RESUMO
Acanthamoeba, a free-living amoeba (FLA) found in diverse ecosystems, poses significant health risks globally, particularly in Malaysia. It causes severe infectious diseases, e.g., Acanthamoeba keratitis (AK), primarily affecting individuals who wear contact lenses, along with granulomatous amoebic encephalitis (GAE), a rare but often life-threatening condition among immunocompromised individuals. AK has become increasingly prevalent in Malaysia and is linked to widespread environmental contamination and improper contact lens hygiene. Recent studies highlight Acanthamoeba's capacity to serve as a "Trojan horse" for amoeba-resistant bacteria (ARBs), contributing to hospital-associated infections (HAIs). These symbiotic relationships and the resilience of Acanthamoeba cysts make treatment challenging. Current diagnostic methods in Malaysia rely on microscopy and culture, though molecular procedures like polymerase chain reaction (PCR) are employed for more precise detection. Treatment options remain limited due to the amoeba's cyst resistance to conventional therapies. However, recent advancements in natural therapeutics, including using plant extracts such as betulinic acid from Pericampylus glaucus and chlorogenic acid from Lonicera japonica, have shown promising in vitro results. Additionally, nanotechnology applications, mainly using gold and silver nanoparticles to enhance drug efficacy, are emerging as potential solutions. Further, in vivo studies and clinical trials must validate these findings. This review highlights the requirement for continuous research, public health strategies, and interdisciplinary collaboration to address the growing threat of Acanthamoeba infections in Malaysia while exploring the country's rich biodiversity for innovative therapeutic solutions.
RESUMO
Acanthamoeba keratitis (AK) is a rare but severe corneal infection caused by the free-living amoeba, Acanthamoeba, which is ubiquitously present in the environment. This condition predominantly affects contact lens wearers but can also occur in non-lens users, particularly those exposed to contaminated water or with compromised immune systems. AK is characterized by progressive corneal inflammation, epithelial defects, and ulceration, which can lead to significant visual impairment or blindness if not promptly diagnosed and treated. This review aims to provide a comprehensive overview of AK by synthesizing current knowledge on its epidemiology, risk factors, pathophysiology, clinical manifestations, diagnostic approaches, and therapeutic strategies. The review also highlights preventive measures and public health strategies to reduce the incidence of this debilitating condition. A detailed examination of existing literature was conducted, focusing on the global incidence of AK, demographic trends, and various risk factors such as contact lens use, environmental exposures, and immunity status. The review also delves into the pathophysiology of Acanthamoeba infection, the host immune response, and the challenges in distinguishing AK from other forms of infectious keratitis. Therapeutic strategies, including medical and surgical interventions, are analyzed, along with emerging treatments. The global incidence of AK has increased, particularly among contact lens users, due to poor hygiene practices and environmental exposures. Early diagnosis remains challenging, often leading to delayed treatment and poorer outcomes. Biguanides and diamidines are the mainstays of medical therapy, with surgical options considered in advanced cases. Emerging therapies, such as photodynamic therapy and antimicrobial peptides, show promise in enhancing treatment outcomes. AK poses a significant threat to ocular health due to its potential for severe visual impairment and the complexities associated with its diagnosis and treatment. Early recognition, appropriate management, and public health initiatives focused on prevention are crucial for improving patient outcomes. Ongoing research and a collaborative approach among healthcare providers are essential to advancing the understanding and management of AK.
RESUMO
BACKGROUND: Early therapeutic penetrating keratoplasty (TKP) for Acanthamoeba keratitis (AK) is thought to have a worse visual prognosis than the delayed optical penetrating keratoplasty (OKP) after successful conservative treatment of AK. This has led to a tendency to prolong conservative therapy and delay penetrating keratoplasty in patients with AK. This retrospective series presents the results of patients with AK that underwent early penetrating keratoplasty after reducing the corneal amoeba load through intensive conservative therapy, so-called "low load keratoplasty" (LLKP). PATIENTS AND METHODS: The medical records of our department were screened for patients with AK, confirmed by histological examination and/or PCR and/or in vivo confocal microscopy, which underwent ab LLKP and had a follow-up time of at least one year between 2009 and 2023. Demographic data, best corrected visual acuity (BCVA) and intraocular pressure at first and last visit, secondary glaucoma (SG), and recurrence and graft survival rates were assessed. RESULTS: 28 eyes of 28 patients were included. The average time from initiation of therapy to penetrating keratoplasty (PKP) was 68 ± 113 days. The mean follow-up time after LLKP was 53 ± 42 months. BCVA (logMAR) improved from 1.9 ± 1 pre-operatively to 0.5 ± 0.6 at last visit (p < 0.001). A total of 14% of patients were under medical therapy for SG at the last visit, and two of them underwent glaucoma surgery. The recurrence rate was 4%. The Kaplan-Meier graft survival rate of the first graft at four years was 70%. The second graft survival rate at four years was 87.5%. CONCLUSION: LLKP appears to achieve a good visual prognosis with an earlier visual and psychological habilitation, as well as low recurrence and SG rates. These results should encourage us to reconsider the optimal timing of PKP in therapy-resistant AK.
RESUMO
The problem of treating purulent scleral infections, rare but extremely severe complication of ophthalmic surgeries, remains unresolved. This article presents a case of successful surgical treatment of purulent scleritis - interlamellar scleral abscess - that developed in a patient after repeat penetrating keratoplasty performed due to infectious lysis of the transplant. Although the first keratoplasty was performed for acanthamoeba keratitis, there were no signs of acanthamoeba invasion in the transplant at the time of the second surgery. Scleritis manifested as an infiltrate with pus penetrating the anterior chamber and development of keratoiridocyclitis. During surgery, the abscess cavity was opened, irrigated with an antiseptic solution, and drained into the subconjunctival space; the anterior chamber was irrigated with balanced salt solution through a separate paracentesis. No infection recurrences were noted in the postoperative period and the corneal transplant remained clear.
Assuntos
Ceratite por Acanthamoeba , Ceratoplastia Penetrante , Esclerite , Humanos , Ceratoplastia Penetrante/métodos , Ceratoplastia Penetrante/efeitos adversos , Ceratite por Acanthamoeba/etiologia , Ceratite por Acanthamoeba/diagnóstico , Ceratite por Acanthamoeba/cirurgia , Esclerite/etiologia , Esclerite/diagnóstico , Esclerite/cirurgia , Resultado do Tratamento , Complicações Pós-Operatórias/cirurgia , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Masculino , Reoperação/métodos , Esclera/cirurgia , Adulto , FemininoRESUMO
Our review provides an update on the current landscape of contact lens-associated microbial keratitis (MK). We discuss the prevalence and risk factors associated with MK, emphasizing the role of overnight wear, poor hygiene, and contact lens type. CL-related MK is commonly caused by bacteria, though can also be caused by fungi or protozoa. Clinical presentation involves ocular pain, redness, and vision loss, with more specific presenting symptoms based on the culprit organism. Treatment strategies encompass prevention through proper hygiene and broad-spectrum antibiotic, antifungal, or antiprotozoal therapy, with surgical management reserved for severe recalcitrant cases.
Assuntos
Lentes de Contato , Ceratite , Humanos , Lentes de Contato/efeitos adversos , Lentes de Contato/microbiologia , Ceratite/microbiologia , Ceratite/diagnóstico , Fatores de Risco , Prevalência , Antibacterianos/uso terapêuticoRESUMO
TOPIC: To provide an overview on the incidence of Acanthamoeba keratitis (AK). CLINICAL RELEVANCE: Although being a sight-threatening cause of infectious keratitis, a comprehensive assessment of the incidence of AK is lacking. METHODS: Incidence of AK was computed as the number of eyes with AK per health care center, per year (annualized center incidence [ACI]). Two meta-analytical ratios also were calculated: (1) the ratio of eyes with AK to the count of eyes with nonviral microbial keratitis (MK) and (2) the ratio of eyes with AK to the overall population (i.e., the total number of people in a nation or region, as indicated by the authors in each study). Center was defined as the health care facility where the study took place. Actual and projected estimates of the number of eyes with AK in years were calculated multiplying the ratio of eyes with AK to the total population and the corresponding population estimates, sourced from the United Nations Population Prospects. RESULTS: Overall, 105 articles were included, published between 1987 and 2022. The total number of eyes identified was 91 951, with 5660 eyes affected by AK and 86 291 eyes affected by nonviral MK. The median ACI was 1.9 eyes with AK per health care center per year (95% confidence interval [CI], 1.5-2.6 eyes), with no statistically significant differences among continents. The ratio of eyes with AK to the total number of eyes with MK was 1.52% (95% CI, 1.03%-2.22%), whereas the ratio of eyes with AK in relationship to the entire population was estimated at 2.34 eyes per 1 000 000 people (95% CI, 0.98-5.55 per 1 000 000 people). The projected increase in the numbers of eyes with AK indicated an increase of 18.5% (n = 15 355 eyes with AK) in 2053 and 25.5% (n = 16 253 eyes with AK) in 2073, compared with the baseline of 2023 (n = 12 953 eyes with AK). DISCUSSION: Acanthamoeba keratitis emerged as a relatively low-incident disorder, and no significant differences in terms of its incidence were found among different continents. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
RESUMO
Infectious keratitis (IK) represents a significant global health concern, ranking as the fifth leading cause of blindness worldwide despite being largely preventable and treatable. Elderly populations are particularly susceptible due to age-related changes in immune response and corneal structure. However, research on IK in this demographic remains scarce. Age-related alterations such as increased permeability and reduced endothelial cell density further compound susceptibility to infection and hinder healing mechanisms. Additionally, inflammaging, characterized by chronic inflammation that develops with advanced age, disrupts the ocular immune balance, potentially exacerbating IK and other age-related eye diseases. Understanding these mechanisms is paramount for enhancing IK management, especially in elderly patients. This review comprehensively assesses risk factors, clinical characteristics, and management strategies for bacterial, viral, fungal, and acanthamoeba keratitis in the elderly population, offering crucial insights for effective intervention.
Assuntos
Ceratite , Humanos , Ceratite/tratamento farmacológico , Idoso , Fatores de Risco , Envelhecimento , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/terapia , CórneaRESUMO
Aim: Rose Bengal photodynamic antimicrobial therapy (RB-PDAT) has poor corneal penetration, limiting its efficacy against acanthamoeba keratitis (AK). Iontophoresis enhances corneal permeation of charged molecules, piquing interest in its effects on RB in ex vivo human corneas.Methods: Five donor whole globes each underwent iontophoresis with RB, soaking in RB, or were soaked in normal saline (controls). RB penetration and corneal thickness was assessed using confocal microscopy.Results: Iontophoresis increased RB penetration compared with soaking (177 ± 9.5 µm vs. 100 ± 5.7 µm, p < 0.001), with no significant differences in corneal thickness between groups (460 ± 87 µm vs. 407 ± 69 µm, p = 0.432).Conclusion: Iontophoresis significantly improves RB penetration and its use in PDAT could offer a novel therapy for acanthamoeba keratitis. Further studies are needed to validate clinical efficacy.
The study aimed to improve a new treatment for eye infections known as photodynamic antimicrobial therapy. It investigated whether the use of electricity through a technique called iontophoresis could help a chemical called Rose Bengal go deeper into the eye in order to target more severe infections. The iontophoresis machine was custom built, with patient-contacting components 3D printed. The experiments were performed using donated human eye tissue and found that iontophoresis significantly improved the penetration depth of Rose Bengal as compared with the current technique of only soaking the eye in Rose Bengal.
Assuntos
Ceratite por Acanthamoeba , Córnea , Iontoforese , Rosa Bengala , Humanos , Rosa Bengala/administração & dosagem , Iontoforese/métodos , Córnea/metabolismo , Córnea/efeitos dos fármacos , Ceratite por Acanthamoeba/tratamento farmacológico , Fotoquimioterapia/métodos , Microscopia ConfocalRESUMO
PURPOSE: To develop an artificial intelligence (AI) model to diagnose Acanthamoeba keratitis (AK) based on in vivo confocal microscopy (IVCM) images extracted from the Heidelberg Retinal Tomograph 3 (HRT 3). METHODS: This retrospective cohort study utilized HRT 3 IVCM images from patients who had received a culture-confirmed diagnosis of AK between 2013 and 2021 at Massachusetts Eye and Ear. Two cornea specialists independently labeled the images as AK or nonspecific finding (NSF) in a blind manner. Deep learning tasks were then conducted through Python and TensorFlow. Distinguishing between AK and NSF was designed as the task and completed through a devised convolutional neural network. RESULTS: A dataset of 3312 confocal images from 17 patients with a culture-confirmed diagnosis of AK was used in this study. The inter-rater agreement for identifying the presence or absence of AK in IVCM images was 84 %, corresponding to a total of 2782 images on which both observers agreed and which were included in the model. 1242 and 1265 images of AK and NSF, respectively, were utilized in the training and validation sets, and 173 and 102 images of AK and NSF, respectively, were utilized in the evaluation set. Our model had an accuracy, sensitivity, and specificity of 76 % each, and a precision of 78 %. CONCLUSIONS: We developed an HRT-based IVCM AI model for AK diagnosis utilizing culture-confirmed cases of AK. We achieved good accuracy in diagnosing AK and our model holds significant promise in the clinical application of AI in improving early AK diagnosis.
RESUMO
Acanthamoeba keratitis (AK) is a rare, sight-threating corneal infection. The disease is challenging to diagnose and treat, and the amoeba can rapidly encyst, persisting in the tissue and causing recurrences. Medical therapy is conventionally considered the first line treatment, but advanced cases could require more invasive treatments like a "chaud" corneal transplant. We review the incidence of severe complications in patients affected by AK. Of 439 reports screened, 158 met our inclusion criteria. Incidence of severe complications was low, with 2.21 % patients developing perforation, 1 % requiring evisceration/enucleation and less than 1 % developing endophthalmitis. Corneal transplantation was required in 16.68 % of the cases. According to our results, and considering the reported incidences of these complications in other infectious keratitis, AK patients have an overall low risk of developing perforation, endophthalmitis, and enucleation/evisceration. Nevertheless, data available in the literature remain poor, and further randomized control trials are needed to confirm our findings.
Assuntos
Ceratite por Acanthamoeba , Humanos , Ceratite por Acanthamoeba/diagnóstico , Ceratite por Acanthamoeba/epidemiologia , Incidência , Transplante de Córnea , Endoftalmite/epidemiologia , Endoftalmite/diagnóstico , Perfuração da Córnea/diagnóstico , Perfuração da Córnea/epidemiologia , Perfuração da Córnea/etiologiaRESUMO
Ophthalmologists' diagnostic and treatment competence in Acanthamoeba keratitis varies widely. This investigator-initiated, retrospective, single-center chart review examined the electronic patient files regarding PCR-positive Acanthamoeba keratitis. We included corneal and contact lens assessments. We further reviewed the patient's medical history, corneal scraping results regarding viral or fungal co-infections, and the duration from symptom onset to final diagnosis. We identified 59 eyes of 52 patients from February 2010 to February 2023, with 31 of 52 (59.6%) being female patients. The median (IQR, range) patient age was 33 (25.3 to 45.5 [13 to 90]) years, and the mean (SD, range) time to diagnosis after symptom onset was 18 (10.5 to 35 [3 to 70]) days. Overall, 7 of 52 (7.7%) patients displayed a bilateral Acanthamoeba infection, and 48 (92.3%) used contact lenses at symptom onset. Regarding other microbiological co-infections, we found virologic PCR testing in 45 of 52 (86.5%) patients, with 3 (6.7%) positive corneal scrapings. Fungal cultures were performed in 49 of 52 (94.2%) patients, with 5 (10.2%) positive corneal scrapings. The medical treatment success rate was 45/46 (97.8%). This study raises awareness of patient education in contact lens handling and screens for further microbial co-infections in suspected Acanthamoeba cases.
RESUMO
Although rare, amoebic keratitis (AK) is a disease caused by Acanthamoeba spp. that can lead to blindness. The drugs currently available for its treatment are very toxic, which has motivated the investigation for more effective and safe therapeutic options. In this study, the in vitro activity of ß-caryophyllene (BCP) was exploited taking into account its action against other protozoans as well as its well-known healing and anti-inflammatory properties (aspects relevant for the AK pathogenesis). On the other hand, high volatilization and oxidation phenomena are found for this compound, which led to its incorporation into nanoemulsions (NEs). Two emulsifying agents were tested, resulting in monodisperse systems with reduced droplet size (<265 nm) and high surface charge (positive and negative for NEs prepared with cetrimonium bromide -CTAB and Phosal® 50+, respectively). NEs prepared with CTAB were shown to be more stable after long-term storage at 4 and 25 °C than those prepared with Phosal®. Pure BCP, at the highest concentration (500 µM), resulted in a level of inhibition of Acanthamoeba trophozoites equivalent to that of reference drug (chlorhexidine). This activity was even greater after oil nanoencapsulation. The reduced droplet size could improve the interaction of the oil with the microorganism, justifying this finding. Changes in surface charge did not impact the activity. Positively charged NEs improved the interaction and retention of BCP in the cornea and thus should be prioritized for further studies.
Assuntos
Ceratite por Acanthamoeba , Emulsões , Sesquiterpenos Policíclicos , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/parasitologia , Sesquiterpenos Policíclicos/química , Nanopartículas , Administração Oftálmica , Cetrimônio/química , Animais , Acanthamoeba/efeitos dos fármacos , Estabilidade de Medicamentos , Tamanho da Partícula , Soluções Oftálmicas , HumanosRESUMO
Acanthamoeba keratitis (AK) is a rare but potentially sight-threatening corneal infection caused by the Acanthamoeba parasite. This microorganism is found ubiquitously in the environment, often in freshwater, soil, and other sources of moisture. Despite its low incidence, AK presents significant challenges due to delayed diagnosis and the complex nature of therapeutic management. Early recognition is crucial to prevent severe ocular complications, including corneal ulceration and vision loss. Diagnostic modalities and treatment strategies may vary greatly depending on the clinical manifestation and the available tools. With the growing reported cases of Acanthamoeba keratitis, it is essential for the ophthalmic community to thoroughly understand this condition for its effective management and improved outcomes. This review provides a comprehensive overview of AK, encompassing its epidemiology, risk factors, pathophysiology, clinical manifestations, diagnosis, and treatment.
RESUMO
PURPOSE: The purpose of this paper is to report the increasing incidence of contact-lens related Acanthamoeba keratitis (AK) in a tertiary ophthalmology department in Umbria, central Italy. METHODS: Observational and retrospective case series were carried out. A total of nine eyes with a diagnosis of AK were examined. All patients underwent a full slit lamp examination, in vivo confocal microscopy (IVCM) and corneal scraping. The IVCM was repeated at one and two-week and at one, three and six-month intervals. Samples of domestic tap water were also examined for PCR analysis. Patients were treated with levofloxacin0,5%, Polyhexamethylene biguanide 0.02%, and Propamidine Isetionate0,1%. RESULTS: All patients were contact lens wearers. The average patient age was 27.75 (range 18-45), with three men and five women. The main clinical features were ciliary congestion, diffuse epitheliopathy with punctuated keratitis, multiple, small sub-epithelial, greyish, corneal infiltrates with epithelial defect, pseudodendritic corneal lesions, perineural infiltrates, corneal stromal cellularity, and stromal infiltrates. IVCM was indicative of Acanthamoeba in seven out of the nine eyes. All the positive IVCM images were section images showing double walled, bright-spot cysts with a clear chain-like arrangement of five or more cysts identified in three of the patients. PCR analysis of the water was negative in all cases. CONCLUSION: Although PCR is the most common method used, the increased incidence of AK could mainly be related to a proper IVCM interpretation. A broad-spectrum antibiotic, such as levofloxacin might play a role in the early treatment of AK reducing the virulence of the amoeba.
RESUMO
Acanthamoeba infection is associated with keratitis in humans; however, its association with keratitis in dogs remains unclear. To investigate this possibility, we collected 171 conjunctival swab samples from dogs with eye-related diseases (65 with keratitis and 106 without keratitis) at Chungbuk National University Veterinary Teaching Hospital, Korea, from August 2021 to September 2022. Polymerase chain reaction identified 9 samples (5.3%) as Acanthamoeba positive; of these, 3 were from dogs with keratitis (4.6%) and 6 were from dogs without keratitis (5.7%). Our results indicated no significant association between Acanthamoeba infection and keratitis, season, sex, or age. All Acanthamoeba organisms found in this study had the genotype T4, according to 18S ribosomal RNA analysis. Acanthamoeba infection in dogs might have only a limited association with keratitis.
Assuntos
Acanthamoeba , Amebíase , Ceratite , Humanos , Cães , Animais , Hospitais Veterinários , Hospitais de Ensino , Acanthamoeba/genética , República da Coreia/epidemiologiaRESUMO
PURPOSE: To compare the outcomes of big-bubble deep anterior lamellar keratoplasty (BB-DALK) and penetrating keratoplasty (PKP) in the management of medically unresponsive Acanthamoeba keratitis (AK). METHODS: This retrospective study included 27 eyes of BB-DALK and 24 eyes of PKP from a tertiary ophthalmology care centre. Glucocorticoid eye drops were subsequently added to the treatment plan 2 months postoperatively based on the evaluation using confocal laser scanning microscopy. The clinical presentations, best-corrected visual acuity (BCVA), postoperative refractive outcomes, graft survival, and Acanthamoeba recurrence were analyzed. RESULTS: The AK patients included in the study were in stage 2 or stage 3, and the percentage of patients in stage 3 was higher in the PKP group (P = 0.003). Clinical presentations were mainly corneal ulcers and ring infiltrates, and endothelial plaques, hypopyon, uveitis and glaucoma were more common in the PKP group (P = 0.007). The BCVA and the graft survival rate showed no statistically significant differences between the two groups at 1 year after surgery. However, 3 years postoperatively, the BCVA of 0.71 ± 0.64 logMAR, the graft survival rate of 89.5%, and the endothelial cell density of 1899 ± 125 cells per square millimeter in the BB-DALK group were significantly better than those of the PKP group (P = 0.010, 0.046, and 0.032, respectively). 3 eyes (11.1%) in the BB-DALK group and 2 eyes (8.3%) in the PKP group experienced Acanthamoeba recurrence, but the rates showed no statistically significant difference between the two groups (P = 1.000). In the PKP group, immune rejection and elevated intraocular pressure were observed in 5 and 6 eyes, respectively. CONCLUSION: Corneal transplantation is recommended for AK patients unresponsive to antiamoebic agents. The visual acuity and graft survival can be maintained after BB-DALK surgery. Acanthamoeba recurrence is not related to the surgical approach performed, whereas complete dissection of the infected corneal stroma and delayed prescribing of glucocorticoid eye drops were important to prevent recurrence.
Assuntos
Ceratite por Acanthamoeba , Transplante de Córnea , Glaucoma , Humanos , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/cirurgia , Ceratoplastia Penetrante , Glucocorticoides , Estudos Retrospectivos , Soluções OftálmicasRESUMO
PURPOSE: To report clinical findings and prognostic factors for visual and morphological outcomes in patients with Acanthamoeba keratitis (AK). METHODS: Single-center, retrospective, longitudinal study of 51 cases of AK diagnosed by real-time polymerase chain reaction (RT-PCR) between March 2010 and October 2022. The primary outcome was the final best corrected visual acuity (BCVA). Poor visual outcome was defined as a final BCVA ≥ 1 logMAR unit, while good visual outcome was defined as a final BCVA < 1 logMAR unit. Eyes from these two groups were compared, regarding demographic and initial clinical variables, anti-Acanthamoeba treatment used, and complications of the disease. Early diagnosis was defined as ≤ 14 days from symptom onset to diagnostic confirmation and initiation of Acanthamoeba medical treatment. Multivariable logistic regression was used to determine predictors of poor visual outcome. RESULTS: A total of 51 eyes from 46 patients diagnosed with AK, all contact lens (CL) wearers, were included in this study. Average follow-up was 39.0 ± 30.2 [total range 14-120] months. Thirty-one eyes (60.8 %) presented good visual outcome, with a lower baseline age (30.5 ± 9.0 vs. 42.3 ± 15.8; p = 0.020), better initial BCVA (0.8 ± 0.7 logMAR units vs. 1.3 ± 0.9 logMAR units; p = 0.047), higher rate of early diagnosis (45.2 % vs. 5.6 %; p = 0.004), and higher rate of therapeutic epithelial debridement (64.5 % vs. 10 %; p < 0.001). 20 eyes (39.2 %) presented poor visual outcome, with 12 eyes undergoing evisceration/enucleation (23.5 %). These 20 eyes presented a higher rate of complications (90 % vs. 61.3 %; p = 0.031). In multivariable analysis, early diagnosis of AK (OR 19.78; 95 % CI 2.07-189.11; p = 0.010) and therapeutic epithelial debridement (OR 19.02; 95 % CI 3.27-110.57; p = 0.001) were associated with a good visual outcome. CONCLUSIONS: In the present study, poor visual outcome was present in 39 % of affected eyes. Early AK diagnosis (≤14 days from symptom onset) and therapeutic epithelial debridement were associated with good final visual outcome.
Assuntos
Ceratite por Acanthamoeba , Acanthamoeba , Humanos , Ceratite por Acanthamoeba/terapia , Ceratite por Acanthamoeba/tratamento farmacológico , Estudos Retrospectivos , Prognóstico , Estudos Longitudinais , Fatores de RiscoRESUMO
PURPOSE: To compare topical PHMB (polihexanide) 0.02% (0.2 mg/ml)+ propamidine 0.1% (1 mg/ml) with PHMB 0.08% (0.8 mg/ml)+ placebo (PHMB 0.08%) for Acanthamoeba keratitis (AK) treatment. DESIGN: Prospective, randomized, double-masked, active-controlled, multicenter phase 3 study (ClinicalTrials.gov identifier, NCT03274895). PARTICIPANTS: One hundred thirty-five patients treated at 6 European centers. METHODS: Principal inclusion criteria were 12 years of age or older and in vivo confocal microscopy with clinical findings consistent with AK. Also included were participants with concurrent bacterial keratitis who were using topical steroids and antiviral and antifungal drugs before randomization. Principal exclusion criteria were concurrent herpes or fungal keratitis and use of antiamebic therapy (AAT). Patients were randomized 1:1 using a computer-generated block size of 4. This was a superiority trial having a predefined noninferiority margin. The sample size of 130 participants gave approximately 80% power to detect 20-percentage point superiority for PHMB 0.08% for the primary outcome of the medical cure rate (MCR; without surgery or change of AAT) within 12 months, cure defined by clinical criteria 90 days after discontinuing anti-inflammatory agents and AAT. A prespecified multivariable analysis adjusted for baseline imbalances in risk factors affecting outcomes. MAIN OUTCOME MEASURES: The main outcome measure was MCR within 12 months, with secondary outcomes including best-corrected visual acuity and treatment failure rates. Safety outcomes included adverse event rates. RESULTS: One hundred thirty-five participants were randomized, providing 127 in the full-analysis subset (61 receiving PHMB 0.02%+ propamidine and 66 receiving PHMB 0.08%) and 134 in the safety analysis subset. The adjusted MCR within 12 months was 86.6% (unadjusted, 88.5%) for PHMB 0.02%+ propamidine and 86.7% (unadjusted, 84.9%) for PHMB 0.08%; the noninferiority requirement for PHMB 0.08% was met (adjusted difference, 0.1 percentage points; lower one-sided 95% confidence limit, -8.3 percentage points). Secondary outcomes were similar for both treatments and were not analyzed statistically: median best-corrected visual acuity of 20/20 and an overall treatment failure rate of 17 of 127 patients (13.4%), of whom 8 of 127 patients (6.3%) required therapeutic keratoplasty. No serious drug-related adverse events occurred. CONCLUSIONS: PHMB 0.08% monotherapy may be as effective (or at worse only 8 percentage points less effective) as dual therapy with PHMB 0.02%+ propamidine (a widely used therapy) with medical cure rates of more than 86%, when used with the trial treatment delivery protocol in populations with AK with similar disease severity. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Assuntos
Ceratite por Acanthamoeba , Benzamidinas , Biguanidas , Humanos , Ceratite por Acanthamoeba/diagnóstico , Ceratite por Acanthamoeba/tratamento farmacológico , Produção de Droga sem Interesse Comercial , Estudos ProspectivosRESUMO
INTRODUCTION: Acanthamoeba keratitis (AK) is a serious and potentially blinding ocular infection caused by the free-living amoeba, Acanthamoeba. In vivo confocal microscopy (IVCM) is a non-invasive device which has been proven of great use to diagnose Acanthamoeba infections immediately. The aim of this review was to establish different patterns and signs of AK that appear on the IVCM both before and after treatment. METHODS: A systematic review of the literature from 1974 until September 2021 was performed using Embase and PubMed, following The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: Twenty different signs of AK were observed using IVCM. The included studies used vastly different criteria to diagnose infections, ranging from just 1 to 13 of the signs, demonstrating the current lack of a standardised diagnosis of this infection using the IVCM. The appearance of double wall cysts, trophozoites, signet rings, target signs and clusters were shown to be pathognomonic to AK infections. Bright spots located in the corneal epithelium were demonstrated as non-reliable predictors of AK. The presence of cysts in clusters and single file can predict the need for corneal transplantation. The morphological changes in cysts using the IVCM following treatment were described as breaking down to hollow forms and occasionally surrounded by black cavities. Using this information, a visual guideline for identifying AK signs in diagnosis and follow-up using IVCM was created. CONCLUSION: Increased awareness of the different signs and patterns of AK that appear on the IVCM is crucial in order to correctly identify an infection and increase the potential of this device. Our guidelines presented here can be used, but further studies are needed in order to determine the relationship and aetiology of these signs and cellular changes on the IVCM both before and after anti-amoeba treatment.
Assuntos
Ceratite por Acanthamoeba , Acanthamoeba , Humanos , Ceratite por Acanthamoeba/diagnóstico , Microscopia Confocal , Lasers , CórneaRESUMO
Acanthamoeba Keratitis (AK) is a severe corneal infection caused by the Acanthamoeba species of protozoa, potentially leading to permanent vision loss. AK requires prompt diagnosis and treatment to mitigate vision impairment. Diagnosing AK is challenging due to overlapping symptoms with other corneal infections, and treatment is made complicated by the organism's dual forms and increasing virulence, and delayed diagnosis. In this review, new approaches in AK diagnostics and treatment within the last 5 years are discussed. The English-language literature on PubMed was reviewed using the search terms "Acanthamoeba keratitis" and "diagnosis" or "treatment" and focused on studies published between 2018 and 2023. Two hundred sixty-five publications were initially identified, of which eighty-seven met inclusion and exclusion criteria. This review highlights the findings of these studies. Notably, advances in PCR-based diagnostics may be clinically implemented in the near future, while antibody-based and machine-learning approaches hold promise for the future. Single-drug topical therapy (0.08% PHMB) may improve drug access and efficacy, while oral medication (i.e., miltefosine) may offer a treatment option for patients with recalcitrant disease.