Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.049
Filtrar
1.
Steroids ; : 109517, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39322098

RESUMO

Bile acids (BAs) are steroidal molecules that play important roles in nutrient absorption, distribution, and excretion. They also act on specific receptors implicated in various metabolic and inflammatory diseases demonstrating their importance as potential drug candidates. Accordingly, there has been a concerted effort to develop new BA derivatives to probe structure-activity relationships with the goal of discovering BA analogues with enhanced pharmacological properties. Among the many steroidal derivatisations reported, the formation of endocyclic azasteroids appeals due to their potential to deliver altered biological responses with minimal change to the steroidal superstructure. Here, we report the synthesis of 3-aza-obeticholic acid (6) via a regioconvergent route. Ammoniolysis of lactones, formed from an m-CPBA-mediated Baeyer-Villiger reaction on a 3-keto-OCA derivative, furnished protected intermediate amido-alcohols which were separately elaborated to amino-alcohols via Hofmann degradation with BAIB. Upon individual N-Boc-protection, these underwent annulation to the 3-aza-A-ring when subjected to either mesylation or a Dess-Martin oxidation/hydrogenation sequence. Global deprotection of the 3-aza-intermediate delivered 3-aza-OCA in ten steps and an overall yield of up to 19 %.

2.
European J Org Chem ; 27(9)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-39309710

RESUMO

Compared to ubiquitous functional groups such as alcohols, carboxylic acids, amines, and amides, which serve as central "actors" in most organic reactions, sulfamates, phosphoramidates, and di-tert-butyl silanols have historically been viewed as "extras". Largely considered functional group curiosities rather than launch-points of vital reactivity, the chemistry of these moieties is under-developed. Our research program has uncovered new facets of reactivity of each of these functional groups, and we are optimistic that the chemistry of these fascinating molecules can be developed into truly general transformations, useful for chemists across multiple disciplines. In the ensuing sections, I will describe our efforts to develop new reactions with these "unusual" functional groups, namely sulfamates, phosphoramidates, and di-tert-butyl silanols.

3.
Tetrahedron Chem ; 92024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39329156

RESUMO

A short diversity oriented total synthesis (DOTS) of substituted rutaecarpines, homo-luotonins, homo-vasicinone, homo-isaindigotones and homo-vasnetine has been achieved from the key tricyclic intermediate. The [6,6,6] tricyclic ketone, the mackinazolindione, was accessed from simple substrates i.e., quinazolinone diester obtained from the disubstituted anthranilamide which in turn was prepared from the coupling of amino acid ester and ethyl oxalyl chloride with isatoic anhydride and Dieckmann condensation chemistry.

4.
Chem Asian J ; : e202400834, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39305001

RESUMO

The synthesis and biosynthesis of the complex saxitoxin (STX) structure have garnered significant interest. Previously, we hypothesized that the tricyclic skeleton of STX originates from the monocyclic precursor 11-hydroxy-IntC'2 during biosynthesis, although direct evidence has been lacking. In this study, we identified conditions to synthesize a proposed tricyclic biosynthetic intermediate, 12,12-dideoxy-decarbamoyloxySTX (dd-doSTX), along with its 6-epimer (6-epi-dd-doSTX) and a bicyclic compound, in a single step from di-Boc protected 11-hydroxy-IntC'2. The reaction mechanism involves successive aza-Michael addition of a guanidino amine to the conjugated olefin. Notably, both dd-doSTX and 6-epi-dd-doSTX were detected in a toxin-producing cyanobacterium, suggesting that the biosynthetic enzymes may generate these compounds via similar mechanisms.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125083, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39260237

RESUMO

A novel alkaline pH-responsive probe based on an asymmetric aza-BODIPY was synthesized in a one-pot Schiff base formation reaction. This pH-sensitive probe comprises an asymmetric aza-BODIPY as the luminescent core, with a benzothiazole moiety connected via an imine bond serving as the recognition site. The probe exhibits a turn-off fluorescence response upon exposure to alkaline pH (9.6-12.4), while a bathochromic band in the absorption emerges due to its extended π-conjugation system, accompanied by a visible colorimetric change from yellow to orange to red. Furthermore, the probe responds linearly in the highly alkaline region, with a pKa of 11.65. The recognition mechanism of the probe towards alkaline pH relies on the deprotonation of the imine group on the aza-BODIPY core, leading to an enhanced degree of π-electron conjugation. The quenched fluorescence intensity is attributed to the increased non-radiative decay of the deprotonated form of the probe. The probe demonstrates high reliability for practical applications due to its photostability and reversibility. This study provides new insights into the design of probes for detecting high alkaline pH levels.

6.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 9): 981-985, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39267877

RESUMO

In the title compound, C33H29ClN2O2, the two piperidine rings of the di-aza-bicyclo moiety adopt distorted-chair conformations. Inter-molecular C-H⋯π inter-actions are mainly responsible for the crystal packing. The inter-molecular inter-actions were qu-anti-fied and analysed using Hirshfeld surface analysis, revealing that H⋯H inter-actions contribute most to the crystal packing (52.3%). The mol-ecular structure was further optimized by density functional theory (DFT) at the B3LYP/6-31 G(d,p) level and is compared with the experimentally determined mol-ecular structure in the solid state.

7.
Beilstein J Org Chem ; 20: 2114-2128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224232

RESUMO

Isocyanide is a promising synthetic reagent not only as a one-carbon homologation reagent but also as a nitrogen source for nitrogen-containing molecules. Because of their isoelectronic structure with carbon monoxide, isocyanides also react with nucleophiles, electrophiles, carbon radicals, and transition metal reagents, and are widely used in organic synthesis. On the other hand, the use of isocyanides in reactions with heteroatom radicals is limited. However, the reaction of isocyanides with heteroatom radicals is a promising synthetic tool for the construction of nitrogen-containing organic molecules modified with a variety of heteroatoms. In this Perspective, we review the addition and cyclization reactions of heteroatom radicals with isocyanides and discuss the synthetic prospects of the reaction of isocyanides with heteroatom radicals.

8.
Chem Asian J ; : e202400885, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258994

RESUMO

We report herein the synthesis of aza-BODIPY substituted with 1,4-benzodioxane-6-yl substituents at 3,5 positions of the chromophore system. Both pyrrole rings of the aza-BODIPY in question were substituted with bromine atoms in order to induce highly desirable photophysical properties, such as highly populated excited triplet state (T1) and long excited triplet-state lifetime (τT) of 21 µs. The photosensitized oxygenation of a model compounds, viz. DPBF, points to a high singlet oxygen and/or other ROS formation quantum yield of 0.42. The photosensitizer studied exhibited an absorption band within the so-called "therapeutic window", with λabs 678 nm. As estimated by CV/DPV measurements the 1,4-benzodioxane-6-yl substituted aza-BODIPYs studied exhibited a multi-electron oxidations at a relatively low potentials (Eox), pointing to the very good electron-donating properties of these molecules. High photostability and thermal stability was observed for all compounds studied. The good singlet oxygen quantum yield measured combined with an exceptional photostability makes this aza-BODIPY a promising candidate for applications such as photocatalysis and photodynamic therapy (PDT).

9.
Beilstein J Org Chem ; 20: 1900-1905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135656

RESUMO

Electrochemical or photochemical single-electron oxidation of bench-stable substrates can generate radical cations that offer unique reactivities as intermediates in various bond-formation processes. Such intermediates can potentially take part in both radical and ionic bond formation; however, the mechanisms involved are complicated and not fully understood. Herein, we report electrochemical radical cation aza-Wacker cyclizations under acidic conditions, which are expected to proceed via radical cations generated by single-electron oxidation of alkenes.

10.
Molecules ; 29(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39124868

RESUMO

As an important class of nitrogen-containing fused heterocyclic compounds, imidazo[1,2-a]pyridines often exhibit significant biological activities, such as analgesic, anticancer, antiosteoporosis, anxiolytic, etc. Using Y(OTf)3 as a Lewis acid catalyst, a simple and efficient method has been developed for the synthesis of C3-alkylated imidazo[1,2-a]pyridines through the three-component aza-Friedel-Crafts reaction of imidazo[1,2-a]pyridines, aldehydes, and amines in the normal air atmosphere without the protection of inert gas and special requirements for anhydrous and anaerobic conditions. A series of imidazo[1,2-a]pyridine derivatives were obtained with moderate to good yields, and their structures were confirmed by 1H NMR, 13C NMR, and HRMS. Furthermore, this conversion has the advantages of simple operation, excellent functional group tolerance, high atomic economy, broad substrate scope, and can achieve gram-level reactions. Notably, this methodology may be conveniently applied to the further design and rapid synthesis of potential biologically active imidazo[1,2-a]pyridines with multifunctional groups.

11.
J Nanobiotechnology ; 22(1): 488, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143492

RESUMO

Accurate fluorescence imaging of nanocarriers in vivo remains a challenge owing to interference derived mainly from biological tissues and free probes. To address both issues, the current study explored fluorophores in the near-infrared (NIR)-II window with aggregation-caused quenching (ACQ) properties to improve imaging accuracy. Candidate fluorophores with NIR-II emission, ACQ984 (λem = 984 nm) and IR-1060 (λem = 1060 nm), from the aza-BODIPY and cyanine families, respectively, were compared with the commercial fluorophore ICG with NIR-II tail emission and the NIR-I fluorophore P2 from the aza-BODIPY family. ACQ984 demonstrates high water sensitivity with complete fluorescence quenching at a water fraction greater than 50%. Physically embedding the fluorophores illuminates various nanocarriers, while free fluorophores cause negligible interference owing to the ACQ effect. Imaging based on ACQ984 revealed fine structures in the vascular system at high resolution. Moreover, good in vivo and ex vivo correlations in the monitoring of blood nanocarriers can be established, enabling real-time noninvasive in situ investigation of blood pharmacokinetics and dynamic distribution in various tissues. IR-1060 also has a good ACQ effect, but the lack of sufficient photostability and steady post-labeling fluorescence undermines its potential for nanocarrier bioimaging. P2 has an excellent ACQ effect, but its NIR-I emission only provides nondiscriminative ambiguous images. The failure of the non-ACQ probe ICG to display the biodistribution details serves as counterevidence for the improved imaging accuracy by NIR-II ACQ probes. Taken together, it is concluded that fluorescence imaging of nanocarriers based on NIR-II ACQ probes enables accurate in vivo bioimaging and real-time in situ pharmacokinetic analysis.


Assuntos
Corantes Fluorescentes , Nanopartículas , Imagem Óptica , Animais , Corantes Fluorescentes/química , Imagem Óptica/métodos , Camundongos , Nanopartículas/química , Portadores de Fármacos/química , Distribuição Tecidual , Camundongos Endogâmicos BALB C , Compostos de Boro/química , Compostos de Boro/farmacocinética , Verde de Indocianina/química
12.
Talanta ; 279: 126633, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39121551

RESUMO

An innovative organic small molecule with a D-A structure was synthesized by connecting triphenylamine to BODIPY via a thiophene bridge. Triphenylamine and thiophene units ingeniously modulate the balance between steric hindrance and π-π interactions around the flat aza-BODIPY core. The molecule exhibits near-infrared fluorescence absorption and emits at roughly 1100 nm, featuring a significant Stokes shift. Both the molecule and its nanoparticles demonstrate high stability and achieve a remarkable 35 % photothermal conversion efficiency when conjugated with the P(OEGMA)20-P(Asp)14 copolymer. In vitro assessments show low dark toxicity and outstanding biocompatibility. Moreover, in vivo studies and photothermal therapy in mice indicate substantial tumor shrinkage and reduced recurrence, confirming its potential in cancer treatment. These results highlight the promise of this organic molecule and its nanoparticles for NIR-II imaging-guided photothermal therapy, introducing a novel approach to phototheranostic applications for cancer management.


Assuntos
Compostos de Boro , Corantes Fluorescentes , Raios Infravermelhos , Nanopartículas , Peptídeos , Nanopartículas/química , Compostos de Boro/química , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Camundongos , Humanos , Peptídeos/química , Nanomedicina Teranóstica/métodos , Terapia Fototérmica , Camundongos Endogâmicos BALB C , Fototerapia
13.
Angew Chem Int Ed Engl ; : e202414121, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198686

RESUMO

Exploring novel molecular photoswitches plays a crucial role in the field of photo-functional materials chemistry. In this study, we synthesized aza-diarylethenes with benzothiophene-S,S-dioxide as a part of hexatriene structure and investigated their photochromic properties. Unlike previously reported aza-diarylethenes, which exhibit fast thermally reversible photochromism, the compounds synthesized here exhibited pseudo-photochemically reversible photochromism. Due to their thermal stability, we successfully isolated the colored isomer. X-ray crystallographic analysis revealed for the first time that the colored isomer adopts a closed-ring structure with a bond between carbon and nitrogen atoms. Remarkably, these aza-diarylethenes exhibited not only photochemical ring-closing and ring-opening reactions but also thermal ring-closing and ring-opening reactions, driven by a thermal equilibrium between the open- and closed-ring isomers. This behavior, unprecedented for common diarylethenes, was elucidated through kinetic analysis, revealing an energy-level diagram for the thermal equilibrium between these isomers. Furthermore, 1H NMR spectroscopy revealed that both photochemically and thermally generated closed-ring isomers adopt the same structure, which was well explained based on the reaction mechanism of photochemical and thermal ring-closing reactions. These findings not only advance the field of aza-diarylethenes but also inspire future research in the development of new photoswitches.

14.
Diseases ; 12(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39057134

RESUMO

BACKGROUND: Ten-eleven-translocation (TET) 2 is a member of the TET family of proteins (TET1-3). DNMT1 gene deletion confers resistance to DNA methyltransferase (DNMT) inhibitors in colorectal, breast, and ovarian cancer cells. Currently, the effect of DNMT1 gene status on TET2 phenotype following DNMT inhibitor treatment is unclear in human malignancies. METHODS: Human colorectal carcinoma HCT116 cells (DNMT+/+) and their isogenic DNMT1 knockout (DNMT1-/-) counterpart were treated with DNMT inhibitors. Expression of TET2 and tumor suppressor (p16ink4A and p15ink4B) proteins were examined by Western blot. Apoptosis and CDKN2A promoter demethylation following drug treatment were detected by Annexin-V apoptosis assay and methylation-specific PCR. RESULTS: TET2 expression was robustly increased in DNMT1-/- cells by 0.5 µM and 5 µM decitabine and azacitidine treatment. Augmentation of TET2 expression was accompanied by re-expression of p16ink4A and p15ink4B proteins and CDKN2A promoter demethylation. TET2 upregulation and tumor suppressor re-expression were associated with resistance conferred by DNMT1 deletion. Treatment with 5-aza-4'-thio-2'-deoxycytidine at a low 0.5 µM dose only upregulated TET2 and reduced CDKN2A promoter methylation, and re-expression of p16ink4A in DNMT1-/- cells. DNMT inhibitors showed minimal effects on TET2 upregulation and re-expression of tumor suppressor proteins in cells with intact DNMT1. CONCLUSIONS: DNMT1 gene deletion made cancer cells prone to TET2 upregulation and activation of tumor suppressor expression upon DNMT inhibitor challenge. TET2 augmentation is concomitant with resistance to DNMT inhibitors in a DNMT1-deleted state.

15.
Acta Pharm Sin B ; 14(7): 3155-3168, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027233

RESUMO

The aggregation-caused quenching (ACQ) rationale has been employed to improve the fluorescence imaging accuracy of nanocarriers by precluding free probe-derived interferences. However, its usefulness is undermined by limited penetration and low spatiotemporal resolution of NIR-I (700-900 nm) bioimaging owing to absorption and diffraction by biological tissues and tissue-derived autofluorescence. This study aimed to develop ACQ-based NIR-II (1000-1700 nm) probes to further improve the imaging resolution and accuracy. The strategy employed is to install highly planar and electron-rich julolidine into the 3,5-position of aza-BODIPY based on the larger substituent effects. The newly developed probes displayed remarkable photophysical properties, with intense absorption centered at approximately 850 nm and bright emission in the 950-1300 nm region. Compared with the NIR-I counterpart P2, the NIR-II probes demonstrated superior water sensitivity and quenching stability. ACQ1 and ACQ6 exhibited more promising ACQ effects with absolute fluorescence quenching at water fractions above 40% and higher quenching stability with less than 2.0% fluorescence reillumination in plasma after 24 h of incubation. Theoretical calculations verified that molecular planarity is more important than hydrophobicity for ACQ properties. Additionally, in vivo and ex vivo reillumination studies revealed less than 2.5% signal interference from prequenched ACQ1, in contrast to 15% for P2.

16.
Adv Sci (Weinh) ; 11(34): e2403470, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38970207

RESUMO

A Pd-catalyzed enantioselective aminosilylation of alkenes via tandem Aza-Heck/silylation reaction under Pd/Sadphos catalysis is disclosed. A wide array of oxime esters and silicon reagents are tolerated, furnishing the chiral pyrrolines bearing one quaternary or two contiguous stereocenters in good yield with high enantioselectivity. Not only terminal alkenes but also tri-substituented internal alkenes successfully participate in the reaction, delivering vicinal stereocenters in complete diastereoselectivity and high enantioselectivity. DFT study is conducted to probe the reaction pathway and the origin of the enantioselectivity, which revealed that the stereoinduction arises from the weak interaction between the aromatic ring of the substrate fragment and naphthyl group in the ligand.

17.
Chemistry ; 30(53): e202401816, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-38989823

RESUMO

N-Heterocyclic carbene (NHC)-derived selenoureas comprise a fundamentally important class of NHC derivatives, with key applications in coordination chemistry and the determination of NHC electronic properties. Considering the broad reactivity of chalcogen-containing compounds, it is surprising to note that the use of NHC-derived selenoureas as organic synthons remains essentially unexplored. The present contribution introduces a novel, straightforward transformation leading to azines bearing a guanidine moiety, through the reaction of a wide range of NHC-derived selenoureas with commercially available diazo compounds, in the presence of triphenylphosphine. This transformation offers a new approach to such products, having biological, materials chemistry, and organic synthesis applications. The guanidine-bearing azines are obtained in excellent yields, with all manipulations taking place in air. A reaction mechanism is proposed, based on both experimental mechanistic findings and density functional theory (DFT) calculations. A one-pot, multicomponent transesterification reaction between selenoureas, α-diazoesters, alcohols, and triphenylphosphine was also developed, providing highly functionalized azines.

18.
Adv Healthc Mater ; : e2401981, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073014

RESUMO

Conventional phototherapeutic agents are typically used in either photodynamic therapy (PDT) or photothermal therapy (PTT). However, efficacy is often hindered by hypoxia and elevated levels of heat shock proteins in the tumor microenvironment (TME). To address these limitations, a formylated, near-infrared (NIR)-absorbing and heavy-atom-free Aza-BODIPY dye is presented that exhibits both type-I and type-II PDT actions with a high yield of reactive oxygen species (ROS) and manifests efficient photothermal conversion by precise adjustments to the conjugate structure and electron distribution, leading to a large amount of ROS production even under severe hypoxia. To improve biosafety and water solubility, the dye with an amphiphilic triblock copolymer (Pluronic F-127), yielding BDP-6@F127 nanoparticles (NPs) is coated. Furthermore, inspired by the fact that phototherapy triggers the release of tumor-associated antigens, a strategy that leverages potential immune activation by combining PDT/PTT with immune checkpoint blockade (ICB) therapy to amplify the systemic immune response and achieve the much-desired abscopal effect is developed. In conclusion, this study presents a promising molecular design strategy that integrates multimodal therapeutics for a precise and effective approach to cancer therapy.

19.
Heliyon ; 10(14): e34506, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39082035

RESUMO

Melanoma antigen gene (MAGE) families are cancer-testis genes that normally show expression in the testes. However, their expressions have been linked with various types of human cancers, including BC. Therefore, the primary purposes of the present research were to assess the expression of MAGE-A, -B, and -C genes in Saudi female patients with BC and determine their regulation via the epigenetic mechanism. Ten BC samples were analyzed for the expression levels of nine MAGE-A genes, six MAGE-B genes, and three MAGE-C genes using the RT-PCR technique. All 18 evaluated genes except for MAGE-A1, -A3, -A4, and -B5 showed weak band expressions in some BC specimens. MAGE-A6 and -B2 were expressed in 40 % of the BC tissue samples, and MAGE-A9, -A10, and -B6 were expressed in 30 %. The lowest expression levels were found for MAGE-A11, -B1, -B3, -B4, -C1, and -C2 in 10 % of the BC specimens and for MAGE-A9,--B2, and --C3 in 20 % of the samples. The most frequently expressed gene was MAGE-A8 (found in 70 % of the BC samples), which suggests that it may serve as - a marker for screening of BC. In vitro treatment, the 5-aza-2'-deoxycytidine agent led to a significant rise in mRNA expressions for all tested genes related to the MAGE-A family, except for MAGE-A10. By contrast, among the genes in the MAGE-B and -C families, only MAGE-B1 and -C2 exhibited detectable mRNA expression levels after treatment.

20.
Biochem Soc Trans ; 52(4): 1841-1848, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38979638

RESUMO

Cytokinins (CKs) are phytohormones structurally similar to purines that play important roles in various aspects of plant physiology and development. The local and long-distance distribution of CKs is very important to control their action throughout the plant body. Over the past decade, several novel CK transporters have been described, many of which have been linked to a physiological function rather than simply their ability to transport the hormone in vitro. Purine permeases, equilibrative nucleotide transporters and ATP-binding cassette transporters are involved in the local and long-range distribution of CK. In addition, members of the Arabidopsis AZA-GUANINE RESISTANT (AZG) protein family, AZG1 and AZG2, have recently been shown to mediate CK uptake at the plasma membrane and endoplasmic reticulum. Despite sharing ∼50% homology, AZG1 and AZG2 have unique transport mechanisms, tissue-specific expression patterns, and subcellular localizations that underlie their distinct physiological functions. AZG2 is expressed in a small group of cells in the overlying tissue around the lateral root primordia, where its expression is induced by auxins and it is involved in the regulation of lateral root growth. AZG1 is ubiquitously expressed, with high levels in the division zone of the root apical meristem. Here, it binds and stabilises the auxin efflux carrier PIN1, thereby shaping root architecture, particularly under salt stress. This review highlights the latest findings on the protein properties, transport mechanisms and cellular functions of this new family of CK transporters and discusses perspectives for future research in this field.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citocininas , Proteínas de Membrana Transportadoras , Citocininas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA