Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 819
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124939, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39137710

RESUMO

Guanosine nucleosides and nucleotides have the peculiar ability to self-assemble in water to form supramolecular complex architectures from G-quartets to G-quadruplexes. G-quadruplexes exhibit in turn a large liquid crystalline lyotropic polymorphism, but they eventually cross-link or entangle to form a densely connected 3D network (a molecular hydrogel), able to entrap very large amount of water (up to the 99% v/v). This high water content of the hydrogels enables tunable softness, deformability, self-healing, and quasi-liquid properties, making them ideal candidates for different biotechnological and biomedical applications. In order to fully exploit their possible applications, Attenuated Total Reflection-Fourier Transform InfraRed (ATR-FTIR) spectroscopy was used to unravel the vibrational characteristics of supramolecular guanosine structures. First, the characteristic vibrations of the known quadruplex structure of guanosine 5'-monophosphate, potassium salt (GMP/K), were investigated: the identified peaks reflected both the chemical composition of the sample and the formation of quartets, octamers, and quadruplexes. Second, the role of K+ and Na+ cations in promoting the quadruplex formation was assessed: infrared spectra confirmed that both cations induce the formation of G-quadruplexes and that GMP/K is more stable in the G-quadruplex organization. Finally, ATR-FTIR spectroscopy was used to investigate binary mixtures of guanosine (Gua) and GMP/K or GMP/Na, both systems forming G-hydrogels. The same G-quadruplex-based structure was found in both mixtures, but the proportion of Gua and GMP affected some features, like sugar puckering, guanine vibrations, and base stacking, reflecting the known side-to-side aggregation and bundle formation occurring in these binary systems.


Assuntos
Quadruplex G , Guanosina , Hidrogéis , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Guanosina/química , Hidrogéis/química , Potássio/química , Potássio/análise , Vibração , Guanosina Monofosfato/química
2.
Sci Rep ; 14(1): 21546, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39278957

RESUMO

The current detection method for Chikungunya Virus (CHIKV) involves an invasive and costly molecular biology procedure as the gold standard diagnostic method. Consequently, the search for a non-invasive, more cost-effective, reagent-free, and sustainable method for the detection of CHIKV infection is imperative for public health. The portable Fourier-transform infrared coupled with Attenuated Total Reflection (ATR-FTIR) platform was applied to discriminate systemic diseases using saliva, however, the salivary diagnostic application in viral diseases is less explored. The study aimed to identify unique vibrational modes of salivary infrared profiles to detect CHIKV infection using chemometrics and artificial intelligence algorithms. Thus, we intradermally challenged interferon-gamma gene knockout C57/BL6 mice with CHIKV (20 µl, 1 X 105 PFU/ml, n = 6) or vehicle (20 µl, n = 7). Saliva and serum samples were collected on day 3 (due to the peak of viremia). CHIKV infection was confirmed by Real-time PCR in the serum of CHIKV-infected mice. The best pattern classification showed a sensitivity of 83%, specificity of 86%, and accuracy of 85% using support vector machine (SVM) algorithms. Our results suggest that the salivary ATR-FTIR platform can discriminate CHIKV infection with the potential to be applied as a non-invasive, sustainable, and cost-effective detection tool for this emerging disease.


Assuntos
Algoritmos , Inteligência Artificial , Febre de Chikungunya , Vírus Chikungunya , Saliva , Animais , Saliva/virologia , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/virologia , Vírus Chikungunya/isolamento & purificação , Vírus Chikungunya/genética , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273305

RESUMO

Amyloidosis diagnosis relies on Congo red staining with immunohistochemistry and immunofluorescence for subtyping but lacks sensitivity and specificity. Laser-microdissection mass spectroscopy offers better accuracy but is complex and requires extensive sample preparation. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy offers a promising alternative for amyloidosis characterization. Cardiac tissue sections from nine patients with amyloidosis and 20 heart transplant recipients were analyzed using ATR-FTIR spectroscopy. Partial least squares discriminant analysis (PLS-DA), principal component analysis (PCA), and hierarchical cluster analysis (HCA) models were used to differentiate healthy post-transplant cardiac tissue from amyloidosis samples and identify amyloidosis subtypes [κ light chain (n = 1), λ light chain (n = 3), and transthyretin (n = 5)]. Leave-one-out cross-validation (LOOCV) was employed to assess the performance of the PLS-DA model. Significant spectral differences were found in the 1700-1500 cm-1 and 1300-1200 cm-1 regions, primarily related to proteins. The PLS-DA model explained 85.8% of the variance, showing clear clustering between groups. PCA in the 1712-1711 cm-1, 1666-1646 cm-1, and 1385-1383 cm-1 regions also identified two clear clusters. The PCA and the HCA model in the 1646-1642 cm-1 region distinguished κ light chain, λ light chain, and transthyretin cases. This pilot study suggests ATR-FTIR spectroscopy as a novel, non-destructive, rapid, and inexpensive tool for diagnosing and subtyping amyloidosis. This study was limited by a small dataset and variability in measurements across different instruments and laboratories. The PLS-DA model's performance may suffer from overfitting and class imbalance. Larger, more diverse datasets are needed for validation.


Assuntos
Amiloidose , Análise de Componente Principal , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Projetos Piloto , Amiloidose/diagnóstico , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Análise dos Mínimos Quadrados , Transplante de Coração , Análise por Conglomerados
4.
J Hazard Mater ; 479: 135563, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39226689

RESUMO

Given the convenience of using plastics, addressing the growing concerns about their hazardous health effects is imperative. Consequently, a comprehensive risk assessment is necessary to gauge the potential harm microplastics pose. With its urgent call to action, this study aimed to investigate the indoor source and abundance of microplastics in private dental units during routine professional activities. The current analyzed microplastic quantity variations based on morphological characteristics, seasonal fluctuations and polymer-types. The polymer hazard index (PHI) was calculated to evaluate the significant human health risks posed to dental professionals by inhalation of microplastics. Dust samples were collected using a clean brush and steel pan from various flat and horizontal surfaces within each dental unit. The study found that clinical dental units had fewer microplastics (587 ± 184.9 MPs/g/day) than teaching hospitals (1083.80 ± 133.7MPs/g/day), with comparatively more abundance in winter (31 %). ATR-FTIR analysis determined polyethylene terephthalate to be a more abundant polymer (39 %). This study also found an average inhalation microplastic intake risk of 20.23 MP/g/day and 5259.85 MP/g/year for clinical and 29.45 MP/g/day and 765.12 MP/g/year for teaching hospital dental units. Female dental professionals have 1.1 times more microplastic inhalation risks than male dental professionals. According to PHI findings, overall minor to medium polymer risk was determined. In conclusion, this evidence-based research underscores the urgent need for a shift towards more sustainable practices in the dental healthcare sector. Dental professionals should prioritize using non-plastic material protective equipment and a proper ventilation system to reduce exposure to these particles.

5.
Carbohydr Polym ; 345: 122591, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227127

RESUMO

Contrast matching by isotopic exchange in cellulose allows visualizing functional groups, biomolecules, polymers and nanoparticles embedded in cellulosic composites. This isotopic exchange varies the scattering length density of cellulose to match its contrast with the background network. Here, contrast matching of microcrystalline-cellulose (MCC) and the functionalized nanocellulose-fiber (CNF) and cellulose nanocrystals (CNC) are elucidated by small angle neutron scattering (SANS). Results show no isotopic exchange occurs for the CNF surface functionalized with carboxyl nor for the CNC-High with a high sulfate groups concentration. Both CNC-Low, with low sulfate groups, and MCC exchange 1H with 1D in D2O. This is due to the high exchange probability of the labile C6 position primary -OH group. The structure of thermo-responsive poly-N-isopropylacrylamide (PNIPAM) chains grafted onto CNF (PNIPAM-grafted-CNF) was extracted by CNF contrast matching near the lower critical solution temperature. Contrast matching eradicates the CNF scattering to retain only the scattering from the grafted-PNIPAM chains. The coil to globule thermo-transition of PNIPAM was revealed by the power law variation from q-1.3 to q-4 in SANS. Isotopic exchange in functionalized cellulosic materials reveals the nano- and micro-scale structure of its individual components. This improved visualization by contrast matching can be extended to carbohydrate polymers to engineer biopharmaceutical and food applications.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39227534

RESUMO

Microplastic studies investigating concentrations in water are numerous, but the majority of microplastics settle and are retained in sediment, and higher concentrations are regularly reported in sediments. Thus, MPs accumulation may be more threatening to benthic fish living in sediments than to pelagic fish. The presence, abundance and diversity of microplastics were investigated by collecting samples from two pelagic, European anchovy, and horse mackerel and two benthic fish species, red mullet, and whiting that are popularly consumed in Giresun province of Türkiye, located on the southern coast of the Black Sea. Visual classification and chemical compositions of microplastics was performed using a light microscope and ATR-FTIR spectrophotometry, consecutively. The overall incidence and mean microplastics abundance in sampled fishes were 17 and 1.7 ± 0.18 MP fish-1, respectively. MPs were within the range of 0.026-5 mm in size. In most of the cases, the MP was black in color with 41%. With the rates of 56%, polypropylene was the predominant polymer type. The most dominant MP type was identified as fiber followed by fragments and pellets. The relationship between MP amounts in fish and Fulton condition factor was not strong enough to establish a cause-effect relationship.

7.
Environ Monit Assess ; 196(10): 906, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39249122

RESUMO

Globally, the environmental impacts of microplastics (MPs) as emerging pollutants have drawn a lot of attention. This study aimed to assess the distribution and associated potential ecotoxic risk of MPs in the water and sediment of Nigeria's offshore waters. Water and sediment samples were collected from sixteen (16) stations in October 2023 and analysed using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and stereomicroscopy. For physical characterization, the composition of MPs in sediment and water was 73 particles/kg and 48 particles/L, respectively, while the ATR-FTIR composition at the Eastern Zone (EZ) was 705 particles/L and 1033 particles/kg, the Central Zone (CZ) was 212 particles/L and 338 particles/kg, and the Western Zone (WZ) was 223 particles/L and 218 particles/kg. The identified MPs shapes were filaments, plastic films, fibre, and microbeads. Polychloroprene (CR) (18.10% and 16.86%) at EZ and CZ and polyvinyl alcohol (PVA) (20.64%) at WZ were most abundant in sediment, respectively. In comparison, PVA (22.3%, 22.2%, and 21.08%) was most abundant across EZ, CZ, and WZ in water. The polymer-based plastic contamination factors (ppCf) and pollution load index (pPLI) showed low contamination and pollution load, and the polymer risk index (pRi) showed medium and low risk in water and sediment, respectively. The polymer ecological risks index (pERI) showed a high-risk level (pERI: 1,001-10,000) in water and sediment across the EZ, CZ, and WZ of the Nigerian offshore waters. In marine environments, an extensive environmental monitoring program and trend forecasting for microplastics are crucial. This study will provide theoretical and technical support for developing efficient legislation or policy on the prevention and control of plastic pollution.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Nigéria , Microplásticos/análise , Medição de Risco , Água do Mar/química
8.
Toxicol Res (Camb) ; 13(4): tfae126, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39132191

RESUMO

Background: Synthetic food dyes are being exponentially used in food products and scarce studies regarding their toxicities and safety raise concern. Erythrosine is one of the synthetic food dyes being used in jams, fig, pineapple marmalades, dairy products, soft drinks, pickles, relishes, smoked fish, cheese, ketchup, maraschino cherries and a variety of other foods. Methodology: In this study the cyto-genotoxic effect of erythrosine was evaluated, using root meristematic cells of Allium cepa for the cellular and molecular alternations at concentrations 0.1, 0.25, 0.5 and 1 mg/mL. Results: The results revealed a significant decrease of 57.81% in the mitotic index after 96 h at the 0.1 mg/mL concentration. In biochemical analysis, the malondialdehyde content increased significantly (5.47-fold), while proline content, catalase activity and superoxide dismutase activity decreased gradually in a concentration-dependent manner showing a maximum decrease of 78.11%, 64.68% and 61.73% respectively at the highest concentration after 96 h duration. The comet assay revealed increased DNA damage with increasing concentration and attenuated total reflectance- Fourier transform infrared spectroscopy (ATR-FTIR) analysis showed significant alterations in biomolecules as indicated by multivariate analysis, i.e. Principal Component Analysis (PCA). Furthermore, molecular docking demonstrated a strong binding energy (Gbest = -11.46 kcal/mol) and an inhibition constant (Ki) of 3.96 nM between erythrosine and the DNA minor groove. Conclusion: The present study's findings revealed the cytotoxic and genotoxic potential of erythrosine on A. cepa root cells. Further, the study also proposed the usefulness of A. cepa as a model system for studying the toxicity of food additives.

9.
Food Chem X ; 23: 101661, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39113735

RESUMO

The taste and aroma of edible mushrooms, which is a criterion of judgment for consumer purchases, are influenced by amino acids and their metabolites. Sixty-eight amino acids and their metabolites were identified using liquid chromatography mass spectrometry (LC-MS), and 16 critical marker components were screened. The chemical composition of different species of boletes was characterized by two-dimensional correlation spectroscopy (2DCOS) to determine the sequence of molecular vibrations or group changes. Identification of boletes species based on partial least squares discrimination (PLS-DA) combined with Fourier transform near-infrared spectroscopy (FT-NIR) and Fourier transform infrared spectroscopy (ATR-FTIR), residual convolutional neural network (ResNet) combined with three-dimensional correlation spectroscopy (3DCOS) was performed with 100% accuracy. Partial least squares regression (PLSR) analysis showed that FT-NIR and ATR-FTIR spectra were highly correlated with the amino acids and their metabolites detected by LC-MS. All models had achieved an R2p of 0.911 and an RPD >3.0. The results show that FT-NIR and ATR-FTIR spectroscopy in combination with chemometrics methods can be used for rapid species identification and estimation of amino acids and their metabolites content in boletes. This study provides new techniques and ideas for the authenticity of species information and the quality assessment of boletes.

10.
Adv Sci (Weinh) ; : e2405154, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159072

RESUMO

Electrochemical CO2 reduction reaction (CO2RR) to produce value-added multi-carbon chemicals has been an appealing approach to achieving environmentally friendly carbon neutrality in recent years. Despite extensive research focusing on the use of CO2 to produce high-value chemicals like high-energy-density hydrocarbons, there have been few reports on the production of propane (C3H8), which requires carbon chain elongation and protonation. A rationally designed 0D/2D hybrid Cu2O anchored-Ti3C2Tx MXene catalyst (Cu2O/MXene) is demonstrated with efficient CO2RR activity in an aqueous electrolyte to produce C3H8. As a result, a significantly high Faradaic efficiency (FE) of 3.3% is achieved for the synthesis of C3H8 via the CO2RR with Cu2O/MXene, which is ≈26 times higher than that of Cu/MXene prepared by the same hydrothermal process without NH4OH solution. Based on in-situ attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and density functional theory (DFT) calculations, it is proposed that the significant electrocatalytic conversion originated from the synergistic behavior of the Cu2O nanoparticles, which bound the *C2 intermediates, and the MXene that bound the *CO coupling to the C3 intermediate. The results disclose that the rationally designed MXene-based hybrid catalyst facilitates multi-carbon coupling as well as protonation, thereby manipulating the CO2RR pathway.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39090295

RESUMO

Understanding the fates and impacts of microplastics requires information on their sizes, polymer types, concentrations, and spatial and temporal distributions. Here, we focused on large (LMPs, 500 µm to 5 mm) and small (SMPs, 25 to 500 µm) microplastics sampled with the exact same protocol in nine of the major European rivers during the seven months of the Tara Microplastic Expedition. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC-MS) analyses were used to determine the microplastics contents by number and mass. The median LMP concentration was 6.7 particles m-3, which was lower than those in other regions of the world (America and Asia). The SMP mass concentration was much higher to the LMP concentrations, with SMP/LMP ratios up to 1000 in some rivers. We did not observe a systematic positive effect of urban areas for the two size classes or polymers; this could be explained by the fact that the transport of microplastic is highly heterogeneous in rivers. We believe that this study has important implications for predictive models of plastics distribution and fate in aquatic environments.

12.
Discov Oncol ; 15(1): 350, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143357

RESUMO

Gastric cancer represents a significant public health challenge, necessitating advancements in early diagnostic methodologies. This investigation employed attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy to conduct a multivariate analysis of human serum. The study encompassed the examination of blood samples from 96 individuals diagnosed with gastric cancer and 96 healthy volunteers. Principal component analysis (PCA) was utilized to interpret the infrared spectral data of the serum samples. Specific spectral bands exhibiting intensity variations between the two groups were identified. The infrared spectral ranges of 3500 ~ 3000 cm⁻1, 1700 ~ 1600 cm⁻1, and 1090 ~ 1070 cm⁻1 demonstrated significant diagnostic value for gastric cancer, likely attributable to differences in protein conformation and nucleic acids. By employing machine learning algorithms to differentiate between gastric cancer patients (n = 96) and healthy controls (n = 96), we achieved a sensitivity of up to 89.7% and a specificity of 87.2%. Receiver operating characteristic (ROC) analysis yielded an area under the curve (AUC) of 0.901. These findings underscore the potential of our serum-based ATR-FTIR spectroscopy examination method as a straightforward, minimally invasive, and reliable diagnostic test for the detection of gastric cancer.

13.
Syst Biol Reprod Med ; 70(1): 228-239, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39150884

RESUMO

Recurrent spontaneous miscarriage refers to the repeated loss of two or more clinically detected pregnancies occurring within 24 weeks of gestation. No identifiable cause has been identified for nearly 50% of these cases. This group is referred to as idiopathic recurrent spontaneous miscarriage (IRSM) or miscarriage of unknown origin. Due to lack of robust scientific evidence, guidelines on the diagnosis and management of IRSM are not well defined and often contradictory. This motivates us to explore the vibrational fingerprints of endometrial tissue in these women. Endometrial tissues were collected from women undergoing IRSM (n = 20) and controls (n = 20) corresponding to the window of implantation. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra were obtained within the range of 400-4000 cm-1 using Agilent Cary 630 FTIR spectrometer. Raman spectra were also generated within the spectral window of 400-4000 cm-1 using Thermo Fisher Scientific, DXR Raman spectrophotometer. Based on the limited molecular information provided by a single spectroscopic tool, fusion strategy combining Raman and ATR-FTIR spectroscopic data of IRSM is proposed. The significant features were extracted applying principal component analysis (PCA) and wavelet threshold denoising (WTD) and fused spectral data used as input into support vector machine (SVM), adaptive boosting (AdaBoost) and decision tree (DT) models. Altered molecular vibrations associated with proteins, glutamate, and lipid metabolism were observed in IRSM using Raman spectroscopy. FTIR analysis indicated changes in the molecular vibrations of lipids and proteins, collagen dysregulation and impaired glucose metabolism. Combination of both spectroscopic data using mid-level fusion (MLF: 92% using AdaBoost and DT models) and high-level fusion (HLF: 92% using SVM models) methods showed improved IRSM classification accuracy as compared to individual spectral models. Our results indicate that spectral fusion technology hold promise in enhancing diagnostic accuracy of IRSM in clinical settings. Validation of these findings in a larger patient population is underway.


Assuntos
Aborto Habitual , Análise Espectral Raman , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Feminino , Aborto Habitual/diagnóstico , Adulto , Máquina de Vetores de Suporte , Gravidez , Endométrio/metabolismo , Endométrio/patologia , Endométrio/química , Análise de Componente Principal , Estudos de Casos e Controles , Árvores de Decisões
14.
Med Vet Entomol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093723

RESUMO

Estimating the age of immature blow flies is of great importance for forensic entomology. However, no gold-standard technique for an accurate determination of the intra-puparial age has yet been established. Fourier transform infrared (FTIR) spectroscopy is a method to (bio-)chemically characterise material based on the absorbance of electromagnetic energy by functional groups of molecules. In recent years, it also has become a powerful tool in forensic and life sciences, as it is a fast and cost-effective way to characterise all kinds of material and biological traces. This study is the first to collect developmental reference data on the changes in absorption spectra during the intra-puparial period of the forensically important blow fly Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae). Calliphora vicina was reared at constant 20°C and 25°C and specimens were killed every other day throughout their intra-puparial development. In order to investigate which part yields the highest detectable differences in absorption spectra throughout the intra-puparial development, each specimen was divided into two different subsamples: the pupal body and the former cuticle of the third instar, that is, the puparium. Absorption spectra were collected with a FTIR spectrometer coupled to an attenuated total reflection (ATR) unit. Classification accuracies of different wavenumber regions with two machine learning models, i.e., random forests (RF) and support vector machines (SVMs), were tested. The best age predictions for both temperature settings and machine learning models were obtained by using the full spectral range from 3700 to 600 cm-1. While SVMs resulted in better accuracies for C. vicina reared at 20°C, RFs performed almost as good as SVMs for data obtained from 25°C. In terms of sample type, the pupal body gave smoother spectra and usually better classification accuracies than the puparia. This study shows that FTIR spectroscopy is a promising technique in forensic entomology to support the estimation of the minimum post-mortem interval (PMImin), by estimating the age of a given insect specimen.

15.
Molecules ; 29(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39202842

RESUMO

Vitamin D3 is a crucial fat-soluble pro-hormone essential for bolstering bone health and fortifying immune responses within the human body. Orodispersible films (ODFs) serve as a noteworthy formulation strategically designed to enhance the rapid dissolution of vitamin D, thereby facilitating efficient absorption in patients. This innovative approach not only streamlines the assimilation process but also plays a pivotal role in optimizing patient compliance and therapeutic outcomes. The judicious utilization of such advancements underscores a paradigm shift in clinical strategies aimed at harnessing the full potential of vitamin D for improved patient well-being. This study aims to examine the vitamin D3 ODF structure using spectroscopic techniques to analyze interactions with excipients like mannitol. Fourier-transform infrared spectroscopy (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy were utilized to assess molecular composition, intermolecular bonding, and vitamin D3 stability. Understanding these interactions is essential for optimizing ODF formulation, ensuring stability, enhancing bioavailability, and facilitating efficient production. Furthermore, this study involves a translational approach to interpreting chemical properties to develop an administration protocol for ODFs, aiming to maximize absorption and minimize waste. In conclusion, understanding the characterized chemical properties is pivotal for translating them into effective self-administration modalities for Vitamin D films.


Assuntos
Colecalciferol , Colecalciferol/química , Espectroscopia de Infravermelho com Transformada de Fourier , Humanos , Administração Oral , Espectrofotometria Ultravioleta , Excipientes/química , Solubilidade , Disponibilidade Biológica
16.
Sci Rep ; 14(1): 19979, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198598

RESUMO

The overarching challenge of this research is setting up a procedure to select the most appropriate fraction from complex, heterogeneous materials such as historic mortars in case of radiocarbon dating. At present, in the international community, there is not a unique and fully accepted way of mortar sample preparation to systematically obtain accurate results. With this contribution, we propose a strategy for selecting suitable mortar samples for radiocarbon dating of anthropogenic calcite in binder or lump. A four-step procedure is proposed: (I) good sampling strategies along with architectural and historical surveys; (II) mineralogical, petrographic, and chemical characterization of mortars to evaluate the feasibility of sample dating; (III) a non-destructive multi-analytical characterization of binder-rich portions to avoid geogenic calcite contamination; (IV) carbonate micro-sample preparation and accelerator mass spectrometer (AMS) measurements. The most innovative feature of the overall procedure relies on the fact that, in case of positive validation in step III, exactly the same material is treated and measured in step IV. The paper aims to apply this procedure to the ancient mortar of the Florentine historical building (Trebbio Castle), selecting micro-samples suitable for dating in natural hydraulic mortars. The discussion of the mortar dating results with the historical-archaeological hypotheses provided significant insights into the construction history of the building.

17.
Heliyon ; 10(15): e35552, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170150

RESUMO

In this investigation, novel cellulose fibers were acquired from the Bassia Indica plant to serve as a reinforcement source in composite materials. The morphological characteristics were studied using Scanning Electron Microscopy (SEM). The surface chemistry, crystallinity, and functional groups of Bassia Indica fibers were analyzed using X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX) spectroscopy, and Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR), which assess the crystal structure, elemental composition, and surface functional groups, respectively. The thermal behavior of Bassia Indica fibers were assessed through Thermogravimetric Analysis (TGA). Anatomical techniques demonstrated the abundant presence of fibroblasts in the fibers. The presence of lignocellulosic fiber (lignin, cellulose and hemicellulose) was confirmed through ATR-FTIR analysis. The analysis of physical properties unveiled a fiber density of 1.065 ± 0.025 g/cm³ and a diameter of 145.58 ± 7.89 µm. The crystalline size of Bassia Indica fibers reached 2.23 nm, with a crystallinity index of 40.12 %, and an activation energy of 93.78 kJ/mol, TGA research revealed that Bassia Indica fibers are thermally stable up to 260.24 °C. Additionally, the fibers experienced maximum degradation at 321.23 °C. Weibull statistical analysis was performed using parameters 2 and 3 to calculate the observed dispersion in the experimental tensile results after analyzing the mechanical properties of the fibers possessing a tensile strength of 417.50 ± 7.08 MPa, Young's modulus of 17.46 ± 1.55 GPa, stress at failure of 1.17 ± 0.02 % and interfacial shear strength of 6.99 ± 1.10 MPa. The results were additionally compared to how they were stated in the relevant sources. Bassia Indica fibers can be considered a viable choice for reinforcing lightweight bio-composites.

18.
Mol Pharm ; 21(9): 4524-4540, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39109552

RESUMO

Molecular interactions between active pharmaceutical ingredients (APIs) and xanthine (XAT) derivatives were analyzed using singular value decomposition (SVD). XAT derivatives were mixed with equimolar amounts of ibuprofen (IBP) and diclofenac (DCF), and their dissolution behaviors were measured using high-performance liquid chromatography. The solubility of IBP decreased in mixtures with caffeine (CFN) and theophylline (TPH), whereas that of DCF increased in mixtures with CFN and TPH. No significant differences were observed between the mixtures of theobromine (TBR) or XAT with IBP and DCF. Mixtures with various molar ratios were analyzed using differential scanning calorimetry, X-ray powder diffraction, and Fourier-transform infrared spectroscopy to further explore these interactions. The results were subjected to SVD. This analysis provides valuable insights into the differences in interaction strength and predicted interaction sites between XAT derivatives and APIs based on the combinations that form mixtures. The results also showed the impact of the XAT derivatives on the dissolution behavior of IBP and DCF. Although IBP and DCF were found to form intermolecular interactions with CFN and TPH, these effects resulted in a reduction of the solubility of IBP and an increase in the solubility of DCF. The current approach has the potential to predict various interactions that may occur in different combinations, thereby contributing to a better understanding of the impact of health supplements on pharmaceuticals.


Assuntos
Cafeína , Varredura Diferencial de Calorimetria , Ibuprofeno , Pós , Solubilidade , Difração de Raios X , Cafeína/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Ibuprofeno/química , Varredura Diferencial de Calorimetria/métodos , Pós/química , Difração de Raios X/métodos , Teofilina/química , Cromatografia Líquida de Alta Pressão/métodos , Teobromina/química , Diclofenaco/química , Xantina/química
19.
Int J Food Microbiol ; 425: 110871, 2024 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-39178662

RESUMO

Using a solvent-casting method, a poly(lactic acid) (PLA) film incorporated with caprylic acid (CA) was developed as an active packaging against Salmonella enterica ser. Typhimurium and S. enteritidis to reduce the risk of microbial contamination during distribution and storage of meat. According to the minimum inhibitory concentration (MIC) test results of the natural antimicrobial, CA was introduced at 0.6, 1.2, 2.4, and 4.8 % (v/v) into neat PLA. The biofilm inhibitory effect and antimicrobial efficacy of CA-PLA film against both Salmonella strains, as well as the intermolecular interactions and barrier properties of CA-PLA film, were evaluated. Biofilm formation was reduced to below the detection limit (<1.0 log CFU/cm2) for both S. typhimurium and S. enteritidis when co-cultured overnight with 4.8 % CA-PLA film. The 4.8 % CA-PLA film achieved maximum log reductions of 2.58 and 1.65 CFU/g for S. typhimurium and 2.59 and 1.76 CFU/g for S. enteritidis on inoculated chicken breast and beef stored at 25 °C overnight, respectively, without any quality (color and texture) losses. CA maintained its typical chemical structure in the film, as confirmed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra. Furthermore, film surface morphology observations by field emission scanning electron microscopy (FESEM) showed that CA-PLA film was smoother than neat PLA film. No significant (P > 0.05) changes were observed for water vapor permeability and oxygen permeability by the addition of CA into PLA film, suggesting that CA-PLA film is a promising strategy for active packaging to control Salmonella contamination in the meat industry.


Assuntos
Biofilmes , Caprilatos , Embalagem de Alimentos , Carne , Testes de Sensibilidade Microbiana , Poliésteres , Salmonella typhimurium , Caprilatos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Embalagem de Alimentos/métodos , Poliésteres/farmacologia , Poliésteres/química , Carne/microbiologia , Animais , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Bovinos , Galinhas , Salmonella enteritidis/efeitos dos fármacos , Salmonella enteritidis/crescimento & desenvolvimento , Microbiologia de Alimentos , Contaminação de Alimentos/prevenção & controle , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Salmonella/efeitos dos fármacos , Salmonella/crescimento & desenvolvimento , Polímeros/farmacologia , Polímeros/química , Ácido Láctico/farmacologia
20.
Biomater Adv ; 164: 213982, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39098081

RESUMO

The efficiency of synthetic bone grafts can be evaluated either in osseous sites, to analyze osteoconduction or ectopically, in intramuscular or subcutaneous sites, to assess osteoinduction. Bone regeneration is usually evaluated in terms of the presence and quantity of newly formed bone, but little information is normally provided on the quality of this bone. Here, we propose a novel approach to evaluate bone quality by the combined use of spectroscopy techniques and nanoindentation. Calcium phosphate scaffolds with different architectures, either foamed or 3D-printed, that were implanted in osseous or intramuscular defects in Beagle dogs for 6 or 12 weeks were analyzed. ATR-FTIR and Raman spectroscopy were performed, and mineral-to-matrix ratio, crystallinity, and mineral and collagen maturity were calculated and mapped for the newly regenerated bone and the mature cortical bone from the same specimen. For all the parameters studied, the newly-formed bone showed lower values than the mature host bone. Hardness and elastic modulus were determined by nanoindentation and, in line with what was observed by spectroscopy, lower values were observed in the regenerated bone than in the cortical bone. While, as expected, all techniques pointed to an increase in the maturity of the newly-formed bone between 6 and 12 weeks, the bone found in the intramuscular samples after 12 weeks presented lower mineralization than the intraosseous counterparts. Moreover, scaffold architecture also played a role in bone maturity, with the foamed scaffolds showing higher mineralization and crystallinity than the 3D-printed scaffolds after 12 weeks.


Assuntos
Regeneração Óssea , Alicerces Teciduais , Animais , Cães , Regeneração Óssea/fisiologia , Alicerces Teciduais/química , Análise Espectral Raman/métodos , Fosfatos de Cálcio/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Osso e Ossos/química , Osso e Ossos/fisiologia , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA