a shared primary mambalgin pharmacophore for ASIC1a and ASIC1b activity, with certain peripheral peptide residues showing variant-specific significance for potency. Through our broad mutagenesis studies across various species and subtype variants, we gain a more comprehensive understanding of the pharmacophore and the intricate molecular interactions that underlie ligand specificity. These insights pave the way for the development of more potent and targeted peptide analogues required to advance our understating of human ASIC1 function and its role in disease.


Assuntos
Canais Iônicos Sensíveis a Ácido , Venenos Elapídicos , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/química , Animais , Humanos , Ratos , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Venenos Elapídicos/farmacologia , Venenos Elapídicos/genética , Sequência de Aminoácidos , Sítios de Ligação , Modelos Moleculares , Xenopus laevis , Peptídeos
4.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732942

RESUMO

The article presents the analysis, design, and low-cost implementation of application-specific AD converters for M-sequence-based UWB applications to minimize and integrate the whole UWB sensor system. Therefore, the main goal of this article is to integrate the AD converter's own design with the UWB analog part into the system-in-package (SiP) or directly into the system-on-a-chip (SoC), which cannot be implemented with commercial AD converters, or which would be disproportionately expensive. Based on the current and used UWB sensor system requirements, to achieve the maximum possible bandwidth in the proposed semiconductor technology, a parallel converter structure is designed and presented in this article. Moreover, 5-bit and 4-bit parallel flash AD converters were initially designed as part of the research and design of UWB M-sequence radar systems for specific applications, and are briefly introduced in this article. The requirements of the newly proposed specific UWB M-sequence systems were established based on the knowledge gained from these initial designs. After thorough testing and evaluation of the concept of the early proposed AD converters for these specific UWB M-sequence systems, the design of a new AD converter was initiated. After confirming sufficient characteristics based on the requirements of UWB M-sequence systems for specific applications, a 7-bit AD converter in low-cost 0.35 µm SiGe BiCMOS technology from AMS was designed, fabricated, and presented in this article. The proposed 7-bit AD converter achieves the following parameters: ENOB = 6.4 bits, SINAD = 38 dB, SFDR = 42 dBc, INL = ±2-bit LSB, and DNL = ±1.5 LSB. The maximum sampling rate reaches 1.4 Gs/s, the power consumption at 20 Ms/s is 1050 mW, and at 1.4 Gs/s is 1290 mW, with a power supply of -3.3 V.

6.
Chem Biodivers ; : e202400786, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777789

RESUMO

This study carried out to investigate the anti-inflammatory and antinociceptive effect of tropane alkaloid (EB7) isolated from E. bezerrae. It evaluated the toxicity and possible involvement of ion channels in the antinociceptive effect of EB7, as well as its anti-inflammatory effect in adult zebrafish (Zfa). Docking studies with EB7 and COX-1 and 2 were also performed. The tested doses of EB7 (4, 20 and 40 mg/kg) did not show any toxic effect on Zfa during the 96h of analysis (LD50>40 mg/kg). They did not produce any alteration in the locomotor behavior of the animals. Furthermore, EB7 showed promising pharmacological effects as it prevented the nociceptive behavior induced by hypertonic saline, capsaicin, formalin and acid saline. EB7 had its analgesic effect blocked by amiloride involving the neuromodulation of ASICs in Zfa. In evaluating the anti-inflammatory activity, the edema induced by κ-carrageenan 3.5 % was reduced by the dose of 40 mg/kg of EB7 observed after the fourth hour of analysis, indicating an effect similar to that of ibuprofen. Molecular docking results indicated that EB7 exhibited better affinity energy when compared to ibuprofen control against the two evaluated targets binding at different sites in the cocrystallized COX-1 and 2 inhibitors.

7.
Eur J Pharmacol ; 976: 176667, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38795754

RESUMO

Migraine, a debilitating neurological condition, significantly affects patients' quality of life. Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPAR-α) agonist approved for managing dyslipidemia, has shown promise in treating neurological disorders. Therefore, this study aims to investigate the protective effects of fenofibrate against nitroglycerin (NTG)-induced chronic migraine in rats. Migraine was induced in rats by administering five intermittent doses of NTG (10 mg/kg, i. p.) on days 1, 3, 5, 7, and 9. Rats were treated with either topiramate (80 mg/kg/day, p. o.), a standard drug, or fenofibrate (100 mg/kg/day, p. o.) from day 1-10. Fenofibrate significantly improved mechanical and thermal hypersensitivity, photophobia, and head grooming compared to topiramate. These effects were associated with reduced serum levels of nitric oxide (NO), calcitonin gene-related peptide (CGRP), and pituitary adenylate cyclase-activating polypeptide (PACAP). Furthermore, fenofibrate down-regulated c-Fos expression in the medulla and medullary pro-inflammatory cytokine contents. Additionally, fenofibrate attenuated NTG-induced histopathological changes in the trigeminal ganglia and trigeminal nucleus caudalis. These effects were associated with the inhibition of CGRP/p-CREB/purinergic 2X receptor 3 (P2X3) and nerve growth factor (NGF)/protein kinase C (PKC)/acid-sensing ion channel 3 (ASIC3) signaling pathways. This study demonstrates that fenofibrate attenuated NTG-induced migraine-like signs in rats. These effects were partially mediated through the inhibition of CGRP/p-CREB/P2X3 and NGF/PKC/ASIC3 signaling pathways. The present study supports the idea that fenofibrate could be an effective candidate for treating migraine headache without significant adverse effects. Future studies should explore its clinical applicability.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Fenofibrato , Transtornos de Enxaqueca , Fator de Crescimento Neural , Nitroglicerina , Proteína Quinase C , Receptores Purinérgicos P2X3 , Transdução de Sinais , Animais , Nitroglicerina/farmacologia , Nitroglicerina/toxicidade , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/metabolismo , Masculino , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Ratos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína Quinase C/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Fator de Crescimento Neural/metabolismo , Óxido Nítrico/metabolismo , Ratos Sprague-Dawley , Comportamento Animal/efeitos dos fármacos
8.
Phys Med Biol ; 69(11)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38657637

RESUMO

Objective.The efficient usage of prompt photons like Cherenkov emission is of great interest for the design of the next generation, cost-effective, and ultra-high-sensitivity time-of-flight positron emission tomography (TOF-PET) scanners. With custom, high power consuming, readout electronics and fast digitization the prospect of sub-300 ps FWHM with PET-sized BGO crystals have been shown. However, these results are not scalable to a full system consisting of thousands of detector elements.Approach.To pave the way toward a full TOF-PET scanner, we examine the performance of the FastIC ASIC with Cherenkov-emitting scintillators (BGO), together with one of the most recent SiPM detector developments based on metal trenching from FBK. The FastIC is a highly configurable ASIC with 8 input channels, a power consumption of 12 mW ch-1and excellent linearity on the energy measurement. To put the timing performance of the FastIC into perspective, comparison measurements with high-power consuming readout electronics are performed.Main results.We achieve a best CTR FWHM of 330 ps for 2 × 2 × 3 mm3and 490 ps for 2 × 2 × 20 mm3BGO crystals with the FastIC. In addition, using 20 mm long LSO:Ce:Ca crystals, CTR values of 129 ps FWHM have been measured with the FastIC, only slightly worse to the state-of-the-art of 95 ps obtained with discrete HF electronics.Significance.For the first time, the timing capability of BGO with a scalable ASIC has been evaluated. The findings underscore the potential of the FastIC ASIC in the development of cost-effective TOF-PET scanners with excellent timing characteristics.


Assuntos
Tomografia por Emissão de Pósitrons , Tomografia por Emissão de Pósitrons/instrumentação , Fatores de Tempo , Processamento de Imagem Assistida por Computador/métodos
9.
Sensors (Basel) ; 24(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38610354

RESUMO

Amplification of wideband high-frequency and microwave signals is a fundamental element within every high-frequency circuit and device. Ultra-wideband (UWB) sensor applications use circuits designed for their specific application. The article presents the analysis, design, and implementation of ultra-wideband differential amplifiers for M-sequence-based UWB applications. The designed differential amplifiers are based on the Cherry-Hooper structure and are implemented in a low-cost 0.35 µm SiGe BiCMOS semiconductor process. The article presents an analysis and realization of several designs focused on different modifications of the Cherry-Hooper amplifier structure. The proposed amplifier modifications are focused on achieving the best result in one main parameter's performance. Amplifier designs modified by capacitive peaking to achieve the largest bandwidth, amplifiers with the lowest possible noise figure, and designs focused on achieving the highest common mode rejection ratio (CMRR) are described. The layout of the differential amplifiers was created and the chip was manufactured and wire-bonded to the QFN package. For evaluation purposes, a high-frequency PCB board was designed. Schematic simulations, post-layout simulations, and measurements of the individual parameters of the designed amplifiers were performed. The designed and fabricated ultra-wideband differential amplifiers have the following parameters: a supply current of 100-160 mA at -3.3 V or 3.3 V, bandwidth from 6 to 12 GHz, gain (at 1 GHz) from 12 to 16 dB, noise figure from 7 to 13 dB, and a common mode rejection ratio of up to 70 dB.

10.
Animals (Basel) ; 14(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612263

RESUMO

In this study, the expression and implication of acid-sensing ion channels 2 and 4 (ASIC2 and ASIC4) in the gonadal sex differentiation of Dicentrarchus labrax (D. labrax), subjected to increasing water temperatures during gonadal development, were evaluated. Two groups were selected: a control group (CG), in which the average water temperature was maintained at 15 °C and increased to 20 °C in 20 days until weaning; and an experimental group (EG), in which the water temperature was retained at 15 °C for 60 days; thereafter, the temperature was increased daily by 0.5 °C until it reached 20 °C up to the weaning time. Ten fish from the CG and 13 fish from the EG were sampled randomly on the 335th day after hatching (dph). A higher percentage of gonad differentiation in ovaries rather than in testes was observed in the EG compared to the CG (p = 0.01). ASIC2 and ASIC4 were detected for the first time in D. labrax ovaries by indirect immunofluorescence. Both ASIC2 and ASIC4 were expressed in previtellogenic oocytes of ovaries and in scattered cells within some testes, and were most likely intratesticular previtellogenic oocytes in both the CG and EG groups. The CG group showed a higher expression of ASIC4 than the EG cohort (p < 0.05). The results gathered in this study revealed the capacity of water temperature to influence both gonadal differentiation and growth in this gonochoristic fish species, and suggests the possible role of ASIC2 and ASIC4 in gonad differentiation and gamete development in D. labrax.

11.
12.
Biomedicines ; 12(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38540291

RESUMO

Oxeiptosis is a reactive oxygen species (ROS)-induced pathway of cell death. The involvement of circular RNAs (circRNAs) has been confirmed in the incidence and progression of intervertebral disc degeneration (IVDD). However, whether oxeiptosis occurs in IVDD and how circRNAs regulate oxeiptosis is still unclear. In this study, we discovered that oxeiptosis could be induced in nucleus pulposus cells (NPCs), and circFOXO3 was significantly upregulated after oxeiptosis induction. Transfection using circFOXO3 small interfering RNA (siRNA) significantly inhibited oxeiptosis in NPCs. Mechanistically, circFOXO3 upregulated acid-sensing ion channel subunit 1 (ASIC1) expression by functioning as a molecular sponge for miR-185-3p and miR-939-5p. Subsequent rescue experiments validated that circFOXO3 could regulate oxeiptosis in NPCs via the miR-185-3p/miR-939-5p-ASIC1 axis. Further research on ASIC1 functions indicated that this regulation was achieved by affecting the Calcium ion (Ca2+) influx mediated by ASIC1. A mouse IVDD model was established, and silencing circFOXO3 in vivo was found to inhibit IVDD development and the activation of the oxeiptosis-related pathway. Overall, circFOXO3 is one of the factors contributing to the progression of IVDD by mediating oxeiptosis.

13.
Materials (Basel) ; 17(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38473606

RESUMO

Amorphous silicon carbide (a-SiC) is a wide-bandgap semiconductor with high robustness and biocompatibility, making it a promising material for applications in biomedical device passivation. a-SiC thin film deposition has been a subject of research for several decades with a variety of approaches investigated to achieve optimal properties for multiple applications, with an emphasis on properties relevant to biomedical devices in the past decade. This review summarizes the results of many optimization studies, identifying strategies that have been used to achieve desirable film properties and discussing the proposed physical interpretations. In addition, divergent results from studies are contrasted, with attempts to reconcile the results, while areas of uncertainty are highlighted.

14.
Front Neurosci ; 18: 1340164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550560

RESUMO

Implantable neuromodulation devices have significantly advanced treatments for neurological disorders such as Parkinson's disease, epilepsy, and depression. Traditional open-loop devices like deep brain stimulation (DBS) and spinal cord stimulators (SCS) often lead to overstimulation and lack adaptive precision, raising safety and side-effect concerns. Next-generation closed-loop systems offer real-time monitoring and on-device diagnostics for responsive stimulation, presenting a significant advancement for treating a range of brain diseases. However, the high false alarm rates of current closed-loop technologies limit their efficacy and increase energy consumption due to unnecessary stimulations. In this study, we introduce an artificial intelligence-integrated circuit co-design that targets these issues and using an online demonstration system for closed-loop seizure prediction to showcase its effectiveness. Firstly, two neural network models are obtained with neural-network search and quantization strategies. A binary neural network is optimized for minimal computation with high sensitivity and a convolutional neural network with a false alarm rate as low as 0.1/h for false alarm rejection. Then, a dedicated low-power processor is fabricated in 55 nm technology to implement the two models. With reconfigurable design and event-driven processing feature the resulting application-specific integrated circuit (ASIC) occupies only 5mm2 silicon area and the average power consumption is 142 µW. The proposed solution achieves a significant reduction in both false alarm rates and power consumption when benchmarked against state-of-the-art counterparts.

15.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338690

RESUMO

Tafalgin (Taf) is a tetrapeptide opioid used in clinical practice in Russia as an analgesic drug for subcutaneous administration as a solution (4 mg/mL; concentration of 9 mM). We found that the acid-sensing ion channels (ASICs) are another molecular target for this molecule. ASICs are proton-gated sodium channels that mediate nociception in the peripheral nervous system and contribute to fear and learning in the central nervous system. Using electrophysiological methods, we demonstrated that Taf could increase the integral current through heterologically expressed ASIC with half-maximal effective concentration values of 0.09 mM and 0.3 mM for rat and human ASIC3, respectively, and 1 mM for ASIC1a. The molecular mechanism of Taf action was shown to be binding to the channel in the resting state and slowing down the rate of desensitization. Taf did not compete for binding sites with both protons and ASIC3 antagonists, such as APETx2 and amiloride (Ami). Moreover, Taf and Ami together caused an unusual synergistic effect, which was manifested itself as the development of a pronounced second desensitizing component. Thus, the ability of Taf to act as a positive allosteric modulator of these channels could potentially cause promiscuous effects in clinical practice. This fact must be considered in patients' treatment.


Assuntos
Canais Iônicos Sensíveis a Ácido , Analgésicos Opioides , Ratos , Humanos , Animais , Canais Iônicos Sensíveis a Ácido/metabolismo , Analgésicos Opioides/farmacologia , Amilorida/farmacologia , Prótons , Sítios de Ligação
16.
J Biomech ; 163: 111938, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38217980

RESUMO

Morphological changes of the nucleus pulposus (NP) cells occur concomitantly as part of the intervertebral disc (IVD) degeneration and excessive mechanical loading has been speculated as a significant key factor for contributing to such morphological changes. Therefore, we hypothesize that stress exerted on NP cells can cause a deformity of nucleus in response. The changes of cell morphology is observed in degenerative nucleus pulposus. One of the reasons for degeneration of NP is due to overloading of NP especially in the obese population. So the nucleus deformity caused by stress/force is of our study interest. To delineate the effects and role of mechanical stress, we developed a 3D assay using hydrogel cultures with a circular hole generated with needle indentation to simulate a local stress concentration along the edge of the hole. A stressed zone, encompassing 100 µm of range from the circular edge, is defined based on stress concentration calculation to enable quantitative analysis against the control zone. Our results demonstrated that the circular hole produces stress-induced morphological changes in NP cells. The tangential elongation of NP cells and their nucleus shape changes in the stressed zone are significantly increased compared to the non-stressed control zone. It is proposed that the cell elongation is a direct response to elevated stress within the stressed zone. Subsequently we found the stress induced morphological changes of the NP cells can be significantly reduced by inhibiting ASIC3. This suggests ASIC3 plays an important role of play in mechano-signaling of NP cells.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Núcleo Pulposo/fisiologia , Células Cultivadas , Canais Iônicos Sensíveis a Ácido
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166927, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37907140

RESUMO

Cytokines, particularly IL-6, play a crucial role in modulating immune responses in the central nervous system (CNS). Elevated IL-6 levels have been observed in neuroinflammatory conditions, as well as in the sera and brains of patients with neurodegenerative diseases such as Parkinson's, Huntington's, Multiple Sclerosis, and Alzheimer's. Additionally, alterations in regional brain pH have been noted in these conditions. Acid-sensing ion channels (ASICs), including ASIC1a, activated by low pH levels, are highly abundant in the CNS and have recently been associated with various neurological disorders. Our study examined the impact of IL-6 on ASIC1a channels in cell cultures, demonstrating IL-6-induced the redistribution of cytosolic ASIC1a channels to the cell membrane. This redistribution was accompanied by increased ASIC1a current amplitude upon activation, as well as elevated levels of phosphorylated CaMKII and ERK kinases. Additionally, we observed posttranslational modifications on the ASIC1a channel itself. These findings provide insight into a potential link between inflammatory processes and neurodegenerative mechanisms, highlighting ASIC1a channels as promising therapeutic targets in these conditions.


Assuntos
Interleucina-6 , Doenças Neuroinflamatórias , Humanos , Canais Iônicos Sensíveis a Ácido/genética
18.
Eur J Pharmacol ; 963: 176173, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37918499

RESUMO

BACKGROUND: The use of morphine in clinical medicine is severely constrained by tolerance. Therefore, it is essential to examine pharmacological therapies that suppress the development of morphine tolerance. Amiloride suppressed the expression of inflammatory cytokines by inhibiting microglial activation. Microglia play a crucial role in the establishment of morphine tolerance. Thus, we anticipated that amiloride might suppress the development of morphine tolerance. During this investigation, we assessed the impact of amiloride on mouse morphine tolerance. METHODS: Mice received morphine (10 mg/kg, s.c.) twice daily with intrathecally injected amiloride (0.3 µg/5 µl, 1 µg/5 µl, and 3 µg/5 µl) for nine continuous days. To assess morphine tolerance, mice underwent the tail-flick and hot plate tests. BV-2 cells were used to investigate the mechanism of amiloride. By using Western blotting, real-time PCR, and immunofluorescence labeling methods, the levels of acid-sensing ion channels (ASICs), nuclear factor kappa B (NF-kB) p65, p38 mitogen-activated protein kinase (MAPK) proteins, and neuroinflammation-related cytokines were determined. RESULTS: The levels of ASIC3 in the spinal cord were considerably increased after long-term morphine administration. Amiloride was found to delay the development of tolerance to chronic morphine assessed via tail-flick and hot plate tests. Amiloride reduced microglial activation and downregulated the cytokines IL-1ß and TNF-a by inhibiting ASIC3 in response to morphine. Furthermore, amiloride reduced p38 MAPK phosphorylation and inhibited NF-κB expression. CONCLUSIONS: Amiloride effectively reduces chronic morphine tolerance by suppressing microglial activation caused by morphine by inhibiting ASIC3.


Assuntos
Analgésicos Opioides , Morfina , Camundongos , Animais , Analgésicos Opioides/farmacologia , Amilorida/farmacologia , Amilorida/uso terapêutico , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Microglia , Citocinas/metabolismo , Medula Espinal
19.
Soc Stud Sci ; 54(1): 3-29, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37427772

RESUMO

This paper investigates the role of the materiality of computation in two domains: blockchain technologies and artificial intelligence (AI). Although historically designed as parallel computing accelerators for image rendering and videogames, graphics processing units (GPUs) have been instrumental in the explosion of both cryptoasset mining and machine learning models. The political economy associated with video games and Bitcoin and Ethereum mining provided a staggering growth in performance and energy efficiency and this, in turn, fostered a change in the epistemological understanding of AI: from rules-based or symbolic AI towards the matrix multiplications underpinning connectionism, machine learning and neural nets. Combining a material political economy of markets with a material epistemology of science, the article shows that there is no clear-cut division between software and hardware, between instructions and tools, and between frameworks of thought and the material and economic conditions of possibility of thought itself. As the microchip shortage and the growing geopolitical relevance of the hardware and semiconductor supply chain come to the fore, the paper invites social scientists to engage more closely with the materialities and hardware architectures of 'virtual' algorithms and software.


Assuntos
Inteligência Artificial , Conhecimento , Software , Algoritmos , Computadores
20.
Environ Toxicol ; 39(2): 991-1000, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994395

RESUMO

Breast cancer is the most common cancer in the world, with metastasis being one of the leading causes of death among patients. The acidic environment of breast cancer tissue promotes tumor cell invasion and migration by inducing epithelial-mesenchymal transformation (EMT) in tumor cells, but the exact mechanisms are not yet fully understood. This study investigated the expression of acid-sensitive ion channel 1a (ASIC1a) in breast cancer tissue samples and explored the mechanisms by which ASIC1a mediates the promotion of EMT in breast cancer cells in an acidic microenvironment through in vivo and in vitro experiments. The results showed that first, the expression of ASIC1a was significantly upregulated in breast cancer tissue and was correlated with the TNM (tumor node metastasis) staging of breast cancer. Furthermore, ASIC1a expression was higher in tumors with lymph node metastasis than in those without. Second, the acidic microenvironment promoted [Ca2+ ]i influx via ASIC1a activation and regulated the expression of ß-catenin, Vimentin, and E-cadherin, thus promoting EMT in breast cancer cells. Inhibition of ASIC1a activation with PcTx-1 could suppress EMT in breast cancer cells. Finally, in vivo studies also showed that inhibition of ASIC1a could reduce breast cancer metastasis, invasion, and EMT. This study suggests that ASIC1a expression is associated with breast cancer staging and metastasis. Therefore, ASIC1a may become a new breast cancer biomarker, and the elucidation of the mechanism by which ASIC1a promotes EMT in breast cancer under acidic microenvironments provides evidence for the use of ASIC1a as a molecular target for breast cancer treatment.


Assuntos
Neoplasias da Mama , beta Catenina , Humanos , Feminino , beta Catenina/metabolismo , Neoplasias da Mama/metabolismo , Biomarcadores Tumorais , Via de Sinalização Wnt , Canais Iônicos/metabolismo , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Movimento Celular , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA