Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 240(8): e14186, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837572

RESUMO

AIM: Understanding the physiological role of ATP6V1A, a component of the cytosolic V1 domain of the proton pump vacuolar ATPase, in regulating neuronal development and function. METHODS: Modeling loss of function of Atp6v1a in primary murine hippocampal neurons and studying neuronal morphology and function by immunoimaging, electrophysiological recordings and electron microscopy. RESULTS: Atp6v1a depletion affects neurite elongation, stabilization, and function of excitatory synapses and prevents synaptic rearrangement upon induction of plasticity. These phenotypes are due to an overall decreased expression of the V1 subunits, that leads to impairment of lysosomal pH-regulation and autophagy progression with accumulation of aberrant lysosomes at neuronal soma and of enlarged vacuoles at synaptic boutons. CONCLUSIONS: These data suggest a physiological role of ATP6V1A in the surveillance of synaptic integrity and plasticity and highlight the pathophysiological significance of ATP6V1A loss in the alteration of synaptic function that is associated with neurodevelopmental and neurodegenerative diseases. The data further support the pivotal involvement of lysosomal function and autophagy flux in maintaining proper synaptic connectivity and adaptive neuronal properties.


Assuntos
Hipocampo , Plasticidade Neuronal , Neurônios , Sinapses , ATPases Vacuolares Próton-Translocadoras , Animais , Hipocampo/metabolismo , Hipocampo/citologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Camundongos , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Sinapses/metabolismo , Sinapses/fisiologia , Células Cultivadas , Autofagia/fisiologia , Lisossomos/metabolismo
2.
Seizure ; 116: 81-86, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37574426

RESUMO

PURPOSE: ATP6V1A variants have been identified in patients with highly variable phenotypes such as autosomal dominant epileptic encephalopathy and autosomal recessive cutis laxa. However, the mechanism underlying phenotype variation is unknown. We screened ATP6V1A variants in patients with epilepsy and analyzed the genotype-phenotype correlation to explain the mechanism underlying phenotypic variations. METHODS: We performed trio-based whole-exome sequencing in people with epilepsy without acquired causes. All previously reported ATP6V1A variants were systematically retrieved from the HGMD and PubMed databases. RESULTS: Three novel de novo ATP6V1A variants, including c.749G>C/p.Gly250Ala, c.782A>G/p.Gln261Arg, and c.1103T>C/p.Met368Thr, were identified in three unrelated cases with childhood focal (partial) epilepsy. None of the variants were listed in any public population database and evaluated as likely pathogenic according to the criteria of the American College of Medical Genetics and Genomics (ACMG). All persons showed good responses to anti-seizure medication and psychomotor development was normal. Further analysis showed that monoallelic missense variants were associated with epilepsy with variable severity, whereas biallelic variants resulted in developmental abnormalities of multisystem that may result in early lethality. CONCLUSION: Childhood focal epilepsy with favorable outcome was probably a novel phenotype of ATP6V1A. ATP6V1A variants are associated with a range of phenotypes that correlate with genotypes. The relationship between phenotype severity and the genotype (genetic impairment) of ATP6V1A variants helps explain the phenotypic variations.


Assuntos
Epilepsias Parciais , Epilepsia , ATPases Vacuolares Próton-Translocadoras , Criança , Humanos , Epilepsia/genética , Genótipo , Fenótipo , Estudos de Associação Genética , Mutação de Sentido Incorreto , ATPases Vacuolares Próton-Translocadoras/genética
3.
Calcif Tissue Int ; 113(6): 618-629, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37878026

RESUMO

Osteoporosis disproportionately affects older women, yet gender differences in human osteoblasts remain unexplored. Identifying mechanisms and biomarkers of osteoporosis will enable the development of preventative and therapeutic approaches. Transcriptome data of 187 osteoblast samples from men and women were compared. Differentially expressed genes (DEGs) were identified, and weighted gene co-expression network analysis (WGCNA) was used to discover co-expressed modules. Enrichment analysis was performed to annotate DEGs. Preservation analysis determined whether modules and pathways were similar between genders. Blood methylation, transcriptome data, mouse phenotype data, and drug treatment data were utilized to identify key osteoporosis genes. We identified 1460 DEGs enriched in immune response, neurogenesis, and GWAS osteoporosis-related genes. WGCNA uncovered 8 modules associated with immune response, development, collagen metabolism, mitochondrion, and amino acid synthesis. Preservation analysis indicated modules and pathways were generally similar between genders. Incorporating GWAS and mouse phenotype data revealed 9 key genes, including GMDS, SMOC2, SASH1, MMP2, AHCYL1, ARRDC2, IGHMBP2, ATP6V1A, and CTSK. These genes were differentially methylated in patient blood and differentiated high and low bone mineral density patients in pre- and postmenopausal women. Denosumab treatment in postmenopausal women down-regulated 6 key genes, up-regulated T cell proportions, and down-regulated fibroblast proportion. qRT-PCR was used to confirm the genes in postmenopausal women. We identified 9 key osteoporosis genes by comparing the transcriptome of osteoblasts in women and men. Our findings' clinical implications were confirmed by multi-omics data and qRT-PCR, and our study provides novel biomarkers and therapeutic targets for osteoporosis diagnosis and treatment.


Assuntos
Osteoporose , Transcriptoma , Humanos , Feminino , Masculino , Animais , Camundongos , Idoso , Osteoporose/genética , Osteoporose/metabolismo , Perfilação da Expressão Gênica , Biomarcadores , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
4.
Clin Neurol Neurosurg ; 233: 107956, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37729800

RESUMO

Epilepsy is one of the most common disorders in children, with an incidence rate of approximately 5%. Although an increasing number of genes have been demonstrated to be pathogenic factors in epilepsy, evidence for a potential pathogenic role of ATP6V1A remains limited. Herein, the clinical and genetic data of a 5-year-old boy who experienced seizures at 9 months of age are collected. Genetic variants are screened using whole-exome sequencing (WES), and the effects of the candidate variants are further validated at both the RNA and protein levels. WES reveals a heterozygous variant [NM_001690.4: c .1132 C>T, p.Leu378Phe] of the ATP6V1A gene. This variant is not reported in the public database, but is predicted to be deleterious by multiple software packages, and classified as a variant of unknown significance following the American College of Medical Genetics and Genomics guidelines. Quantitative PCR and western blotting further confirm its down-regulatory role in both the RNA and protein expression of ATP6V1A. This case report confirms the pathogenicity of ATP6V1A in epilepsy with solid experimental evidence, thereby expanding the phenotype spectrum of ATP6V1A variants. More importantly, we show that seizures triggered by ATP6V1A variants could be controlled by Levetiracetam, crucially rescuing the development of the patient.


Assuntos
Epilepsia , ATPases Vacuolares Próton-Translocadoras , Pré-Escolar , Humanos , Masculino , População do Leste Asiático , Epilepsia/genética , Epilepsia/patologia , Mutação , Linhagem , RNA , Convulsões , ATPases Vacuolares Próton-Translocadoras/genética , Lactente
5.
Mol Cell Endocrinol ; 568-569: 111913, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36990198

RESUMO

Podocyte injury is a characteristic feature of diabetic nephropathy (DN). The secretion of exosomes in podocytes increases significantly in DN; however, the precise mechanisms remain poorly understood. Here, we demonstrated that Sirtuin1 (Sirt1) was significantly downregulated in podocytes in DN, which correlated negatively with increased exosome secretion. Similar results were observed in vitro. We found that lysosomal acidification in podocytes following high glucose administration was markedly inhibited, resulting in the decreased lysosomal degradation of multivesicular bodies. Mechanistically, we indicated that loss of Sirt1 contributed to the inhibited lysosomal acidification by decreasing the expression of the A subunit of the lysosomal vacuolar-type H+ ATPase proton pump (ATP6V1A) in podocytes. Overexpression of Sirt1 significantly improved lysosomal acidification with increased expression of ATP6V1A and inhibited exosome secretion. These findings suggest that dysfunctional Sirt1-mediated lysosomal acidification is the exact mechanism of increased secretion of exosomes in podocytes in DN, providing insights into potential therapeutic strategies for preventing DN progression.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Exossomos , Podócitos , Humanos , Podócitos/metabolismo , Nefropatias Diabéticas/metabolismo , Sirtuína 1/metabolismo , Exossomos/metabolismo , Lisossomos/metabolismo , Concentração de Íons de Hidrogênio , Diabetes Mellitus/metabolismo
6.
J Extracell Vesicles ; 12(2): e12310, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36748335

RESUMO

Tumour cells under hypoxia tend to modulate the number and contents of extracellular vesicles (EVs) to regulate the tumour microenvironment (TME) and thus promote tumour progression. However, the mechanism of how hypoxia influences the secretion of EVs remains to be elucidated. Here, we confirm the increased production of EVs in head and neck squamous cell carcinoma (HNSCC) cells under hypoxia, where endosome-derived EVs are the main subtype affected by insufficient O2 . The accumulation of hypoxia-inducible factor-1α (HIF-1α) under hypoxia directly downregulates the expression of ATP6V1A, which is pivotal to maintain the homeostasis of lysosomes. Subsequently, impaired lysosomal degradation contributes to the reduced fusion of multivesicular bodies (MVBs) with lysosomes and enables the secretion of intraluminal vesicles (ILVs) as EVs. These findings establish a HIF-1α-regulated lysosomal dysfunction-EV release axis and provide an exquisite framework to better understand EV biogenesis.


Assuntos
Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , Subunidade alfa do Fator 1 Induzível por Hipóxia , ATPases Vacuolares Próton-Translocadoras , Humanos , Vesículas Extracelulares/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Homeostase , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lisossomos/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Microambiente Tumoral , ATPases Vacuolares Próton-Translocadoras/metabolismo
7.
J Pathol ; 260(1): 17-31, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36715683

RESUMO

Macropinocytosis is an effective strategy to mitigate nutrient starvation. It can fuel cancer cell growth in nutrient-limited conditions. However, whether and how macropinocytosis contributes to the rapid proliferation of hepatocellular carcinoma cells, which frequently experience an inadequate nutrient supply, remains unclear. Here, we demonstrated that nutrient starvation strongly induced macropinocytosis in some hepatocellular carcinoma cells. It allowed the cells to acquire extracellular nutrients and supported their energy supply to maintain rapid proliferation. Furthermore, we found that the phospholipid flippase ATP9A was critical for regulating macropinocytosis in hepatocellular carcinoma cells and that high ATP9A levels predicted a poor outcome for patients with hepatocellular carcinoma. ATP9A interacted with ATP6V1A and facilitated its transport to the plasma membrane, which promoted plasma membrane cholesterol accumulation and drove RAC1-dependent macropinocytosis. Macropinocytosis inhibitors significantly suppressed the energy supply and proliferation of hepatocellular carcinoma cells characterised by high ATP9A expression under nutrient-limited conditions. These results have revealed a novel mechanism that overcomes nutrient starvation in hepatocellular carcinoma cells and have identified the key regulator of macropinocytosis in hepatocellular carcinoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Membrana Celular , Neoplasias Hepáticas/metabolismo , Nutrientes , Fosfolipídeos/metabolismo
8.
Brain ; 145(8): 2687-2703, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35675510

RESUMO

Vacuolar-type H+-ATPase (V-ATPase) is a multimeric complex present in a variety of cellular membranes that acts as an ATP-dependent proton pump and plays a key role in pH homeostasis and intracellular signalling pathways. In humans, 22 autosomal genes encode for a redundant set of subunits allowing the composition of diverse V-ATPase complexes with specific properties and expression. Sixteen subunits have been linked to human disease. Here we describe 26 patients harbouring 20 distinct pathogenic de novo missense ATP6V1A variants, mainly clustering within the ATP synthase α/ß family-nucleotide-binding domain. At a mean age of 7 years (extremes: 6 weeks, youngest deceased patient to 22 years, oldest patient) clinical pictures included early lethal encephalopathies with rapidly progressive massive brain atrophy, severe developmental epileptic encephalopathies and static intellectual disability with epilepsy. The first clinical manifestation was early hypotonia, in 70%; 81% developed epilepsy, manifested as developmental epileptic encephalopathies in 58% of the cohort and with infantile spasms in 62%; 63% of developmental epileptic encephalopathies failed to achieve any developmental, communicative or motor skills. Less severe outcomes were observed in 23% of patients who, at a mean age of 10 years and 6 months, exhibited moderate intellectual disability, with independent walking and variable epilepsy. None of the patients developed communicative language. Microcephaly (38%) and amelogenesis imperfecta/enamel dysplasia (42%) were additional clinical features. Brain MRI demonstrated hypomyelination and generalized atrophy in 68%. Atrophy was progressive in all eight individuals undergoing repeated MRIs. Fibroblasts of two patients with developmental epileptic encephalopathies showed decreased LAMP1 expression, Lysotracker staining and increased organelle pH, consistent with lysosomal impairment and loss of V-ATPase function. Fibroblasts of two patients with milder disease, exhibited a different phenotype with increased Lysotracker staining, decreased organelle pH and no significant modification in LAMP1 expression. Quantification of substrates for lysosomal enzymes in cellular extracts from four patients revealed discrete accumulation. Transmission electron microscopy of fibroblasts of four patients with variable severity and of induced pluripotent stem cell-derived neurons from two patients with developmental epileptic encephalopathies showed electron-dense inclusions, lipid droplets, osmiophilic material and lamellated membrane structures resembling phospholipids. Quantitative assessment in induced pluripotent stem cell-derived neurons identified significantly smaller lysosomes. ATP6V1A-related encephalopathy represents a new paradigm among lysosomal disorders. It results from a dysfunctional endo-lysosomal membrane protein causing altered pH homeostasis. Its pathophysiology implies intracellular accumulation of substrates whose composition remains unclear, and a combination of developmental brain abnormalities and neurodegenerative changes established during prenatal and early postanal development, whose severity is variably determined by specific pathogenic variants.


Assuntos
Encefalopatias , Epilepsia , Deficiência Intelectual , Espasmos Infantis , ATPases Vacuolares Próton-Translocadoras , Trifosfato de Adenosina , Atrofia , Criança , Homeostase , Humanos , Lactente , Lisossomos , Fenótipo
9.
Oncol Lett ; 23(2): 60, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34992692

RESUMO

Taxanes are important drugs used in the treatment of breast cancer; however, some cancer types are taxane-resistant. The aim of the present study was to investigate the underlying mechanisms of taxane resistance using whole-exome sequencing (WES). Six patients with breast cancer whose tumors responded well to anthracycline treatment but grew rapidly during neoadjuvant taxane-based chemotherapy, were included in the present study. WES of samples from these patients was carried out to identify somatic mutations of candidate genes thought to affect taxane resistance, and the candidate proteins were structurally modeled. The mRNA and protein expression levels of these candidate genes in other breast cancers treated with taxanes were also examined. Nine variants common to all six patients were identified and two of these [R552P in V-type proton ATPase catalytic subunit A (ATP6V1A) and T114P in apolipoprotein B MRNA editing enzyme catalytic subunit 3F (APOBEC3F)] were selected. The results also showed that, protein-structure visualization suggested that these mutations may cause structural changes. The Kaplan-Meier analyses revealed that higher APT6V1A and APOBEC3F expression levels were significantly associated with poorer disease-free survival (DFS) and overall survival. Moreover, multivariate analysis identified high ATP6V1A mRNA expression as an independent risk factor for poor DFS. Two specific mutations that might affect taxane resistance were identified. Thus, these results suggest that breast cancer patients receiving taxanes who have high ATP6V1A or APOBEC3F expression levels may have shorter survival.

10.
Adv Exp Med Biol ; 1348: 273-309, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34807425

RESUMO

Cutis laxa (CL) syndromes are a large and heterogeneous group of rare connective tissue disorders that share loose redundant skin as a hallmark clinical feature, which reflects dermal elastic fiber fragmentation. Both acquired and congenital-Mendelian- forms exist. Acquired forms are progressive and often preceded by inflammatory triggers in the skin, but may show systemic elastolysis. Mendelian forms are often pleiotropic in nature and classified upon systemic manifestations and mode of inheritance. Though impaired elastogenesis is a common denominator in all Mendelian forms of CL, the underlying gene defects are diverse and affect structural components of the elastic fiber or impair metabolic pathways interfering with cellular trafficking, proline synthesis, or mitochondrial functioning. In this chapter we provide a detailed overview of the clinical and molecular characteristics of the different cutis laxa types and review the latest insights on elastic fiber assembly and homeostasis from both human and animal studies.


Assuntos
Cútis Laxa , Animais , Cútis Laxa/genética , Tecido Elástico , Homeostase , Humanos , Redes e Vias Metabólicas , Síndrome
11.
J Inherit Metab Dis ; 44(4): 972-986, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33320377

RESUMO

Several inborn errors of metabolism show cutis laxa as a highly recognizable feature. One group of these metabolic cutis laxa conditions is autosomal recessive cutis laxa type 2 caused by defects in v-ATPase components or the mitochondrial proline cycle. Besides cutis laxa, muscular hypotonia and cardiac abnormalities are hallmarks of autosomal recessive cutis laxa type 2D (ARCL2D) due to pathogenic variants in ATP6V1A encoding subunit A of the v-ATPase. Here, we report on three affected individuals from two families with ARCL2D in whom we performed whole exome and Sanger sequencing. We performed functional studies in fibroblasts from one individual, summarized all known probands' clinical, molecular, and biochemical features and compared them, also to other metabolic forms of cutis laxa. We identified novel missense and the first nonsense variant strongly affecting ATP6V1A expression. All six ARCL2D affected individuals show equally severe cutis laxa and dysmorphism at birth. While for one no information was available, two died in infancy and three are now adolescents with mild or absent intellectual disability. Muscular weakness, ptosis, contractures, and elevated muscle enzymes indicated a persistent myopathy. In cellular studies, a fragmented Golgi compartment, a delayed Brefeldin A-induced retrograde transport and glycosylation abnormalities were present in fibroblasts from two individuals. This is the second and confirmatory report on pathogenic variants in ATP6V1A as the cause of this extremely rare condition and the first to describe a nonsense allele. Our data highlight the tremendous clinical variability of ATP6V1A related phenotypes even within the same family.


Assuntos
Cútis Laxa/genética , Mutação de Sentido Incorreto , ATPases Vacuolares Próton-Translocadoras/genética , Adolescente , Alelos , Estudos de Casos e Controles , Fibroblastos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Linhagem , Fenótipo
12.
J Biol Chem ; 296: 100096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33208464

RESUMO

Rabies virus (RABV) matrix protein (M) plays crucial roles in viral transcription, replication, assembly, and budding; however, its function during the early stage of virus replication remains unknown. Here, we mapped the protein interactome between RABV M and human host factors using a proteomic approach, finding a link to the V-type proton ATPase catalytic subunit A (ATP6V1A), which is located in the endosomes where RABV first enters. By downregulating or upregulating ATP6V1A expression in HEK293T cells, we found that ATP6V1A facilitated RABV replication. We further found that ATP6V1A was involved in the dissociation of incoming viral M proteins during viral uncoating. Coimmunoprecipitation demonstrated that M interacted with the full length or middle domain of ATP6V1A, which was dependent on the lysine residue at position 256 and the glutamic acid residue at position 279. RABV growth and uncoating in ATP6V1A-depleted cells was restored by trans-complementation with the full length or interaction domain of ATP6V1A. Moreover, stably overexpressed ATP6V1A enhanced RABV growth in Vero cells, which are used for the production of rabies vaccine. Our findings identify a new partner for RABV M proteins and establish a new role of ATP6V1A by promoting virion uncoating during RABV replication.


Assuntos
ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Chlorocebus aethiops , Células HEK293 , Humanos , Imunoprecipitação , Espectrometria de Massas , Plasmídeos/genética , Proteômica , Interferência de RNA , Raiva/imunologia , Raiva/prevenção & controle , Vacina Antirrábica/imunologia , Vacina Antirrábica/uso terapêutico , Vírus da Raiva/imunologia , Vírus da Raiva/patogenicidade , ATPases Vacuolares Próton-Translocadoras/genética , Células Vero , Replicação Viral/genética , Replicação Viral/fisiologia
13.
Neuron ; 109(2): 257-272.e14, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33238137

RESUMO

To identify the molecular mechanisms and novel therapeutic targets of late-onset Alzheimer's Disease (LOAD), we performed an integrative network analysis of multi-omics profiling of four cortical areas across 364 donors with varying cognitive and neuropathological phenotypes. Our analyses revealed thousands of molecular changes and uncovered neuronal gene subnetworks as the most dysregulated in LOAD. ATP6V1A was identified as a key regulator of a top-ranked neuronal subnetwork, and its role in disease-related processes was evaluated through CRISPR-based manipulation in human induced pluripotent stem cell-derived neurons and RNAi-based knockdown in Drosophila models. Neuronal impairment and neurodegeneration caused by ATP6V1A deficit were improved by a repositioned compound, NCH-51. This study provides not only a global landscape but also detailed signaling circuits of complex molecular interactions in key brain regions affected by LOAD, and the resulting network models will serve as a blueprint for developing next-generation therapeutic agents against LOAD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Encéfalo/fisiologia , Bases de Dados Genéticas , Redes Reguladoras de Genes/fisiologia , Transdução de Sinais/fisiologia , Doença de Alzheimer/patologia , Animais , Animais Geneticamente Modificados , Encéfalo/patologia , Bases de Dados Genéticas/tendências , Drosophila melanogaster , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Análise de Sequência de RNA/métodos
14.
Biochim Biophys Acta Gen Subj ; 1864(3): 129496, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31786107

RESUMO

BACKGROUND: Germline mutations in heat shock factor 4 (HSF4) cause congenital cataracts. Previously, we have shown that HSF4 is involved in regulating lysosomal pH in mouse lens epithelial cell in vitro. However, the underlying mechanism remains unclear. METHODS: HSF4-deficient mouse lens epithelial cell lines and zebrafish were used in this study. Immunoblotting and quantitative RT-PCR were used for expression analysis. The protein-protein interactions were tested with GST-pull downs. The lysosomes were fractioned by ultracentrifugation. RESULTS: HSF4 deficiency or knock down of αB-crystallin elevates lysosomal pH and increases the ubiquitination and degradation of ATP6V1A by the proteasome. αB-crystallin localizes partially in the lysosome and interacts solely with the ATP6V1A protein of the V1 complex of V-ATPase. Furthermore, αB-crystallin can co-precipitate with mTORC1 and ATP6V1A in GST pull down assays. Inhibition of mTORC1 by rapamycin or siRNA can lead to dissociation of αB-crystallin from the ATP6V1A and mTORC1complex, shortening the half-life of ATP6V1A and increasing the lysosomal pH. Mutation of ATP6V1A/S441A (the predicted mTOR phosphorylation site) reduces its association with αB-crystallin. In the zebrafish model, HSF4 deficiency reduces αB-crystallin expression and elevates the lysosomal pH in lens tissues. CONCLUSION: HSF4 regulates lysosomal acidification by controlling the association of αB-crystallin with ATP6V1A and mTOR and regulating ATP6V1A protein stabilization. GENERAL SIGNIFICANCE: This study uncovers a novel function of αB-crystallin, demonstrating that αB-crystallin can regulate lysosomal ATP6V1A protein stabilization by complexing to ATP6V1A and mTOR. This highlights a novel mechanism by which HSF4 regulates the proteolytic process of organelles during lens development.


Assuntos
Fatores de Transcrição de Choque Térmico/metabolismo , Lisossomos/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Animais , Linhagem Celular , Cristalinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Humanos , Cristalino/metabolismo , Lisossomos/fisiologia , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação , ATPases Vacuolares Próton-Translocadoras/metabolismo , Peixe-Zebra/metabolismo
15.
Mol Ther Nucleic Acids ; 10: 361-375, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29499948

RESUMO

The reciprocal interaction between influenza virus and host microRNAs (miRNAs) has been implicated in the regulation of viral replication and host tropism. However, the global roles of the cellular miRNA repertoire and the mechanisms of miRNA-mediated antiviral defense await further elucidation. In this study, we systematically screened 297 cellular miRNAs from human and mouse epithelial cells and identified five inhibitory miRNAs that efficiently inhibited influenza virus replication in vitro and in vivo. Among these miRNAs, hsa-mir-127-3p, hsa-mir-486-5p, hsa-mir-593-5p, and mmu-mir-487b-5p were found to target at least one viral gene segment of both the human seasonal influenza H3N2 and the attenuated PR8 (H1N1) virus, whereas hsa-miR-1-3p inhibited viral replication by targeting the supportive host factor ATP6V1A. Moreover, the number of miRNA binding sites in viral RNA segments was positively associated with the activity of host miRNA-induced antiviral defense. Treatment with a combination of the five miRNAs through agomir delivery pronouncedly suppressed viral replication and effectively improved protection against lethal challenge with PR8 in mice. These data suggest that the highly expressed miRNAs in respiratory epithelial cells elicit effective antiviral defenses against influenza A viruses and will be useful for designing miRNA-based therapies against viral infection.

16.
Am J Hum Genet ; 100(2): 216-227, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28065471

RESUMO

Defects of the V-type proton (H+) ATPase (V-ATPase) impair acidification and intracellular trafficking of membrane-enclosed compartments, including secretory granules, endosomes, and lysosomes. Whole-exome sequencing in five families affected by mild to severe cutis laxa, dysmorphic facial features, and cardiopulmonary involvement identified biallelic missense mutations in ATP6V1E1 and ATP6V1A, which encode the E1 and A subunits, respectively, of the V1 domain of the heteromultimeric V-ATPase complex. Structural modeling indicated that all substitutions affect critical residues and inter- or intrasubunit interactions. Furthermore, complexome profiling, a method combining blue-native gel electrophoresis and liquid chromatography tandem mass spectrometry, showed that they disturb either the assembly or the stability of the V-ATPase complex. Protein glycosylation was variably affected. Abnormal vesicular trafficking was evidenced by delayed retrograde transport after brefeldin A treatment and abnormal swelling and fragmentation of the Golgi apparatus. In addition to showing reduced and fragmented elastic fibers, the histopathological hallmark of cutis laxa, transmission electron microscopy of the dermis also showed pronounced changes in the structure and organization of the collagen fibers. Our findings expand the clinical and molecular spectrum of metabolic cutis laxa syndromes and further link defective extracellular matrix assembly to faulty protein processing and cellular trafficking caused by genetic defects in the V-ATPase complex.


Assuntos
Cútis Laxa/genética , Mutação de Sentido Incorreto , ATPases Vacuolares Próton-Translocadoras/genética , Adolescente , Alelos , Sequência de Aminoácidos , Estudos de Casos e Controles , Criança , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Glicosilação , Complexo de Golgi/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Conformação Proteica , Transporte Proteico , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA