Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Front Cell Neurosci ; 18: 1466817, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39386179

RESUMO

Central arginine vasopressin (AVP) facilitates social recognition and modulates many complex social behaviors in mammals that, in many cases, recognize each other based on olfactory and/or pheromonal signals. AVP neurons are present in the accessory olfactory bulb (AOB), which is the first relay in the vomeronasal system and has been demonstrated to be a critical site for mating-induced mate recognition (olfactory memory) in female mice. The transmission of information from the AOB to higher centers is controlled by the dendrodendritic recurrent inhibition, i.e., inhibitory postsynaptic currents (IPSCs) generated in mitral cells by recurrent dendrodendritic inhibitory inputs from granule cells. These reports suggest that AVP might play an important role in regulating dendrodendritic inhibition in the AOB. To test this hypothesis, we examined the effects of extracellularly applied AVP on synaptic responses measured from mitral and granule cells in slice preparations from 23--36-day-old Balb/c mice. To evoke dendrodendritic inhibition in a mitral cell, depolarizing voltages of -70 to 0 mV (10 ms duration) were applied to a mitral cell using a conventional whole-cell configuration. We found that AVP significantly reduced the IPSCs. The suppressive effects of AVP on the IPSCs was diminished by an antagonist for vasopressin receptor 1a (V1aR) (Manning compound), but not by an antagonist for vasopressin receptor 1b (SSR149415). An agonist for V1aRs [(Phe2)OVT] mimicked the action of AVP on IPSCs. Additionally, AVP significantly suppressed voltage-activated currents in granule cells without affecting the magnitude of the response of mitral cells to gamma-aminobutyric acid (GABA). The present results suggest that V1aRs play a role in reciprocal transmission between mitral cells and granule cells in the mouse AOB by reducing GABAergic transmission through a presynaptic mechanism in granule cells.

2.
Horm Behav ; 162: 105527, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38492348

RESUMO

Olfactory communication is triggered by pheromones that profoundly influence neuroendocrine responses to drive social interactions. Two principal olfactory systems process pheromones: the main and the vomeronasal or accessory system. Prolactin receptors are expressed in both systems suggesting a participation in the processing of olfactory information. We previously reported that prolactin participates in the sexual and olfactory bulb maturation of females. Therefore, we explored the expression of prolactin receptors within the olfactory bulb during sexual maturation and the direct responses of prolactin upon pheromonal exposure. Additionally, we assessed the behavioral response of adult females exposed to male sawdust after prolactin administration and the consequent activation of main and accessory olfactory bulb and their first central relays, the piriform cortex and the medial amygdala. Last, we investigated the intracellular pathway activated by prolactin within the olfactory bulb. Here, prolactin receptor expression remained constant during all maturation stages within the main olfactory bulb but decreased in adulthood in the accessory olfactory bulb. Behaviorally, females that received prolactin actively explored the male stimulus. An increased cFos activation in the amygdala and in the glomerular cells of the whole olfactory bulb was observed, but an augmented response in the mitral cells was only found within the main olfactory bulb after prolactin administration and the exposure to male stimulus. Interestingly, the ERK pathway was upregulated in the main olfactory bulb after exposure to a male stimulus. Overall, our results suggest that, in female mice, prolactin participates in the processing of chemosignals and behavioral responses by activating the main olfactory system and diminishing the classical vomeronasal response to pheromones.


Assuntos
Bulbo Olfatório , Prolactina , Comportamento Sexual Animal , Animais , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Bulbo Olfatório/fisiologia , Feminino , Prolactina/metabolismo , Prolactina/farmacologia , Camundongos , Masculino , Comportamento Sexual Animal/fisiologia , Comportamento Sexual Animal/efeitos dos fármacos , Receptores da Prolactina/metabolismo , Maturidade Sexual/fisiologia , Comportamento Social , Feromônios/farmacologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo
3.
J Anat ; 245(1): 109-136, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38366249

RESUMO

Wolves, akin to their fellow canids, extensively employ chemical signals for various aspects of communication, including territory maintenance, reproductive synchronisation and social hierarchy signalling. Pheromone-mediated chemical communication operates unconsciously among individuals, serving as an innate sensory modality that regulates both their physiology and behaviour. Despite its crucial role in the life of the wolf, there is a lacuna in comprehensive research on the neuroanatomical and physiological underpinnings of chemical communication within this species. This study investigates the vomeronasal system (VNS) of the Iberian wolf, simultaneously probing potential alterations brought about by dog domestication. Our findings demonstrate the presence of a fully functional VNS, vital for pheromone-mediated communication, in the Iberian wolf. While macroscopic similarities between the VNS of the wolf and the domestic dog are discernible, notable microscopic differences emerge. These distinctions include the presence of neuronal clusters associated with the sensory epithelium of the vomeronasal organ (VNO) and a heightened degree of differentiation of the accessory olfactory bulb (AOB). Immunohistochemical analyses reveal the expression of the two primary families of vomeronasal receptors (V1R and V2R) within the VNO. However, only the V1R family is expressed in the AOB. These findings not only yield profound insights into the VNS of the wolf but also hint at how domestication might have altered neural configurations that underpin species-specific behaviours. This understanding holds implications for the development of innovative strategies, such as the application of semiochemicals for wolf population management, aligning with contemporary conservation goals.


Assuntos
Órgão Vomeronasal , Lobos , Animais , Órgão Vomeronasal/fisiologia , Lobos/fisiologia , Masculino , Feromônios/metabolismo , Feminino , Bulbo Olfatório/fisiologia , Bulbo Olfatório/anatomia & histologia , Cães , Imuno-Histoquímica
4.
Front Cell Neurosci ; 17: 1302955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130867

RESUMO

Vomeronasal sensory neurons (VSNs) recognize pheromonal and kairomonal semiochemicals in the lumen of the vomeronasal organ. VSNs send their axons along the vomeronasal nerve (VN) into multiple glomeruli of the accessory olfactory bulb (AOB) and form glutamatergic synapses with apical dendrites of mitral cells, the projection neurons of the AOB. Juxtaglomerular interneurons release the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Besides ionotropic GABA receptors, the metabotropic GABAB receptor has been shown to modulate synaptic transmission in the main olfactory system. Here we show that GABAB receptors are expressed in the AOB and are primarily located at VN terminals. Electrical stimulation of the VN provokes calcium elevations in VSN nerve terminals, and activation of GABAB receptors by the agonist baclofen abolishes calcium influx in AOB slice preparations. Patch clamp recordings reveal that synaptic transmission from the VN to mitral cells can be completely suppressed by activation of GABAB receptors. A potent GABAB receptor antagonist, CGP 52432, reversed the baclofen-induced effects. These results indicate that modulation of VSNs via activation of GABAB receptors affects calcium influx and glutamate release at presynaptic terminals and likely balances synaptic transmission at the first synapse of the accessory olfactory system.

5.
J Neurosci ; 43(50): 8700-8722, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37903594

RESUMO

Social communication is crucial for the survival of many species. In most vertebrates, a dedicated chemosensory system, the vomeronasal system (VNS), evolved to process ethologically relevant chemosensory cues. The first central processing stage of the VNS is the accessory olfactory bulb (AOB), which sends information to downstream brain regions via AOB mitral cells (AMCs). Recent studies provided important insights about the functional properties of AMCs, but little is known about the principles that govern their coordinated activity. Here, we recorded local field potentials (LFPs) and single-unit activity in the AOB of adult male and female mice during presentation of natural stimuli. Our recordings reveal prominent LFP theta-band oscillatory episodes with a characteristic spatial pattern across the AOB. Throughout an experiment, the AOB network shows varying degrees of similarity to this pattern, in a manner that depends on the sensory stimulus. Analysis of LFP signal polarity and single-unit activity indicates that oscillatory episodes are generated locally within the AOB, likely representing a reciprocal interaction between AMCs and granule cells. Notably, spike times of many AMCs are constrained to the negative LFP oscillation phase in a manner that can drastically affect integration by downstream processing stages. Based on these observations, we propose that LFP oscillations may gate, bind, and organize outgoing signals from individual AOB neurons to downstream processing stages. Our findings suggest that, as in other neuronal systems and brain regions, population-level oscillations play a key role in organizing and enhancing transmission of socially relevant chemosensory information.SIGNIFICANCE STATEMENT The accessory olfactory bulb (AOB) is the first central stage of the vomeronasal system, a chemosensory system dedicated to processing cues from other organisms. Information from the AOB is conveyed to other brain regions via activity of its principal neurons, AOB mitral cells (AMCs). Here, we show that socially relevant sensory stimulation of the mouse vomeronasal system leads not only to changes in AMC activity, but also to distinct theta-band (∼5 Hz) oscillatory episodes in the local field potential. Notably AMCs favor the negative phase of these oscillatory events. Our findings suggest a novel mechanism for the temporal coordination of distributed patterns of neuronal activity, which can serve to efficiently activate downstream processing stages.


Assuntos
Neurônios , Bulbo Olfatório , Camundongos , Masculino , Feminino , Animais , Bulbo Olfatório/fisiologia , Neurônios/fisiologia , Sinais (Psicologia)
6.
Front Cell Neurosci ; 17: 1157577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091919

RESUMO

In mammals, the accessory olfactory bulb (AOB) receives input from vomeronasal sensory neurons (VSN) which detect pheromones, chemical cues released by animals to regulate the physiology or behaviors of other animals of the same species. Cytoarchitecturally, cells within the AOB are segregated into a glomerular layer (GL), mitral cell layer (MCL), and granule cell layer (GCL). While the cells and circuitry of these layers has been well studied, the molecular mechanism underlying the assembly of such circuitry in the mouse AOB remains unclear. With the goal of identifying synaptogenic mechanisms in AOB, our attention was drawn to Collagen XIX, a non-fibrillar collagen generated by neurons in the mammalian telencephalon that has previously been shown to regulate the assembly of synapses. Here, we used both a targeted mouse mutant that lacks Collagen XIX globally and a conditional allele allowing for cell-specific deletion of this collagen to test if the loss of Collagen XIX causes impaired synaptogenesis in the mouse AOB. These analyses not only revealed defects in excitatory synapse distribution in these Collagen XIX-deficient mutants, but also showed that these mutant mice exhibit altered behavioral responses to pheromones. Although this collagen has been demonstrated to play synaptogenic roles in the telencephalon, those roles are at perisomatic inhibitory synapses, results here are the first to demonstrate the function of this unconventional collagen in glutamatergic synapse formation.

7.
J Neurosci ; 43(7): 1178-1190, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36623874

RESUMO

The accessory olfactory system (AOS) is critical for the development and expression of social behavior. The first dedicated circuit in the AOS, the accessory olfactory bulb (AOB), exhibits cellular and network plasticity in male and female mice after social experience. In the AOB, interneurons called internal granule cells (IGCs) express the plasticity-associated immediate-early gene Arc following intermale aggression or mating. Here, we sought to better understand how Arc-expressing IGCs shape AOB information processing and social behavior in the context of territorial aggression. We used "ArcTRAP" (Arc-CreERT2) transgenic mice to selectively and permanently label Arc-expressing IGCs following male-male resident-intruder interactions. Using whole-cell patch-clamp electrophysiology, we found that Arc-expressing IGCs display increased intrinsic excitability for several days after a single resident-intruder interaction. Further, we found that Arc-expressing IGCs maintain this increased excitability across repeated resident-intruder interactions, during which resident mice increase or "ramp" their aggression. We tested the hypothesis that Arc-expressing IGCs participate in ramping aggression. Using a combination of ArcTRAP mice and chemogenetics (Cre-dependent hM4D(Gi)-mCherry AAV injections), we found that disruption of Arc-expressing IGC activity during repeated resident-intruder interactions abolishes the ramping aggression exhibited by resident male mice. This work shows that Arc-expressing AOB IGC ensembles are activated by specific chemosensory environments, and play an integral role in the establishment and expression of sex-typical social behavior. These studies identify a population of plastic interneurons in an early chemosensory circuit that display physiological features consistent with simple memory formation, increasing our understanding of central chemosensory processing and mammalian social behavior.SIGNIFICANCE STATEMENT The accessory olfactory system plays a vital role in rodent chemosensory social behavior. We studied experience-dependent plasticity in the accessory olfactory bulb and found that internal granule cells expressing the immediate-early gene Arc after the resident-intruder paradigm increase their excitability for several days. We investigated the roles of these Arc-expressing internal granule cells on chemosensory social behavior by chemogenetically manipulating their excitability during repeated social interactions. We found that inhibiting these cells eliminated intermale aggressive ramping behavior. These studies identify a population of plastic interneurons in an early chemosensory circuit that display physiological features consistent with simple memory formation, increasing our understanding of central chemosensory processing and mammalian social behavior.


Assuntos
Interneurônios , Bulbo Olfatório , Camundongos , Masculino , Feminino , Animais , Bulbo Olfatório/fisiologia , Interneurônios/fisiologia , Neurônios , Comportamento Social , Agressão , Camundongos Transgênicos , Mamíferos
8.
Cell Rep ; 40(8): 111262, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001975

RESUMO

In the Bruce effect, a mated female mouse becomes resistant to the pregnancy-blocking effect of the stud. Various lines of evidence suggest that this form of behavioral imprinting results from reduced sensitivity of the female's accessory olfactory bulb (AOB) to the stud's chemosignals. However, the AOB's combinatorial code implies that diminishing responses to one individual will distort representations of other stimuli. Here, we record extracellular responses of AOB neurons in mated and unmated female mice while presenting urine stimuli from the stud and from other sources. We find that, while initial sensory responses in the AOB (within a timescale required to guide social interactions) remain stable, responses to extended stimulation (as required for eliciting the pregnancy block) display selective attenuation of stud-responsive neurons. Such temporal disassociation could allow attenuation of slow-acting endocrine processes in a stimulus-specific manner without compromising ongoing representations that guide behavior.


Assuntos
Neurônios , Bulbo Olfatório , Animais , Feminino , Camundongos , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Gravidez
9.
Ann Anat ; 240: 151881, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34896556

RESUMO

BACKGROUND: The accessory olfactory bulb (AOB) is the first integrative center of the vomeronasal system (VNS), and the general macroscopic, microscopic, and neurochemical organizational patterns of the AOB differ fundamentally among species. Therefore, the low degree of differentiation observed for the dog AOB is surprising. As the artificial selection pressure exerted on domestic dogs has been suggested to play a key role in the involution of the dog VNS, a wild canid, such as the fox, represents a useful model for studying the hypothetical effects of domestication on the AOB morphology. METHODS: A comprehensive histological, lectin-histochemical, and immunohistochemical study of the fox AOB was performed. Anti-Gαo and anti-Gαi2 antibodies were particularly useful, as they label the transduction cascade of the vomeronasal receptor types 1 (V1R) and 2 (V2R), respectively. Other employed antibodies included those against proteins such as microtubule-associated protein 2 (MAP-2), tubulin, glial fibrillary acidic protein, growth-associated protein 43 (GAP-43), olfactory marker protein (OMP), calbindin, and calretinin. RESULTS: The cytoarchitecture of the fox AOB showed a clear lamination, with neatly differentiated layers; a highly developed glomerular layer, rich in periglomerular cells; and large inner cell and granular layers. The immunolabeling of Gαi2, OMP, and GAP-43 delineated the outer layers, whereas Gαo and MAP-2 immunolabeling defined the inner layers. MAP-2 characterized the somas of AOB principal cells and their dendritic trees. Anti-calbindin and anti-calretinin antibodies discriminated neural subpopulations in both the mitral-plexiform layer and the granular cell layer, and the lectin Ulex europeus agglutinin I (UEA-I) showed selectivity for the AOB and the vomeronasal nerves. CONCLUSION: The fox AOB presents unique characteristics and a higher degree of morphological development compared with the dog AOB. The comparatively complex neural basis for semiochemical information processing in the fox compared with that observed in dogs suggests loss of AOB anatomical complexity during the evolutionary history of dogs and opens a new avenue of research for studying the effects of domestication on brain structures.


Assuntos
Bulbo Olfatório , Órgão Vomeronasal , Animais , Cães , Domesticação , Raposas , Neurônios
10.
Brain Struct Funct ; 227(3): 881-899, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34800143

RESUMO

The study of the α-subunit of Gi2 and Go proteins in the accessory olfactory bulb (AOB) was crucial for the identification of the two main families of vomeronasal receptors, V1R and V2R. Both families are expressed in the rodent and lagomorph AOBs, according to a segregated model characterized by topographical anteroposterior zonation. Many mammal species have suffered from the deterioration of the Gαo pathway and are categorized as belonging to the uniform model. This scenario has been complicated by characterization of the AOB in the tammar wallaby, Notamacropus eugenii, which appears to follow a third model of vomeronasal organization featuring exclusive Gαo protein expression, referred to as the intermediate model, which has not yet been replicated in any other species. Our morphofunctional study of the vomeronasal system (VNS) in Bennett's wallaby, Notamacropus rufogriseus, provides further information regarding this third model of vomeronasal transduction. A comprehensive histological, lectin, and immunohistochemical study of the Bennett's wallaby VNS was performed. Anti-Gαo and anti-Gαi2 antibodies were particularly useful because they labeled the transduction cascade of V2R and V1R receptors, respectively. Both G proteins showed canonical immunohistochemical labeling in the vomeronasal organ and the AOB, consistent with the anterior-posterior zonation of the segregated model. The lectin Ulex europaeus agglutinin selectively labeled the anterior AOB, providing additional evidence for the segregation of vomeronasal information in the wallaby. Overall, the VNS of the Bennett's wallaby shows a degree of differentiation and histochemical and neurochemical diversity comparable to species with greater VNS development. The existence of the third intermediate type in vomeronasal information processing reported in Notamacropus eugenii is not supported by our lectin-histochemical and immunohistochemical findings in Notamacropus rufogriseus.


Assuntos
Neuroanatomia , Órgão Vomeronasal , Animais , Mamíferos , Bulbo Olfatório/metabolismo , Roedores
11.
Chem Senses ; 462021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34492099

RESUMO

Glomeruli are neuropil-rich regions of the main or accessory olfactory bulbs (AOB) where the axons of olfactory or vomeronasal neurons and dendrites of mitral/tufted cells form synaptic connections. In the main olfactory system, olfactory sensory neurons (OSNs) expressing the same receptor innervate 1 or 2 glomeruli. However, in the accessory olfactory system, vomeronasal sensory neurons (VSNs) expressing the same receptor can innervate up to 30 different glomeruli in the AOB. Genetic mutation disrupting genes with a role in defining the identity/diversity of olfactory and vomeronasal neurons can alter the number and size of glomeruli. Interestingly, 2 cell surface molecules, Kirrel2 and Kirrel3, have been indicated as playing a critical role in the organization of axons into glomeruli in the AOB. Being able to quantify differences in glomeruli features, such as number, size, or immunoreactivity for specific markers, is an important experimental approach to validate the role of specific genes in controlling neuronal connectivity and circuit formation in either control or mutant animals. Since the manual recognition and quantification of glomeruli on digital images is a challenging and time-consuming task, we generated a program in Python able to identify glomeruli in digital images and quantify their properties, such as size, number, and pixel intensity. Validation of our program indicates that our script is a fast and suitable tool for high-throughput quantification of glomerular features of mouse lines with different genetic makeup.


Assuntos
Neurônios Receptores Olfatórios , Órgão Vomeronasal , Animais , Axônios , Proteínas de Membrana , Camundongos , Bulbo Olfatório , Coloração e Rotulagem
12.
BMC Biol ; 19(1): 133, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34182994

RESUMO

BACKGROUND: For many animals, chemosensory cues are vital for social and defensive interactions and are primarily detected and processed by the vomeronasal system (VNS). These cues are often inherently associated with ethological meaning, leading to stereotyped behaviors. Thus, one would expect consistent representation of these stimuli across different individuals. However, individuals may express different arrays of vomeronasal sensory receptors and may vary in the pattern of connections between those receptors and projection neurons in the accessory olfactory bulb (AOB). In the first part of this study, we address the ability of individuals to form consistent representations despite these potential sources of variability. The second part of our study is motivated by the fact that the majority of research on VNS physiology involves the use of stimuli derived from inbred animals. Yet, it is unclear whether neuronal representations of inbred-derived stimuli are similar to those of more ethologically relevant wild-derived stimuli. RESULTS: First, we compared sensory representations to inbred, wild-derived, and wild urine stimuli in the AOBs of males from two distinct inbred strains, using them as proxies for individuals. We found a remarkable similarity in stimulus representations across the two strains. Next, we compared AOB neuronal responses to inbred, wild-derived, and wild stimuli, again using male inbred mice as subjects. Employing various measures of neuronal activity, we show that wild-derived and wild stimuli elicit responses that are broadly similar to those from inbred stimuli: they are not considerably stronger or weaker, they show similar levels of sexual dimorphism, and when examining population-level activity, cluster with inbred mouse stimuli. CONCLUSIONS: Despite strain-specific differences and apparently random connectivity, the AOB can maintain stereotypic sensory representations for broad stimulus categories, providing a substrate for common stereotypical behaviors. In addition, despite many generations of inbreeding, AOB representations capture the key ethological features (i.e., species and sex) of wild-derived and wild counterparts. Beyond these broad similarities, representations of stimuli from wild mice are nevertheless distinct from those elicited by inbred mouse stimuli, suggesting that laboratory inbreeding has indeed resulted in marked modifications of urinary secretions.


Assuntos
Bulbo Olfatório , Animais , Sinais (Psicologia) , Masculino , Camundongos , Células Receptoras Sensoriais , Olfato , Comportamento Estereotipado , Órgão Vomeronasal
13.
Gen Comp Endocrinol ; 301: 113652, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33122037

RESUMO

The onset of puberty is associated with the psychophysiological maturation of the adolescent to an adult capable of reproduction when olfactory signals play an important role. This period begins with the secretion of the gonadotropin-releasing hormone (GnRH) from GnRH neurons within the hypothalamus. This is regulated by kisspeptin neurons that express high levels of transmembrane prolactin receptors (PRLR) that bind to and are activated by prolactin (PRL). The elevated levels of serum PRL found during lactation, or caused by chronic PRL infusion, decreases the secretion of gonadotropins and kisspeptin and compromised the estrous cyclicity and the ovulation. In the present work, we aimed to evaluate the effects of either increased or decreased PRL circulating levels within the peripubertal murine brain by administration of PRL or treatment with cabergoline (Cab) respectively. We showed that either treatment delayed the onset of puberty in females, but not in males. This was associated with the augmentation of the PRL receptor (Prlr) mRNA expression in the arcuate nucleus and decreased Kiss1 expression in the anteroventral periventricular zone. Then, during adulthood, we assessed the activation of the mitral and granular cells of the main (MOB) and accessory olfactory bulb (AOB) by cFos immunoreactivity (ir) after the exposure to soiled bedding of the opposite sex. In the MOB, the PRL treatment promoted an increased cFos-ir of the mitral cells of males and females. In the granular cells of male of either treatment an augmented activation was observed. In the AOB, an impaired cFos-ir was observed in PRL and Cab treated females after exposure to male soiled bedding. However, in males, only Cab impaired its activation. No effects were observed in the AOB-mitral cells. In conclusion, our results demonstrate that PRL contributes to pubertal development and maturation of the MOB-AOB during the murine juvenile period in a sex-dependent way.


Assuntos
Maturidade Sexual , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Camundongos , Córtex Olfatório , Prolactina , Puberdade
14.
Front Neuroanat ; 14: 584493, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328903

RESUMO

Adult neurogenesis, a striking form of neural plasticity, is involved in the modulation of social stimuli driving reproduction. Previous studies on adult neurogenesis have shown that this process is significantly modulated around puberty in female mice. Puberty is a critical developmental period triggered by increased secretion of the gonadotropin releasing hormone (GnRH), which controls the activity of the hypothalamic-pituitary-gonadal axis (HPG). Secretion of HPG-axis factors at puberty participates to the refinement of neural circuits that govern reproduction. Here, by exploiting a transgenic GnRH deficient mouse model, that progressively loses GnRH expression during postnatal development (GnRH::Cre;Dicer loxP/loxP mice), we found that a postnatally-acquired dysfunction in the GnRH system affects adult neurogenesis selectively in the subventricular-zone neurogenic niche in a sexually dimorphic way. Moreover, by examining adult females ovariectomized before the onset of puberty, we provide important evidence that, among the HPG-axis secreting factors, the circulating levels of gonadal hormones during pre-/peri-pubertal life contribute to set-up the proper adult subventricular zone-olfactory bulb neurogenic system.

15.
J Comp Neurol ; 528(18): 3285-3304, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798255

RESUMO

Employing a range of neuroanatomical stains, we detail the organization of the main and accessory olfactory systems of the African wild dog. The organization of both these systems follows that typically observed in mammals, but variations of interest were noted. Within the main olfactory bulb, the size of the glomeruli, at approximately 350 µm in diameter, are on the larger end of the range observed across mammals. In addition, we estimate that approximately 3,500 glomeruli are present in each main olfactory bulb. This larger main olfactory bulb glomerular size and number of glomeruli indicates that enhanced peripheral processing of a broad range of odorants is occurring in the main olfactory bulb of the African wild dog. Within the accessory olfactory bulb, the glomeruli did not appear distinct, rather forming a homogenous syncytia-like arrangement as seen in the domestic dog. In addition, the laminar organization of the deeper layers of the accessory olfactory bulb was indistinct, perhaps as a consequence of the altered architecture of the glomeruli. This arrangement of glomeruli indicates that rather than parcellating the processing of semiochemicals peripherally, these odorants may be processed in a more nuanced and combinatorial manner in the periphery, allowing for more rapid and precise behavioral responses as required in the highly social group structure observed in the African wild dog. While having a similar organization to that of other mammals, the olfactory system of the African wild dog has certain features that appear to correlate to their environmental niche.


Assuntos
Animais Selvagens/anatomia & histologia , Encéfalo/anatomia & histologia , Canidae/anatomia & histologia , Bulbo Olfatório/anatomia & histologia , Córtex Olfatório/anatomia & histologia , Condutos Olfatórios/anatomia & histologia , África Subsaariana , Animais , Animais Selvagens/fisiologia , Encéfalo/fisiologia , Canidae/fisiologia , Cães , Odorantes , Bulbo Olfatório/fisiologia , Córtex Olfatório/fisiologia , Nervo Olfatório/anatomia & histologia , Nervo Olfatório/fisiologia , Condutos Olfatórios/fisiologia
16.
eNeuro ; 7(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32471845

RESUMO

The brains of male and female mice are shaped by genetics and hormones during development. The enzyme aromatase helps establish sex differences in social behaviors and in the neural circuits that produce these behaviors. The medial amygdala of mice contains a large population of aromatase neurons and is a critical hub in the social behavior network. Moreover, the neural representation of social stimuli in the medial amygdala displays clear sex differences that track developmental changes in social behaviors. Here, we identify a potential anatomic basis for those sex differences. We found that sensory input from the accessory olfactory bulb (AOB) to aromatase neurons is derived nearly exclusively from the anterior AOB, which selectively responds to chemosensory cues from conspecific animals. Through the coordinated use of mouse transgenics and viral-based circuit-tracing strategies, we demonstrate a clear sex difference in the volume of synapses connecting the accessory olfactory bulb to aromatase-expressing neurons in the medial amygdala of male versus female mice. This difference in anatomy likely mediates, at least in part, sex differences in medial amygdala-mediated social behaviors.


Assuntos
Aromatase , Complexo Nuclear Corticomedial , Tonsila do Cerebelo , Animais , Aromatase/genética , Feminino , Masculino , Camundongos , Bulbo Olfatório , Comportamento Social
17.
J Neurosci ; 40(21): 4203-4218, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312886

RESUMO

The accessory olfactory system controls social and sexual behavior. In the mouse accessory olfactory bulb, the first central stage of information processing along the accessory olfactory pathway, projection neurons (mitral cells) display infra-slow oscillatory discharge with remarkable periodicity. The physiological mechanisms that underlie this default output state, however, remain controversial. Moreover, whether such rhythmic infra-slow activity patterns exist in awake behaving mice and whether such activity reflects the functional organization of the accessory olfactory bulb circuitry remain unclear. Here, we hypothesize that mitral cell ensembles form synchronized microcircuits that subdivide the accessory olfactory bulb into segregated functional clusters. We use a miniature microscope to image the Ca2+ dynamics within the apical dendritic compartments of large mitral cell ensembles in vivo We show that infra-slow periodic patterns of concerted neural activity, indeed, reflect the idle state of accessory olfactory bulb output in awake male and female mice. Ca2+ activity profiles are distinct and glomerulus-specific. Confocal time-lapse imaging in acute slices reveals that groups of mitral cells assemble into microcircuits that exhibit correlated Ca2+ signals. Moreover, electrophysiological profiling of synaptic connectivity indicates functional coupling between mitral cells. Our results suggest that both intrinsically rhythmogenic neurons and neurons entrained by fast synaptic drive are key elements in organizing the accessory olfactory bulb into functional microcircuits, each characterized by a distinct default pattern of infra-slow rhythmicity.SIGNIFICANCE STATEMENT Information processing in the accessory olfactory bulb (AOB) plays a central role in conspecific chemosensory communication. Surprisingly, many basic physiological principles that underlie neuronal signaling in the AOB remain elusive. Here, we show that AOB projection neurons (mitral cells) form parallel synchronized ensembles both in vitro and in vivo Infra-slow synchronous oscillatory activity within AOB microcircuits thus adds a new dimension to chemosensory coding along the accessory olfactory pathway.


Assuntos
Rede Nervosa/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Potenciais de Ação/fisiologia , Animais , Camundongos
18.
Zool Res ; 41(2): 148-156, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31945810

RESUMO

The accessory olfactory bulb (AOB), located at the posterior dorsal aspect of the main olfactory bulb (MOB), is the first brain relay of the accessory olfactory system (AOS), which can parallelly detect and process volatile and nonvolatile social chemosignals and mediate different sexual and social behaviors with the main olfactory system (MOS). However, due to its anatomical location and absence of specific markers, there is a lack of research on the internal and external neural circuits of the AOB. This issue was addressed by single-color labeling and fluorescent double labeling using retrograde rAAVs injected into the bed nucleus of the stria terminalis (BST), anterior cortical amygdalar area (ACo), medial amygdaloid nucleus (MeA), and posteromedial cortical amygdaloid area (PMCo) in mice. We demonstrated the effectiveness of this AOB projection neuron labeling method and showed that the mitral cells of the AOB exhibited efferent projection dispersion characteristics similar to those of the MOB. Moreover, there were significant differences in the number of neurons projected to different brain regions, which indicated that each mitral cell in the AOB could project to a different number of neurons in different cortices. These results provide a circuitry basis to help understand the mechanism by which pheromone information is encoded and decoded in the AOS.


Assuntos
Vias Eferentes/fisiologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Animais , Mapeamento Encefálico , Vias Eferentes/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios , Bulbo Olfatório/citologia , Condutos Olfatórios/citologia
19.
Brain Struct Funct ; 225(1): 203-226, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31802255

RESUMO

The accessory olfactory bulb (AOB) is the first neural integrative centre of the vomeronasal system (VNS), which is associated primarily with the detection of semiochemicals. Although the rabbit is used as a model for the study of chemocommunication, these studies are hampered by the lack of knowledge regarding the topography, lamination, and neurochemical properties of the rabbit AOB. To fill this gap, we have employed histological stainings: lectin labelling with Ulex europaeus (UEA-I), Bandeiraea simplicifolia (BSI-B4), and Lycopersicon esculentum (LEA) agglutinins, and a range of immunohistochemical markers. Anti-G proteins Gαi2/Gαo, not previously studied in the rabbit AOB, are expressed following an antero-posterior zonal pattern. This places Lagomorpha among the small groups of mammals that conserve a double-path vomeronasal reception. Antibodies against olfactory marker protein (OMP), growth-associated protein-43 (GAP-43), glutaminase (GLS), microtubule-associated protein-2 (MAP-2), glial fibrillary-acidic protein (GFAP), calbindin (CB), and calretinin (CR) characterise the strata and the principal components of the BOA, demonstrating several singular features of the rabbit AOB. This diversity is accentuated by the presence of a unique organisation: four neuronal clusters in the accessory bulbar white matter, two of them not previously characterised in any species (the γ and δ groups). Our morphometric study of the AOB has found significant differences between sexes in the numerical density of principal cells, with larger values in females, a pattern completely opposite to that found in rats. In summary, the rabbit possesses a highly developed AOB, with many specific features that highlight the significant role played by chemocommunication among this species.


Assuntos
Neurônios/citologia , Bulbo Olfatório/citologia , Órgão Vomeronasal/citologia , Animais , Contagem de Células , Feminino , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos BALB C , Bulbo Olfatório/metabolismo , Coelhos , Caracteres Sexuais
20.
J Anat ; 236(4): 612-621, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797375

RESUMO

In mammals, the accessory olfactory or vomeronasal system exhibits a wide variety of anatomical arrangements. In caviomorph rodents, the accessory olfactory bulb (AOB) exhibits a dichotomic conformation, in which two subdomains, the anterior (aAOB) and the posterior (pAOB), can be readily distinguished. Interestingly, different species of this group exhibit bias of different sign between the AOB subdomains (aAOB larger than pAOB or vice versa). Such species-specific biases have been related with contrasting differences in the habitat of the different species (e.g. arid vs. humid environments). Aiming to deepen these observations, we performed a morphometric comparison of the AOB subdomains between two sister species of octodontid rodents, Octodon lunatus and Octodon degus. These species are interesting for comparative purposes, as they inhabit similar landscapes but exhibit contrasting social habits. Previous reports have shown that O. degus, a highly social species, exhibits a greatly asymmetric AOB, in which the aAOB has twice the size of the pAOB and features more and larger glomeruli in its glomerular layer (GL). We found that the same as in O. degus, the far less social O. lunatus also exhibits a bias, albeit less pronounced, to a larger aAOB. In both species, this bias was also evident for the mitral/tufted cells number. But unlike in O. degus, in O. lunatus this bias was not present at the GL. In comparison with O. degus, in O. lunatus the aAOB GL was significantly reduced in volume, while the pAOB GL displayed a similar volume. We conclude that these sister species exhibit a very sharp difference in the anatomical conformation of the AOB, namely, the relative size of the GL of the aAOB subdomain, which is larger in O. degus than in O. lunatus. We discuss these results in the context of the differences in the lifestyle of these species, highlighting the differences in social behaviour as a possible factor driving to distinct AOB morphometries.


Assuntos
Comportamento Animal/fisiologia , Lateralidade Funcional/fisiologia , Bulbo Olfatório/anatomia & histologia , Comportamento Social , Animais , Octodon , Bulbo Olfatório/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA