Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 926
Filtrar
1.
J Biol Chem ; : 107659, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128728

RESUMO

Chloroplast ATP synthase (CFoCF1) synthesizes ATP by using a proton electrochemical gradient across the thylakoid membrane, termed ΔµH+, as an energy source. This gradient is necessary not only for ATP synthesis but also for reductive activation of CFoCF1 by thioredoxin, using reducing equivalents produced by the photosynthetic electron transport chain. ΔµH+ comprises two thermodynamic components: pH differences across the membrane (ΔpH) and the transmembrane electrical potential (ΔΨ). In chloroplasts, the ratio of these two components in ΔµH+ is crucial for efficient solar energy utilization. However, the specific contribution of each component to the reductive activation of CFoCF1 remains unclear. In this study, an in vitro assay system for evaluating thioredoxin-mediated CFoCF1 reduction is established, allowing manipulation of ΔµH+ components in isolated thylakoid membranes using specific chemicals. Our biochemical analyses revealed that ΔpH formation is essential for thioredoxin-mediated CFoCF1 reduction on the thylakoid membrane, whereas ΔΨ formation is nonessential.

2.
Bioorg Chem ; 151: 107702, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39142196

RESUMO

The mycobacterial F-ATP synthase is responsible for the optimal growth, metabolism and viability of Mycobacteria, establishing it as a validated target for the development of anti-TB therapeutics. Herein, we report the discovery of an N-acyl phenothiazine derivative, termed PT6, targeting the mycobacterial F-ATP synthase. PT6 is bactericidal and active against the drug sensitive, Rifampicin-resistant as well as Multidrug-resistant tuberculosis strains. Compound PT6 showed noteworthy inhibition of F-ATP synthesis, exhibiting an IC50 of 0.788 µM in M. smegmatis IMVs and was observed that it could deplete intracellular ATP levels, exhibiting an IC50 of 30 µM. PT6 displayed a high selectivity towards mycobacterial ATP synthase compared to mitochondrial ATP synthase. Compound PT6 showed a minor synergistic effect in combination with Rifampicin and Isoniazid. PT6 demonstrated null cytotoxicity as confirmed by assessing its toxicity against VERO cell lines. Further, the binding mechanism and the activity profile of PT6 were validated by employing in silico techniques such as molecular docking, Prime MM/GBSA, DFT and ADMET analysis. These results suggest that PT6 presents an attractive lead for the discovery of a novel class of mycobacterial F-ATP synthase inhibitors.

3.
Extracell Vesicles Circ Nucl Acids ; 5(2): 271-275, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39092319

RESUMO

Mitochondria dysfunction is increasingly recognized as a critical factor in various pathogenic processes. The mechanism governing mitochondrial quality control serves as an adaptive response, ensuring the preservation of mitochondrial morphology, quantity, and overall function, crucial for cell survival. The generation of mitochondria-derived vesicles (MDVs) is one of the processes of mitochondrial quality control. Recent literature has suggested MDV heterogeneity; however, the detailed characteristics of various MDV subtypes still need to be studied better. Recent studies have shown that MDVs also play a role in inter-organelle communication for mitochondria besides quality control. For instance, Hazan et al. demonstrated that functional mitochondria from Saccharomyces cerevisiae release vesicles independent of the fission machinery. These vesicles, falling within the typical size range of MDVs, were selectively loaded with mitochondrial proteins, especially with functional ATP synthase subunits. Intriguingly, these MDVs maintained membrane potential and could generate ATP. Moreover, MDVs could fuse with naïve mitochondria, transferring their ATP generation machinery. Lastly, this study revealed a potential delivery mechanism of ATP-producing vesicles, presenting a promising avenue to rejuvenate ATP-deficient mitochondria. Overall, this study unveils a novel mechanism for inter-organelle communication by vesicles, which is crucial for maintaining cellular homeostasis and could also be important in pathological conditions.

4.
Antibodies (Basel) ; 13(3)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39051327

RESUMO

This study investigated a novel radioimmunotherapy strategy for targeting tumor angiogenesis. We developed a radiopharmaceutical complex by labeling an anti-adenosine triphosphate synthase (ATPS) monoclonal antibody (mAb) with the radioisotope 177Lu using DOTA as a chelating agent. 177Lu-DOTA-ATPS mAb demonstrated high labeling efficiency (99.0%) and stability in serum. MKN-45 cancer cells exhibited the highest cellular uptake, which could be specifically blocked by unlabeled ATPS mAb. In mice, 177Lu-DOTA-ATPS mAb accumulated significantly in tumors, with a tumor uptake of 16.0 ± 1.5%ID/g on day 7. 177Lu-DOTA-ATPS mAb treatment significantly reduced the viability of MKN-45 cells in a dose-dependent manner. In a xenograft tumor model, this radioimmunotherapy strategy led to substantial tumor growth inhibition (82.8%). Furthermore, combining 177Lu-DOTA-ATPS mAb with sunitinib, an anti-angiogenic drug, enhanced the therapeutic efficacy of sunitinib in the mouse model. Our study successfully developed 177Lu-DOTA-ATPS mAb, a radioimmunotherapy agent targeting tumor blood vessels. This approach demonstrates significant promise for inhibiting tumor growth, both as a single therapy and in combination with other anti-cancer drugs.

5.
Toxins (Basel) ; 16(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39057927

RESUMO

In this paper, we provide an overview of mitochondrial bioenergetics and specific conditions that lead to the formation of non-bilayer structures in mitochondria. Secondly, we provide a brief overview on the structure/function of cytotoxins and how snake venom cytotoxins have contributed to increasing our understanding of ATP synthesis via oxidative phosphorylation in mitochondria, to reconcile some controversial aspects of the chemiosmotic theory. Specifically, we provide an emphasis on the biochemical contribution of delocalized and localized proton movement, involving direct transport of protons though the Fo unit of ATP synthase or via the hydrophobic environment at the center of the inner mitochondrial membrane (proton circuit) on oxidative phosphorylation, and how this influences the rate of ATP synthesis. Importantly, we provide new insights on the molecular mechanisms through which cobra venom cytotoxins affect mitochondrial ATP synthesis, mitochondrial structure, and dynamics. Finally, we provide a perspective for the use of cytotoxins as novel pharmacological tools to study membrane bioenergetics and mitochondrial biology, how they can be used in translational research, and their potential therapeutic applications.


Assuntos
Venenos Elapídicos , Metabolismo Energético , Mitocôndrias , Membranas Mitocondriais , Animais , Metabolismo Energético/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Humanos , Venenos Elapídicos/química , Venenos Elapídicos/toxicidade , Venenos Elapídicos/metabolismo , Citotoxinas/farmacologia , Citotoxinas/toxicidade , Citotoxinas/química , Trifosfato de Adenosina/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos
6.
ACS Appl Mater Interfaces ; 16(29): 37521-37529, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38985575

RESUMO

Sodium ions and protons regulate various fundamental processes at the cell and tissue levels across all biological kingdoms. It is therefore pivotal for bioelectronic devices, such as biosensors and biotransducers, to control the transport of these ions through biological membranes. Our study explores the regulation of proton and sodium concentrations by integrating an Na+-type ATP synthase, a glucose dehydrogenase (GDH), and a urease into a multienzyme logic system. This system is designed to operate using various chemical control input signals, while the output current corresponds to the local change in proton or sodium concentrations. Therein, a H+ and Na+ biotransducer was integrated to fulfill the roles of signal transducers for the monitoring and simultaneous control of Na+ and H+ levels, respectively. To increase the proton concentration at the output, we utilized GDH driven by the inputs of glucose and nicotinamide adenine dinucleotide (NAD+), while recorded the signal change from the biotransducer, together acting as an AND enzyme logic gate. On the contrary, we introduced urease enzyme which hydrolyzed urea to control the decrease in proton concentration, serving as a NOT gate and reset. By integrating these two enzyme logic gates we formed a simple multienzyme logic system for the control of proton concentrations. Furthermore, we also demonstrate a more complex, Na+-type ATP synthase-urease multienzyme logic system, controlled by the two different inputs of ADP and urea. By monitoring the voltage of the peak current as the output signal, this logic system acts as an AND enzyme logic gate. This study explores how multienzyme logic systems can modulate biologically important ion concentrations, opening the door toward advanced biological on-demand control of a variety of bioelectronic enzyme-based devices, such as biosensors and biotransducers.


Assuntos
Glucose 1-Desidrogenase , Sódio , Sódio/metabolismo , Sódio/química , Glucose 1-Desidrogenase/metabolismo , Glucose 1-Desidrogenase/química , Urease/metabolismo , Urease/química , Prótons , Glucose/metabolismo , Técnicas Biossensoriais/métodos , NAD/metabolismo , NAD/química
7.
bioRxiv ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39026696

RESUMO

A key question in current immunology is how the innate immune system generates high levels of specificity. Our previous study in Caenorhabditis elegans revealed that NMUR-1, a neuronal G protein-coupled receptor homologous to mammalian receptors for the neuropeptide neuromedin U (NMU), regulates distinct innate immune responses to different bacterial pathogens. Here, by using quantitative proteomics and functional assays, we discovered that NMUR-1 regulates F1FO ATP synthase and ATP production in response to pathogen infection, and that such regulation contributes to NMUR-1-mediated specificity of innate immunity. We further demonstrated that ATP biosynthesis and its contribution to defense is neurally controlled by the NMUR-1 ligand CAPA-1 and its expressing neurons ASG. These findings indicate that NMUR-1 neural signaling regulates the specificity of innate immunity by controlling energy homeostasis as part of defense against pathogens. Our study provides mechanistic insights into the emerging roles of NMU signaling in immunity across animal phyla.

8.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39063070

RESUMO

Plastid retrograde signaling plays a key role in coordinating the expression of plastid genes and photosynthesis-associated nuclear genes (PhANGs). Although plastid retrograde signaling can be substantially compromised by mitochondrial dysfunction, it is not yet clear whether specific mitochondrial factors are required to regulate plastid retrograde signaling. Here, we show that mitochondrial ATP synthase beta-subunit mutants with decreased ATP synthase activity are impaired in plastid retrograde signaling in Arabidopsis thaliana. Transcriptome analysis revealed that the expression levels of PhANGs were significantly higher in the mutants affected in the AT5G08670 gene encoding the mitochondrial ATP synthase beta-subunit, compared to wild-type (WT) seedlings when treated with lincomycin (LIN) or norflurazon (NF). Further studies indicated that the expression of nuclear genes involved in chloroplast and mitochondrial retrograde signaling was affected in the AT5G08670 mutant seedlings treated with LIN. These changes might be linked to the modulation of some transcription factors (TFs), such as LHY (Late Elongated Hypocotyl), PIF (Phytochrome-Interacting Factors), MYB, WRKY, and AP2/ERF (Ethylene Responsive Factors). These findings suggest that the activity of mitochondrial ATP synthase significantly influences plastid retrograde signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , ATPases Mitocondriais Próton-Translocadoras , Plastídeos , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Plastídeos/metabolismo , Plastídeos/genética , Mitocôndrias/metabolismo , Plântula/genética , Plântula/metabolismo , Mutação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Lincomicina/farmacologia , Perfilação da Expressão Gênica
9.
Angew Chem Int Ed Engl ; : e202411164, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924619

RESUMO

Abiotic stress tends to induce oxidative damage to enzymes and organelles that in turns hampers the phosphorylation process and decreases the adenosine triphosphate (ATP) productivity. Artificial assemblies can alleviate abiotic stress and simultaneously provide nutrients to diminish the oxidative damage. Here, we have integrated natural acid phosphatase (ACP) and ATP synthase with plasmonic Au clusters in a biomimetic microreactor. ACP immobilized on the Au clusters is harnessed to generate proton influx to drive ATP synthase and concurrently supply phosphate to improve phosphorus availability to combat phosphorus-deficiency stress. In tandem with the reactive oxygen species (ROS) scavenging and the photothermal functionality of Au clusters, such an assembled microreactor exhibits an improved abiotic stress tolerance and achieves plasmon-accelerated ATP synthesis. This innovative approach offers an effective route to enhance the stress resistance of ATP synthase-based energy-generating systems, opening an exciting potential of these systems for biomimicking applications.

10.
Antimicrob Agents Chemother ; 68(7): e0167123, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38869301

RESUMO

Neglected tropical diseases caused by trypanosomatid parasites have devastating health and economic consequences, especially in tropical areas. New drugs or new combination therapies to fight these parasites are urgently needed. Venturicidin A, a macrolide extracted from Streptomyces, inhibits the ATP synthase complex of fungi and bacteria. However, its effect on trypanosomatids is not fully understood. In this study, we tested venturicidin A on a panel of trypanosomatid parasites using Alamar Blue assays and found it to be highly active against Trypanosoma brucei and Leishmania donovani, but much less so against Trypanosoma evansi. Using fluorescence microscopy, we observed a rapid loss of the mitochondrial membrane potential in T. brucei bloodstream forms upon venturicidin A treatment. Additionally, we report the loss of mitochondrial DNA in approximately 40%-50% of the treated parasites. We conclude that venturicidin A targets the ATP synthase of T. brucei, and we suggest that this macrolide could be a candidate for anti-trypanosomatid drug repurposing, drug combinations, or medicinal chemistry programs.


Assuntos
DNA de Cinetoplasto , Macrolídeos , Potencial da Membrana Mitocondrial , Trypanosoma brucei brucei , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Macrolídeos/farmacologia , DNA de Cinetoplasto/genética , DNA de Cinetoplasto/efeitos dos fármacos , Tripanossomicidas/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/genética , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/efeitos dos fármacos
11.
Biosystems ; 242: 105255, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901165

RESUMO

In this last article of the trilogy, the unified biothermokinetic theory of ATP synthesis developed in the previous two papers is applied to a major problem in comparative physiology, biochemistry, and ecology-that of metabolic scaling as a function of body mass across species. A clear distinction is made between intraspecific and interspecific relationships in energy metabolism, clearing up confusion that had existed from the very beginning since Kleiber first proposed his mouse-to-elephant rule almost a century ago. It is shown that the overall mass exponent of basal/standard metabolic rate in the allometric relationship [Formula: see text] is composed of two parts, one emerging from the relative intraspecific constancy of the slope (b), and the other (b') arising from the interspecific variation of the mass coefficient, a(M) with body size. Quantitative analysis is shown to reveal the hidden underlying relationship followed by the interspecific mass coefficient, a(M)=P0M0.10, and a universal value of P0=3.23 watts, W is derived from empirical data on mammals from mouse to cattle. The above relationship is shown to be understood only within an evolutionary biological context, and provides a physiological explanation for Cope's rule. The analysis also helps in fundamentally understanding how variability and a diversity of scaling exponents arises in allometric relations in biology and ecology. Next, a molecular-level understanding of the scaling of metabolism across mammalian species is shown to be obtained by consideration of the thermodynamic efficiency of ATP synthesis η, taking mitochondrial proton leak as a major determinant of basal metabolic rate in biosystems. An iterative solution is obtained by solving the mathematical equations of the biothermokinetic ATP theory, and the key thermodynamic parameters, e.g. the degree of coupling q, the operative P/O ratio, and the metabolic efficiency of ATP synthesis η are quantitatively evaluated for mammals from rat to cattle. Increases in η (by ∼15%) over a 2000-fold body size range from rat to cattle, primarily arising from an ∼3-fold decrease in the mitochondrial H+ leak rate are quantified by the unified ATP theory. Biochemical and mechanistic consequences for the interpretation of basal metabolism, and the various molecular implications arising are discussed in detail. The results are extended to maximum metabolic rate, and interpreted mathematically as a limiting case of the general ATP theory. The limitations of the analysis are pointed out. In sum, a comprehensive quantitative analysis based on the unified biothermokinetic theory of ATP synthesis is shown to solve a central problem in biology, physiology, and ecology on the scaling of energy metabolism with body size.


Assuntos
Trifosfato de Adenosina , Metabolismo Energético , Mamíferos , Mitocôndrias , Termodinâmica , Animais , Trifosfato de Adenosina/metabolismo , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Mamíferos/metabolismo , Especificidade da Espécie , Camundongos , Tamanho Corporal/fisiologia , Modelos Biológicos , Bovinos
12.
Biochem Pharmacol ; 226: 116338, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38848780

RESUMO

ITFG2, as an immune-modulatory intracellular protein that modulate the fate of B cells and negatively regulates mTORC1 signaling. ITFG2 is highly expressed in the heart, but its pathophysiological function in heart disease is unclear. In this study, we found that in MI mice, overexpression of ITFG2 via an AAV9 vector significantly reduced the infarct size and ameliorated cardiac function. Knockdown of endogenous ITFG2 by shRNA partially aggravated ischemia-induced cardiac dysfunction. In cardiac-specific ITFG2 transgenic (TG) mice, myocardial infarction size was smaller, eject fraction (EF) and fractional shortening (FS) was higher compared to those in wild-type (WT) mice, suggesting ITFG2 reversed cardiac dysfunction induced by MI. In hypoxic neonatal cardiomyocytes (NMCMs), overexpression of ITFG2 maintained mitochondrial function by increasing intracellular ATP production, reducing ROS levels, and preserving the mitochondrial membrane potential (MMP). Overexpression of ITFG2 reversed the mitochondrial respiratory dysfunction in NMCMs induced by hypoxia. Knockdown of endogenous ITFG2 by siRNA did the opposite. Mechanism, ITFG2 formed a complex with NEDD4-2 and ATP 5b and inhibited the binding of NEDD4-2 with ATP 5b leading to the reduction ubiquitination of ATP 5b. Our findings reveal a previously unknown ability of ITFG2 to protect the heart against ischemic injury by interacting with ATP 5b and thereby regulating mitochondrial function. ITFG2 has promise as a novel strategy for the clinical management of MI.


Assuntos
Mitocôndrias Cardíacas , Infarto do Miocárdio , Miócitos Cardíacos , Animais , Masculino , Camundongos , Células Cultivadas , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/imunologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
13.
Adv Sci (Weinh) ; 11(31): e2403093, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896801

RESUMO

Creatine kinases are essential for maintaining cellular energy balance by facilitating the reversible transfer of a phosphoryl group from ATP to creatine, however, their role in mitochondrial ATP production remains unknown. This study shows creatine kinases, including CKMT1A, CKMT1B, and CKB, are highly expressed in cells relying on the mitochondrial F1F0 ATP synthase for survival. Interestingly, silencing CKB, but not CKMT1A or CKMT1B, leads to a loss of sensitivity to the inhibition of F1F0 ATP synthase in these cells. Mechanistically, CKB promotes mitochondrial ATP but reduces glycolytic ATP production by suppressing mitochondrial calcium (mCa2+) levels, thereby preventing the activation of mitochondrial permeability transition pore (mPTP) and ensuring efficient mitochondrial ATP generation. Further, CKB achieves this regulation by suppressing mCa2+ levels through the inhibition of AKT activity. Notably, the CKB-AKT signaling axis boosts mitochondrial ATP production in cancer cells growing in a mouse tumor model. Moreover, this study also uncovers a decline in CKB expression in peripheral blood mononuclear cells with aging, accompanied by an increase in AKT signaling in these cells. These findings thus shed light on a novel signaling pathway involving CKB that directly regulates mitochondrial ATP production, potentially playing a role in both pathological and physiological conditions.


Assuntos
Trifosfato de Adenosina , Mitocôndrias , Poro de Transição de Permeabilidade Mitocondrial , Animais , Trifosfato de Adenosina/metabolismo , Camundongos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Humanos , Creatina Quinase Mitocondrial/metabolismo , Creatina Quinase Mitocondrial/genética , Transdução de Sinais/fisiologia , Modelos Animais de Doenças
14.
Toxicol Lett ; 397: 23-33, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734218

RESUMO

Osimertinib, an irreversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) used for cancer treatment, can cause significant cardiac toxicity. However, the specific mechanism of osimertinib-induced cardiotoxicity is not fully understood. In this study, we administered osimertinib to mice and neonatal rat ventricular myocytes (NRVMs). We observed significant structural and functional damage to the hearts of these mice, along with a marked increase in cardiac injury biomarkers and accompanying ultrastructural damage to mitochondria. We integrated 4D label-free protein quantification and RNA-Seq methods to analyze the sequencing data of NRVMs under osimertinib treatment (0 and 2.5 µM). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis evidenced that differentially expressed genes (DEGs)and differentially expressed proteins (DEPs) were distinctly enriched for oxidative phosphorylation (OXPHOs). Simultaneously, osimertinib primarily affected the contents of adenosine triphosphate (ATP). Further investigations revealed that osimertinib disrupts the functions of the ATP synthase (complex V), leading to a reduction in ATP production. Taken together, our data demonstrated that osimertinib causes mitochondrial dysfunction, which in turn leads to the onset of cardiac toxicity.


Assuntos
Acrilamidas , Compostos de Anilina , Cardiotoxicidade , Mitocôndrias Cardíacas , Miócitos Cardíacos , Proteômica , Animais , Acrilamidas/toxicidade , Compostos de Anilina/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/ultraestrutura , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Proteômica/métodos , Camundongos , Ratos , Masculino , Transcriptoma/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/toxicidade , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley , Trifosfato de Adenosina/metabolismo , Indóis , Pirimidinas
15.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731874

RESUMO

The mitochondrial protein IF1 is upregulated in many tumors and acts as a pro-oncogenic protein through its interaction with the ATP synthase and the inhibition of apoptosis. We have recently characterized the molecular nature of the IF1-Oligomycin Sensitivity Conferring Protein (OSCP) subunit interaction; however, it remains to be determined whether this interaction could be targeted for novel anti-cancer therapeutic intervention. We generated mitochondria-targeting peptides to displace IF1 from the OSCP interaction. The use of one selective peptide led to displacement of the inhibitor IF1 from ATP synthase, as shown by immunoprecipitation. NMR spectroscopy analysis, aimed at clarifying whether these peptides were able to directly bind to the OSCP protein, identified a second peptide which showed affinity for the N-terminal region of this subunit overlapping the IF1 binding region. In situ treatment with the membrane-permeable derivatives of these peptides in HeLa cells, that are silenced for the IF1 inhibitor protein, showed significant inhibition in mitochondrial permeability transition and no effects on mitochondrial respiration. These peptides mimic the effects of the IF1 inhibitor protein in cancer HeLa cells and confirm that the IF1-OSCP interaction inhibits apoptosis. A third peptide was identified which counteracts the anti-apoptotic role of IF1, showing that OSCP is a promising target for anti-cancer therapies.


Assuntos
Mitocôndrias , ATPases Mitocondriais Próton-Translocadoras , Peptídeos , Humanos , Apoptose/efeitos dos fármacos , Proteína Inibidora de ATPase/efeitos dos fármacos , Proteína Inibidora de ATPase/metabolismo , Células HeLa , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica
16.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791189

RESUMO

The membrane Fo factor of ATP synthase is highly sensitive to mutations in the proton half-channel leading to the functional blocking of the entire protein. To identify functionally important amino acids for the proton transport, we performed molecular dynamic simulations on the selected mutants of the membrane part of the bacterial FoF1-ATP synthase embedded in a native lipid bilayer: there were nine different mutations of a-subunit residues (aE219, aH245, aN214, aQ252) in the inlet half-channel. The structure proved to be stable to these mutations, although some of them (aH245Y and aQ252L) resulted in minor conformational changes. aH245 and aN214 were crucial for proton transport as they directly facilitated H+ transfer. The substitutions with nonpolar amino acids disrupted the transfer chain and water molecules or neighboring polar side chains could not replace them effectively. aE219 and aQ252 appeared not to be determinative for proton translocation, since an alternative pathway involving a chain of water molecules could compensate the ability of H+ transmembrane movement when they were substituted. Thus, mutations of conserved polar residues significantly affected hydration levels, leading to drastic changes in the occupancy and capacity of the structural water molecule clusters (W1-W3), up to their complete disappearance and consequently to the proton transfer chain disruption.


Assuntos
ATPases Bacterianas Próton-Translocadoras , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Mutação , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , ATPases Bacterianas Próton-Translocadoras/química , ATPases Bacterianas Próton-Translocadoras/genética
17.
Orphanet J Rare Dis ; 19(1): 200, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755691

RESUMO

BACKGROUND: MT-ATP6 is a mitochondrial gene which encodes for the intramembrane subunit 6 (or A) of the mitochondrial ATP synthase, also known asl complex V, which is involved in the last step of oxidative phosphorylation to produce cellular ATP through aerobic metabolism. Although classically associated with the NARP syndrome, recent evidence highlights an important role of MT-ATP6 pathogenic variants in complicated adult-onset ataxias. METHODS: We describe two unrelated patients with adult-onset cerebellar ataxia associated with severe optic atrophy and mild cognitive impairment. Whole mitochondrial DNA sequencing was performed in both patients. We employed patients' primary fibroblasts and cytoplasmic hybrids (cybrids), generated from patients-derived cells, to assess the activity of respiratory chain complexes, oxygen consumption rate (OCR), ATP production and mitochondrial membrane potential. RESULTS: In both patients, we identified the same novel m.8777 T > C variant in MT-ATP6 with variable heteroplasmy level in different tissues. We identifed an additional heteroplasmic novel variant in MT-ATP6, m.8879G > T, in the patients with the most severe phenotype. A significant reduction in complex V activity, OCR and ATP production was observed in cybrid clones homoplasmic for the m.8777 T > C variant, while no functional defect was detected in m.8879G > T homoplasmic clones. In addition, fibroblasts with high heteroplasmic levelsof m.8777 T > C variant showed hyperpolarization of mitochondrial membranes. CONCLUSIONS: We describe a novel pathogenic mtDNA variant in MT-ATP6 associated with adult-onset ataxia, reinforcing the value of mtDNA screening within the diagnostic workflow of selected patients with late onset ataxias.


Assuntos
Ataxia , ATPases Mitocondriais Próton-Translocadoras , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ataxia/genética , Ataxia/patologia , DNA Mitocondrial/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Itália , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo
18.
BMC Complement Med Ther ; 24(1): 207, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807130

RESUMO

Traditional Chinese medicine (TCM), AYURVEDA and Indian medicine are essential in disease prevention and treatment. Kelisha capsule (KLSC), a TCM formula listed in the Chinese Pharmacopoeia, has been clinically proven to possess potent antibacterial properties. However, the precise antimicrobial mechanism of KLSC remained unknown. This study aimed to elucidate the dual antibacterial mechanism of KLSC using network pharmacology, molecular docking, and experimental validation. By analyzing the growth curve of Escherichia coli (E. coli), it was observed that KLSC significantly inhibited its growth, showcasing a remarkable antibacterial effect. Furthermore, SEM and TEM analysis revealed that KLSC damaged the cell wall and membrane of E. coli, resulting in cytoplasmic leakage, bacterial death, and the exertion of antibacterial effects. The network pharmacology analysis revealed that KLSC exhibited an effect on E. coli ATP synthase, thereby influencing the energy metabolism process. The molecular docking outcomes provided evidence that the active compounds of KLSC could effectively bind to the ATP synthase subunit. Subsequently, experimental findings substantiated that KLSC effectively suppressed the activity of ATP synthase in E. coli and consequently decreased the ATP content. This study highlighted the dual antibacterial mechanism of KLSC, emphasizing its effects on cell structure and energy metabolism, suggesting its potential as a natural antibacterial agent for E. coli-related infections. These findings offered new insights into exploring the antibacterial mechanisms of TCM by focusing on the energy metabolism process.


Assuntos
Antibacterianos , Medicamentos de Ervas Chinesas , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Farmacologia em Rede
19.
Function (Oxf) ; 5(3): zqae008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706962

RESUMO

The Warburg Effect is a longstanding enigma in cancer biology. Despite the passage of 100 yr since its discovery, and the accumulation of a vast body of research on the subject, no convincing biochemical explanation has been given for the original observations of aerobic glycolysis in cancer cell metabolism. Here, we have worked out a first-principles quantitative analysis of the problem from the principles of stoichiometry and available electron balance. The results have been interpreted using Nath's unified theory of energy coupling and adenosine triphosphate (ATP) synthesis, and the original data of Warburg and colleagues have been analyzed from this new perspective. Use of the biomass yield based on ATP per unit substrate consumed, [Formula: see text], or the Nath-Warburg number, NaWa has been shown to excellently model the original data on the Warburg Effect with very small standard deviation values, and without employing additional fitted or adjustable parameters. Based on the results of the quantitative analysis, a novel conservative mechanism of synthesis, utilization, and recycling of ATP and other key metabolites (eg, lactate) is proposed. The mechanism offers fresh insights into metabolic symbiosis and coupling within and/or among proliferating cells. The fundamental understanding gained using our approach should help in catalyzing the development of more efficient metabolism-targeting anticancer drugs.


Assuntos
Trifosfato de Adenosina , Glicólise , Neoplasias , Efeito Warburg em Oncologia , Trifosfato de Adenosina/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Modelos Biológicos , Metabolismo Energético
20.
Microorganisms ; 12(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38792770

RESUMO

In cyanobacteria and chloroplasts (in algae and plants), ATP synthase plays a pivotal role as a photosynthetic membrane complex responsible for producing ATP from adenosine diphosphate and inorganic phosphate, utilizing a proton motive force gradient induced by photosynthesis. These two ATP synthases exhibit similarities in gene organization, amino acid sequences of subunits, structure, and functional mechanisms, suggesting that cyanobacterial ATP synthase is probably the evolutionary precursor to chloroplast ATP synthase. In this review, we explore the precise synthesis and assembly of ATP synthase subunits to address the uneven stoichiometry within the complex during transcription, translation, and assembly processes. We also compare the regulatory strategies governing ATP synthase activity to meet varying energy demands in cyanobacteria and chloroplasts amid fluctuating natural environments. Furthermore, we delve into the role of ATP synthase in stress tolerance and photosynthetic carbon fixation efficiency in oxygenic photosynthetic organisms (OPsOs), along with the current researches on modifying ATP synthase to enhance carbon fixation efficiency under stress conditions. This review aims to offer theoretical insights and serve as a reference for understanding the functional mechanisms of ATP synthase, sparking innovative ideas for enhancing photosynthetic carbon fixation efficiency by utilizing ATP synthase as an effective module in OPsOs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA