Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
1.
Acta Pharm Sin B ; 14(7): 2885-2900, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027251

RESUMO

Inherited genetic disorders of the liver pose a significant public health burden. Liver transplantation is often limited by the availability of donor livers and the exorbitant costs of immunosuppressive therapy. To overcome these limitations, nucleic acid therapy provides a hopeful alternative that enables gene repair, gene supplementation, and gene silencing with suitable vectors. Though viral vectors are the most efficient and preferred for gene therapy, pre-existing immunity debilitating immune responses limit their use. As a potential alternative, lipid nanoparticle-mediated vectors are being explored to deliver multiple nucleic acid forms, including pDNA, mRNA, siRNA, and proteins. Herein, we discuss the broader applications of lipid nanoparticles, from protein replacement therapy to restoring the disease mechanism through nucleic acid delivery and gene editing, as well as multiple preclinical and clinical studies as a potential alternative to liver transplantation.

2.
Nucleic Acid Ther ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046946

RESUMO

Antisense oligonucleotides (ASO) are very promising drugs for numerous diseases including neuromuscular disorders such as Duchenne muscular dystrophy (DMD). Several ASO drugs have already been approved by the US Food and Drug Administration for DMD and global efforts are still ongoing to improve further their potency, notably by developing new delivery systems or alternative chemistries. In this context, a recent study investigated the potential of different chemically modified ASO to induce exon-skipping in mouse models of DMD. Importantly, the authors reported a strong discrepancy between exon-skipping and protein restoration levels, which was mainly owing to the high affinity of locked nucleic acid (LNA) modifications to the target RNA, thereby interfering with the amplification of the unskipped product and resulting in artificial overamplification of the exon-skipped product. These findings urged us to verify whether a similar phenomenon could occur with tricyclo-DNA (tcDNA)-ASO that also display high-affinity properties to the target RNA. We thus ran a series of control experiments and demonstrate here that exon-skipping levels are not overestimated owing to an interference of tcDNA-ASO with the unskipped product in contrast to what was observed with LNA-containing ASO.

3.
Cardiovasc Res ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970537

RESUMO

Nucleic acid-based therapies are being rapidly developed for prevention and management of cardiovascular diseases (CVD). Remarkable advancements have been achieved in the delivery, safety, and effectiveness of these therapeutics in the past decade. These therapies can also modulate therapeutic targets that cannot be sufficiently addressed using traditional drugs or antibodies. Among the nucleic acid-targeted therapeutics under development for CVD prevention are RNA-targeted approaches, including antisense oligonucleotides (ASO), small interfering RNAs (siRNA), and novel genome editing techniques. Genetic studies have identified potential therapeutic targets that are suggested to play a causative role in development and progression of CVD. RNA- and DNA-targeted therapeutics can be particularly well delivered to the liver, where atherogenic lipoproteins and angiotensinogen are produced. Lipoproteins currently targeted include proprotein convertase subtilisin/kexin type 9 (PCSK9), apolipoprotein A (Apo(a)), apolipoprotein C3 (APOC3), angiopoietin-like 3 (ANGPTL3). Several large-scale clinical development programs for nucleic acid-targeted therapies in cardiovascular prevention are under way, which may also be attractive from a therapy adherence point of view, given the long action of these therapeutics. In addition to genome editing, the concept of gene transfer is presently under assessment in preclinical and clinical investigations as a potential approach for addressing LDL-R deficiency. Furthermore, ongoing research is exploring the use of RNA-targeted therapies to treat arterial hypertension by reducing hepatic angiotensinogen (AGT) production. This review summarizes the rapid translation of siRNA and ASO therapeutics as well as gene editing into clinical studies to treat dyslipidemia and arterial hypertension for CVD prevention. It also outlines potential innovative therapeutic options that are likely relevant to the future of cardiovascular medicine.

4.
Animals (Basel) ; 14(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38998081

RESUMO

The areas of the Mount Aso grasslands in Kumamoto, Japan, are the primary location for the breeding of the Kumamoto strain of Japanese Brown cattle (JBRK). Although Aso limonite, deposited by volcanic ash and magma, has been commonly fed to pregnant JBRK in this area, the mechanisms of its salutary effects on pregnant JBRK have not yet been elucidated. Approximately 100 days before the expected day of calf delivery, seven JBRK (four supplemented with limonite and three controls without limonite) were assigned to this study, from which a buccal swab was collected at the highest rumination every 30 days for 90 days. DNA extracted from these swabs was then analyzed using a 16S rRNA gene amplicon sequence analysis. Statistically significant differences between the two groups were discovered through beta-diversity analysis, though results from alpha-diversity analysis were inconclusive. The microbiota identified were classified into six clusters, and three of the main clusters were core-rumen bacteria, primarily cellulose digestion in cluster 1, oral bacteria in cluster 2, and non-core-rumen bacteria in cluster 3. In the limonite group, core-rumen bacteria decreased while non-core-rumen bacteria increased, suggesting that limonite feeding alters rumen microbiota, particularly activation of non-core-rumen microbiota.

5.
Brain ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008620

RESUMO

DNA-based therapeutics have emerged as a revolutionary approach for addressing the treatment gap in rare inherited conditions by targeting the fundamental genetic causes of disease. Charcot-Marie-Tooth (CMT) disease, a group of inherited neuropathies, represents one of the most prevalent Mendelian disease groups in neurology and is characterized by diverse genetic etiology. Axonal forms of CMT, known as CMT2, are caused by dominant mutations in over 30 different genes which lead to degeneration of lower motor neuron axons. Recent advances in antisense oligonucleotide (ASO) therapeutics have shown promise in targeting neurodegenerative disorders. Here we elucidate pathomechanistic changes contributing to variant specific molecular phenotypes in CMT2E, caused by a single nucleotide substitution (p.N98S) in the neurofilament light chain gene (NEFL). We used a patient-derived pluripotent stem cell (iPSC)-induced motor neuron model, which recapitulates several cellular and biomarker phenotypes associated with CMT2E. Using an ASO treatment strategy targeting a heterozygous gain-of-function variant, we aimed to resolve molecular phenotypic changes observed in the CMT2E p.N98S subtype. To determine ASO therapeutic potential, we employed our treatment strategy in iPSC-derived motor neurons and used established as well as novel biomarkers of peripheral nervous system axonal degeneration. Our findings have demonstrated a significant decrease in clinically relevant biomarkers of axonal degeneration, presenting the first clinically viable genetic therapeutic for CMT2E. Similar strategies could be used to develop precision medicine approaches for otherwise untreatable gain of function inherited disorders.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39004268

RESUMO

OBJECTIVE: To determine the influence of coronary anatomy on long-term outcomes of the arterial switch operation (ASO). METHODS: We retrospectively reviewed patients with transposition of the great arteries or Taussig-Bing anomaly who underwent ASO at our institution between 1992 and 2022. The primary endpoint was freedom from a composite of death, transplant, or coronary reintervention. RESULTS: A total of 632 patients (median age: 5.0 days [IQR, 4.0-7.0]) underwent ASO. Coronary anatomy included: usual (n=411, 65%), circumflex from sinus 2 (n=89, 14%), inverted (n=55, 9%), single sinus (n=46, 7%), and intramural (n=31, 5%). Overall operative mortality was 3% (n=16) and highest among intramurals (n=3, 10%), though dropped to 0% in this group in the most recent decade. Median follow-up was 14.5 years [IQR, 6.0-20.3]. Twenty-year freedom from the primary endpoint was 95%±1% for usual anatomy, 99%±1% for circumflex from sinus 2, 90%±4% for inverted, 91%±4% for single sinus, and 80%±9% for intramural (P<0.001). Intramurals had the highest 20-year incidence of coronary reintervention (11%±8%). Cox modeling identified intraoperative coronary revision (HR 20.1, 95% CI:[9.4-53.9], P<0.001), Taussig-Bing anomaly (HR 4.9, 95% CI:[2.2-10.9], P<0.001), and an intramural coronary artery (HR 2.9, 95% CI: [1.0-8.2], P=0.04) to be risk factors for the composite endpoint. CONCLUSIONS: Rare coronary artery variants-particularly intramural-are associated with increased mortality and coronary reinterventions after ASO. A low threshold for unroofing intramurals is likely associated with declining mortality and improved outcomes. Additional investigations are required to determine the long-term fate of the coronary arteries after ASO.

7.
Bioanalysis ; : 1-10, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041663

RESUMO

Background: Antisense oligonucleotides (ASOs) have been conjugated to various moieties, such as peptides, antibodies or Fab regions of antibodies, to enhance their delivery to target tissues. The quantitation of free ASO (ASO payload) is critical to characterize its pharmacokinetics/pharmacodynamics (PK/PD) properties and biodistribution after delivery of the peptide/antibody/Fab ASO conjugates. Results: We developed a hybridization-based LC-MS/MS methodology for quantification of free ASO in tissues in the presence of Fab-ASO and ASO with linker (ASO-linker). Conclusion: The developed method was applied to measure accurately the free ASO concentrations in liver and gastrocnemius in mice that were dosed with Fab-ASO. This methodology has also been applied to free ASO bioanalysis for other antibody-ASO and Fab-ASO conjugates in various tissues and plasma/serum samples.


[Box: see text].

8.
Bioorg Chem ; 150: 107595, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968904

RESUMO

Combined therapies play a key role in the fight against complex pathologies, such as cancer and related drug-resistance issues. This is particularly relevant in targeted therapies where inhibition of the drug target can be overcome by cross-activating complementary pathways. Unfortunately, the drug combinations approved to date -mostly based on small molecules- face several problems such as toxicity effects, which limit their clinical use. To address these issues, we have designed a new class of RNase H-sensitive construct (3ASO) that can be disassembled intracellularly upon cell entry, leading to the simultaneous release of three different therapeutic oligonucleotides (ONs), tackling each of them the mRNA of a different protein. Here, we used Escherichia coli RNase H1 as a model to study an unprecedented mode of recognition and cleavage, that is mainly dictated by the topology of our RNA·DNA-based hybrid construct. As a model system for our technology we have created 3ASO constructs designed to specifically inhibit the expression of HER2, Akt and Hsp27 in HER2+ breast cancer cells. These trifunctional ON tools displayed very low toxicity and good levels of antiproliferative activity in HER2+ breast cancer cells. The present study will be of great potential in the fight against complex pathologies involving multiple mRNA targets, as the proposed cleavable designs will allow the efficient single-dose administration of different ON drugs simultaneously.


Assuntos
Proliferação de Células , Oligonucleotídeos Antissenso , Ribonuclease H , Ribonuclease H/metabolismo , Ribonuclease H/antagonistas & inibidores , Humanos , Proliferação de Células/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Relação Estrutura-Atividade , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Linhagem Celular Tumoral , Escherichia coli/efeitos dos fármacos
9.
Bioorg Med Chem ; 110: 117814, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981217

RESUMO

Oligonucleotide therapeutics, particularly antisense oligonucleotides (ASOs), have emerged as promising candidates in drug discovery. However, their effective delivery to the target tissues and cells remains a challenge, necessitating the development of suitable drug delivery technologies for ASOs to enable their practical application. In this study, we synthesized a library of chemically modified dipeptide-ASO conjugates using a recent synthetic method based on the Ugi reaction. We then conducted in vitro screening of this library using luciferase-expressing cell lines to identify ligands capable of enhancing ASO activity. Our findings suggest that N-(4-nitrophenoxycarbonyl)glycine may interact with the thiophosphate moiety of the phosphorothioate-modification in ASO. Through our screening efforts, we identified two ligands that modestly reduced luciferase luminescence in a cell type-selective manner. Furthermore, quantification of luciferase mRNA levels revealed that one of these promising dipeptide-ASO conjugates markedly suppressed luciferase RNA levels through its antisense effect in prostate-derived DU-145 cells compared to the ASOs without ligand modification.


Assuntos
Dipeptídeos , Oligonucleotídeos Antissenso , Dipeptídeos/química , Dipeptídeos/síntese química , Dipeptídeos/farmacologia , Humanos , Ligantes , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/síntese química , Oligonucleotídeos Antissenso/farmacologia , Linhagem Celular Tumoral , Estrutura Molecular , Relação Estrutura-Atividade , Luciferases/metabolismo , Luciferases/genética , Relação Dose-Resposta a Droga
10.
Heart Fail Clin ; 20(3): 343-352, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844305

RESUMO

Transthyretin amyloid cardiomyopathy (ATTR-CM) is a relatively prevalent cause of morbidity and mortality. Over the recent years, development of disease-modifying treatments has enabled stabilization of the circulating transthyretin tetramer and suppression of its hepatic production, resulting in a remarkable improvement in survival of patients with ATTR-CM. Second-generation drugs for silencing are currently under investigation in randomized clinical trials. In vivo gene editing of transthyretin has been achieving unanticipated suppression of hepatic production in ATTR-CM. Trials of antibodies inducing the active removal of transthyretin amyloid deposits in the heart are ongoing, and evidence has gathered for exceptional spontaneous regression of ATTR-CM.


Assuntos
Neuropatias Amiloides Familiares , Benzoxazóis , Cardiomiopatias , Pré-Albumina , Humanos , Neuropatias Amiloides Familiares/tratamento farmacológico , Neuropatias Amiloides Familiares/metabolismo , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/metabolismo , Benzoxazóis/uso terapêutico , Pré-Albumina/metabolismo , Pré-Albumina/genética
11.
Exploration (Beijing) ; 4(2): 20230054, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38855614

RESUMO

Traditional tumour-dynamic therapy still inevitably faces the critical challenge of limited reactive oxygen species (ROS)-generating efficiency due to tumour hypoxia, extreme pH condition for Fenton reaction, and unsustainable mono-catalytic reaction. To fight against these issues, we skilfully develop a tumour-microenvironment-driven yolk-shell nanoreactor to realize the high-efficiency persistent dynamic therapy via cascade-responsive dual cycling amplification of •SO4 -/•OH radicals. The nanoreactor with an ultrahigh payload of free radical initiator is designed by encapsulating the Na2S2O8 nanocrystals into hollow tetra-sulphide-introduced mesoporous silica (HTSMS) and afterward enclosed by epigallocatechin gallate (EG)-Fe(II) cross-linking. Within the tumour microenvironment, the intracellular glutathione (GSH) can trigger the tetra-sulphide cleavage of nanoreactors to explosively release Na+/S2O8 2 - /Fe2+ and EG. Then a sequence of cascade reactions will be activated to efficiently generate •SO4 - (Fe2+-catalyzed S2O8 2 - oxidation), proton (•SO4 --catalyzed H2O decomposition), and •OH (proton-intensified Fenton oxidation). Synchronously, the oxidation-generated Fe3+ will be in turn recovered into Fe2+ by excessive EG to circularly amplify •SO4 -/•OH radicals. The nanoreactors can also disrupt the intracellular osmolarity homeostasis by Na+ overload and weaken the ROS-scavenging systems by GSH exhaustion to further amplify oxidative stress. Our yolk-shell nanoreactors can efficiently eradicate tumours via multiple oxidative stress amplification, which will provide a perspective to explore dynamic therapy.

13.
Dev Cell ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38878774

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing, highly heterogeneous neurodegenerative disease, underscoring the importance of obtaining information to personalize clinical decisions quickly after diagnosis. Here, we investigated whether ALS-relevant signatures can be detected directly from biopsied patient fibroblasts. We profiled familial ALS (fALS) fibroblasts, representing a range of mutations in the fused in sarcoma (FUS) gene and ages of onset. To differentiate FUS fALS and healthy control fibroblasts, machine-learning classifiers were trained separately on high-content imaging and transcriptional profiles. "Molecular ALS phenotype" scores, derived from these classifiers, captured a spectrum from disease to health. Interestingly, these scores negatively correlated with age of onset, identified several pre-symptomatic individuals and sporadic ALS (sALS) patients with FUS-like fibroblasts, and quantified "movement" of FUS fALS and "FUS-like" sALS toward health upon FUS ASO treatment. Taken together, these findings provide evidence that non-neuronal patient fibroblasts can be used for rapid, personalized assessment in ALS.

14.
Antiviral Res ; 228: 105946, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925369

RESUMO

SARS-CoV-2 is a betacoronavirus that causes COVID-19, a global pandemic that has resulted in many infections, deaths, and socio-economic challenges. The virus has a large positive-sense, single-stranded RNA genome of ∼30 kb, which produces subgenomic RNAs (sgRNAs) through discontinuous transcription. The most abundant sgRNA is sgRNA N, which encodes the nucleocapsid (N) protein. In this study, we probed the secondary structure of sgRNA N and a shorter model without a 3' UTR in vitro, using the SHAPE (selective 2'-hydroxyl acylation analyzed by a primer extension) method and chemical mapping with dimethyl sulfate and 1-cyclohexyl-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate. We revealed the secondary structure of sgRNA N and its shorter variant for the first time and compared them with the genomic RNA N structure. Based on the structural information, we designed gapmers, siRNAs and antisense oligonucleotides (ASOs) to target the N protein coding region of sgRNA N. We also generated eukaryotic expression vectors containing the complete sequence of sgRNA N and used them to screen for new SARS-CoV-2 gene N expression inhibitors. Our study provides novel insights into the structure and function of sgRNA N and potential therapeutic tools against SARS-CoV-2.


Assuntos
Conformação de Ácido Nucleico , RNA Viral , SARS-CoV-2 , Replicação Viral , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Replicação Viral/efeitos dos fármacos , RNA Viral/genética , Humanos , Antivirais/farmacologia , Antivirais/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/antagonistas & inibidores , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/química , Ésteres do Ácido Sulfúrico/farmacologia , Ésteres do Ácido Sulfúrico/química , COVID-19/virologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/química , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/química , Genoma Viral , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/química
15.
Cell Rep ; 43(7): 114375, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38935506

RESUMO

GGGGCC (G4C2) repeat expansion in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How this genetic mutation leads to neurodegeneration remains largely unknown. Using CRISPR-Cas9 technology, we deleted EXOC2, which encodes an essential exocyst subunit, in induced pluripotent stem cells (iPSCs) derived from C9ORF72-ALS/FTD patients. These cells are viable owing to the presence of truncated EXOC2, suggesting that exocyst function is partially maintained. Several disease-relevant cellular phenotypes in C9ORF72 iPSC-derived motor neurons are rescued due to, surprisingly, the decreased levels of dipeptide repeat (DPR) proteins and expanded G4C2 repeats-containing RNA. The treatment of fully differentiated C9ORF72 neurons with EXOC2 antisense oligonucleotides also decreases expanded G4C2 repeats-containing RNA and partially rescued disease phenotypes. These results indicate that EXOC2 directly or indirectly regulates the level of G4C2 repeats-containing RNA, making it a potential therapeutic target in C9ORF72-ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Expansão das Repetições de DNA , Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Demência Frontotemporal/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Expansão das Repetições de DNA/genética , Neurônios Motores/metabolismo , Neurônios Motores/patologia
16.
Curr Med Chem ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860908

RESUMO

BACKGROUND: The evolution of novel Severe Acute Respiratory Syndrome-related Coronavirus 2 (SARS-CoV-2) strains with greater degrees of infectivity, resistance to vaccine-induced acquired immunity, and more severe morbidity have contributed to the recent spread of COVID-19. In light of this, novel therapeutic alternatives with improved effectiveness and fewer side effects have become a necessity. Despite many new or repurposed antiviral agents recommended for Coronavirus disease (COVID-19) therapy, this objective remains unfulfilled. Under these circumstances, the scientific community holds the significant responsibility to develop classes of novel therapeutic modalities to combat SARS-CoV-2 with the least harmful side effects. OBJECTIVE: Antisense Oligonucleotides (ASOs) are short single-stranded oligonucleotides that allow the specific targeting of RNA, leading to its degradation. They may also prevent cellular factors or machinery from binding to the target RNA. It is possible to improve the pharmacokinetics and pharmacodynamics of ASOs by chemical modification or bioconjugation, which may provide conditions for customization of a particular clinical target. This study aimed to outline the potential use of ASOs in the treatment of COVID-19 disease, along with the use of antisense stabilization and transfer methods, as well as future challenges and limitations. METHODS: We have reviewed the structure and properties of ASOs containing nucleobase, sugar, or backbone modifications, and provided an overview of the therapeutic potential, delivery challenges, and strategies of ASOs in the treatment of COVID-19. RESULTS: The first-line therapy for COVID-19-infected individuals, as well as the development of oligonucleotide-based drugs, warrants further investigation. Chemical changes in the oligonucleotide structure can affect the biological processes. These chemical alterations may lead to enhanced potency, while changing the pharmacokinetics and pharmacodynamics. CONCLUSION: ASOs can be designed to target both coding and non-coding regions of the viral genome to disrupt or completely degrade the genomic RNA and thereby eliminate SARS-CoV-2. They may be very effective in areas, where vaccine distribution is challenging, and they may be helpful for future coronavirus pandemics.

17.
Diseases ; 12(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38785738

RESUMO

Little is known about ocular tics in Pediatric Autoimmune Neuropsychiatric Disorders associated with Streptococcal infections (PANDAS). In this retrospective study, we examined the clinical records of children with motor tics referred to the Ophthalmology Unit, Azienda Ospedaliero-Universitaria di Sassari, Italy, in 2010-2019. The presence of ocular tics was investigated. Data about antistreptolysin O (ASO) and anti-DNase B antibody titers, erythrocyte sedimentation rate (ESR), plasma C-reactive protein (CRP), and antibiotic use were recorded. Forty children (thirty-four boys and six girls; mean age: 7.65 ± 2.5 years) with motor tics were identified; thirty-three (82.5%) showed ocular tics. Children with ocular tics had significantly higher titers of anti-DNase B antibodies (p = 0.04) and CRP (p = 0.016) than those with extraocular tics. A diagnosis of PANDAS was made in 24 (60%) children. PANDAS children with oculomotor tics had significantly higher titers of anti-DNase B antibodies (p = 0.05) than those with extraocular tics. Oral antibiotics were given to 25/33 (76%) children with ocular tics and 21/24 (87.5%) with PANDAS. All treated patients showed marked improvement/complete resolution of symptoms. Results suggest that higher titers of anti-DNase B antibodies may be implicated in the pathogenesis of ocular tics in PANDAS. Oral antibiotics may be beneficial in improving ocular tics. Further research is necessary to confirm our findings.

18.
Cell Metab ; 36(5): 1030-1043.e7, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38670107

RESUMO

The mechanisms of hepatic stellate cell (HSC) activation and the development of liver fibrosis are not fully understood. Here, we show that deletion of a nuclear seven transmembrane protein, TM7SF3, accelerates HSC activation in liver organoids, primary human HSCs, and in vivo in metabolic-dysfunction-associated steatohepatitis (MASH) mice, leading to activation of the fibrogenic program and HSC proliferation. Thus, TM7SF3 knockdown promotes alternative splicing of the Hippo pathway transcription factor, TEAD1, by inhibiting the splicing factor heterogeneous nuclear ribonucleoprotein U (hnRNPU). This results in the exclusion of the inhibitory exon 5, generating a more active form of TEAD1 and triggering HSC activation. Furthermore, inhibiting TEAD1 alternative splicing with a specific antisense oligomer (ASO) deactivates HSCs in vitro and reduces MASH diet-induced liver fibrosis. In conclusion, by inhibiting TEAD1 alternative splicing, TM7SF3 plays a pivotal role in mitigating HSC activation and the progression of MASH-related fibrosis.


Assuntos
Proteínas de Ligação a DNA , Cirrose Hepática , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição , Fatores de Transcrição de Domínio TEA/metabolismo , Animais , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Humanos , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Processamento Alternativo , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Células Estreladas do Fígado/metabolismo , Masculino , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/genética , Camundongos Knockout
19.
J Pharm Sci ; 113(7): 1749-1768, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38679232

RESUMO

Oligonucleotide drug products commercially approved in the US and the EU are reviewed. A total of 20 products that includes 1 aptamer, 12 antisense oligonucleotides (ASOs), 6 small interfering ribonucleic acids (siRNAs), and 1 mixture of single-stranded and double-stranded polydeoxyribonucleotides have been identified. A typical oligonucleotide formulation is composed of an oligonucleotide with buffering agent(s), pH adjusting agents, and a tonicity adjusting agent. All the products are presented as 2.1 - 200 mg/mL solutions at pH between 6 and 8.7. Majority of the products are approved for intravenous (IV) and subcutaneous (SC) routes, with two for intravitreal (IVT), two for intrathecal (IT), and one for intramuscular (IM) routes. The primary packaging includes vials and prefilled syringes (PFS). Products approved for IV and IT administration routes and requiring >1.5 mL dose volumes are supplied in vials, while those approved for SC, IM, and IVT and requiring ≤1.5 mL dose volume are supplied in PFS. Based on the compiled dataset, we propose a generalized starting point for an oligonucleotide formulation during early phase development for IV, SC, and IT administration routes. Overall, we believe this harmonized evaluation and understanding of various oligonucleotide drug product attributes will help derive platform generalizations and allows for accelerated early phase development for first-in-human studies.


Assuntos
Oligonucleotídeos , Humanos , Oligonucleotídeos/química , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/química , Aprovação de Drogas , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Estados Unidos , Embalagem de Medicamentos/métodos , Química Farmacêutica/métodos
20.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612794

RESUMO

The spinocerebellar ataxias (SCA) comprise a group of inherited neurodegenerative diseases. Machado-Joseph Disease (MJD) or spinocerebellar ataxia 3 (SCA3) is the most common autosomal dominant form, caused by the expansion of CAG repeats within the ataxin-3 (ATXN3) gene. This mutation results in the expression of an abnormal protein containing long polyglutamine (polyQ) stretches that confers a toxic gain of function and leads to misfolding and aggregation of ATXN3 in neurons. As a result of the neurodegenerative process, SCA3 patients are severely disabled and die prematurely. Several screening approaches, e.g., druggable genome-wide and drug library screenings have been performed, focussing on the reduction in stably overexpressed ATXN3(polyQ) protein and improvement in the resultant toxicity. Transgenic overexpression models of toxic ATXN3, however, missed potential modulators of endogenous ATXN3 regulation. In another approach to identify modifiers of endogenous ATXN3 expression using a CRISPR/Cas9-modified SK-N-SH wild-type cell line with a GFP-T2A-luciferase (LUC) cassette under the control of the endogenous ATXN3 promotor, four statins were identified as potential activators of expression. We here provide an overview of the high throughput screening approaches yet performed to find compounds or genomic modifiers of ATXN3(polyQ) toxicity in different SCA3 model organisms and cell lines to ameliorate and halt SCA3 progression in patients. Furthermore, the putative role of cholesterol in neurodegenerative diseases (NDDs) in general and SCA3 in particular is discussed.


Assuntos
Doença de Machado-Joseph , Ataxias Espinocerebelares , Humanos , Animais , Doença de Machado-Joseph/genética , Pesquisa Translacional Biomédica , Ataxias Espinocerebelares/genética , Ciência Translacional Biomédica , Animais Geneticamente Modificados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA