Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.480
Filtrar
1.
Cell Signal ; 121: 111273, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38950874

RESUMO

Diabetes-associated periodontitis (DP) presents severe inflammation and resistance to periodontal conventional treatment, presenting a significant challenge in clinical management. In this study, we investigated the underlying mechanism driving the hyperinflammatory response in gingival epithelial cells (GECs) of DP patients. Our findings indicate that lysosomal dysfunction under high glucose conditions leads to the blockage of autophagy flux, exacerbating inflammatory response in GECs. Single-cell RNA sequencing and immunohistochemistry analyses of clinical gingival epithelia revealed dysregulation in the lysosome pathway characterized by reduced levels of lysosome-associated membrane glycoprotein 2 (LAMP2) and V-type proton ATPase 16 kDa proteolipid subunit c (ATP6V0C) in subjects with DP. In vitro stimulation of human gingival epithelial cells (HGECs) with a hyperglycemic microenvironment showed elevated release of proinflammatory cytokines, compromised lysosomal acidity and blocked autophagy. Moreover, HGECs with deficiency in ATP6V0C demonstrated impaired autophagy and heightened inflammatory response, mirroring the effects of high glucose stimulation. Proteomic analysis of acetylation modifications identified altered acetylation levels in 28 autophagy-lysosome pathway-related proteins and 37 sites in HGECs subjected to high glucose stimulation or siATP6V0C. Overall, our finding highlights the pivotal role of lysosome impairment in autophagy obstruction in DP and suggests a potential impact of altered acetylation of relevant proteins on the interplay between lysosome dysfunction and autophagy blockage. These insights may pave the way for the development of effective therapeutic strategies against DP.


Assuntos
Autofagia , Células Epiteliais , Gengiva , Lisossomos , Periodontite , Humanos , Lisossomos/metabolismo , Acetilação , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Gengiva/metabolismo , Gengiva/patologia , Periodontite/metabolismo , Periodontite/patologia , Periodontite/complicações , Masculino , Feminino , ATPases Vacuolares Próton-Translocadoras/metabolismo , Pessoa de Meia-Idade , Glucose/farmacologia , Adulto
2.
J Biol Chem ; 300(8): 107527, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960040

RESUMO

In an unmodified state, positively charged histone N-terminal tails engage nucleosomal DNA in a manner which restricts access to not only the underlying DNA but also key tail residues subject to binding and/or modification. Charge-neutralizing modifications, such as histone acetylation, serve to disrupt this DNA-tail interaction, facilitating access to such residues. We previously showed that a polyacetylation-mediated chromatin "switch" governs the read-write capability of H3K4me3 by the MLL1 methyltransferase complex. Here, we discern the relative contributions of site-specific acetylation states along the H3 tail and extend our interrogation to other chromatin modifiers. We show that the contributions of H3 tail acetylation to H3K4 methylation by MLL1 are highly variable, with H3K18 and H3K23 acetylation exhibiting robust stimulatory effects and that this extends to the related H3K4 methyltransferase complex, MLL4. We show that H3K4me1 and H3K4me3 are found preferentially co-enriched with H3 N-terminal tail proteoforms bearing dual H3K18 and H3K23 acetylation (H3{K18acK23ac}). We further show that this effect is specific to H3K4 methylation, while methyltransferases targeting other H3 tail residues (H3K9, H3K27, & H3K36), a methyltransferase targeting the nucleosome core (H3K79), and a kinase targeting a residue directly adjacent to H3K4 (H3T3) are insensitive to tail acetylation. Together, these findings indicate a unique and robust stimulation of H3K4 methylation by H3K18 and H3K23 acetylation and provide key insight into why H3K4 methylation is often associated with histone acetylation in the context of active gene expression.

3.
Cell Signal ; 121: 111280, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38960058

RESUMO

OBJECTIVE: To investigate whether tricyclic decylbenzoxazole (TDB) regulates liver cancer cell proliferation and apoptosis through p300-mediated FOXO acetylation. METHODS: Sequencing, adenovirus, and lentivirus transfection were performed in human liver cancer cell line SMMC-7721 and apoptosis was detected by Tunel, Hoechst, and flow cytometry. TEM for mitochondrial morphology, MTT for cell proliferation ability, Western blot, and PCR were used to detect protein levels and mRNA changes. RESULTS: Sequencing analysis and cell experiments confirmed that TDB can promote the up-regulation of FOXO3 expression. TDB induced FOXO3 up-regulation in a dose-dependent manner, promoted the expression of p300 and Bim, and enhanced the acetylation and dephosphorylation of FOXO3, thus promoting apoptosis. p300 promotes apoptosis of cancer cells through Bim and other proteins, while HAT enhances the phosphorylation of FOXO3 and inhibits apoptosis. Overexpression of FOXO3 can increase the expression of exo-apoptotic pathways (FasL, TRAIL), endo-apoptotic pathways (Bim), and acetylation at the protein level and inhibit cell proliferation and apoptotic ability, while FOXO3 silencing or p300 mutation can partially reverse apoptosis. In tumor tissues with overexpression of FOXO3, TDB intervention can further increase the expression of p53 and caspase-9 proteins in tumor cells, resulting in loss of mitochondrial membrane integrity during apoptosis, the release of cytoplasm during signal transduction, activation of caspase-9 and synergistic inhibition of growth. CONCLUSION: TDB induces proliferation inhibition and promotes apoptosis of SMMC-7721 cells by activating p300-mediated FOXO3 acetylation.


Assuntos
Apoptose , Benzoxazóis , Proliferação de Células , Proteína p300 Associada a E1A , Proteína Forkhead Box O3 , Neoplasias Hepáticas , Humanos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Apoptose/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Benzoxazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Proteína p300 Associada a E1A/metabolismo , Acetilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
4.
Addict Biol ; 29(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38963015

RESUMO

The addictive use of nicotine contained in tobacco is associated with stressor-like emotional and cognitive effects such as anxiety and working memory impairment, and the involvement of epigenetic mechanisms such as histone acetylation has recently been reported. Although the precise nature of behavioural plasticity remains unclear, both anxiogenic- and working memory impairment-like effects were observed in the present experimental model of mice treated with repeated subcutaneous nicotine and/or immobilization stress, and these effects were commonly attenuated by the histone deacetylase (HDAC) inhibitors that induce histone acetylation. Such HDAC inhibitor-induced resilience was mimicked by ligands for the endocannabinoid (ECB) system, a neurotransmitter system that is closely associated with nicotine-induced addiction-related behaviours: the anxiogenic-like effects were mitigated by the cannabinoid type 1 (CB1) agonist arachidonylcyclopropylamide (ACPA), whereas the working memory impairment-like effects were mitigated by the CB1 antagonist SR 141716A. Moreover, the effects of the HDAC inhibitors were also mimicked by ligands for the endovanilloid (transient receptor potential vanilloid 1 [TRPV1]) system, a system that shares common characteristics with the ECB system: the anxiogenic-like effects were mitigated by the TRPV1 antagonist capsazepine, whereas the working memory impairment-like effects were mitigated by the TRPV1 agonist olvanil. Notably, the HDAC inhibitor-induced anxiolytic-like effects were attenuated by SR 141716A, which were further counteracted by capsazepine, whereas the working memory improvement-like effects were attenuated by capsazepine, which were further counteracted by SR 141716A. These results suggest the contribution of interrelated control of the ECB/TRPV1 systems and epigenetic processes such as histone acetylation to novel therapeutic approaches.


Assuntos
Ansiedade , Endocanabinoides , Epigênese Genética , Memória de Curto Prazo , Nicotina , Estresse Psicológico , Canais de Cátion TRPV , Animais , Canais de Cátion TRPV/efeitos dos fármacos , Nicotina/farmacologia , Camundongos , Memória de Curto Prazo/efeitos dos fármacos , Endocanabinoides/metabolismo , Masculino , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Receptor CB1 de Canabinoide/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Capsaicina/farmacologia , Capsaicina/análogos & derivados , Modelos Animais de Doenças , Rimonabanto/farmacologia , Agonistas Nicotínicos/farmacologia , Piperidinas/farmacologia
5.
Eur J Oral Sci ; 132(4): e13005, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39014296

RESUMO

The present study aimed to evaluate whether epigenetic markers are expressed in the dental follicles surrounding ectopically erupting teeth. Twenty-one dental follicles were collected in 20 adolescent children through surgical exposure of ectopic teeth. The epigenetic modifications of DNA methylation and histone acetylation were evaluated by immunohistochemistry. The results showed cells positive for DNA-methyltransferase 1 (DNMT1), DNA methyltransferase 3 beta (DNMT3B), ten-eleven translocation-2 (TET2), acetyl-histone H3 (AcH3), acetyl-histone H4 (AcH4), 5-methylcytosine (5mC), and 5-hydroxymethylcytosine (5hmC) were present in all the samples. The levels of epigenetic markers representing active chromatin (5hmC, AcH3, AcH4, and TET2) were statistically significantly higher than those of markers representing inactive chromatin (5mC, DNMT3B, DNMT1). In conclusion, follicles in ectopic teeth display major epigenetic modifications. In the follicles, epigenetic markers associated with the activation of bone-related genes are more abundant than markers associated with the inactivation of bone-related genes.


Assuntos
Metilação de DNA , Saco Dentário , Epigênese Genética , Histonas , Erupção Dentária , Humanos , Histonas/metabolismo , Adolescente , Acetilação , Criança , Feminino , Masculino , Erupção Dentária/genética , Saco Dentário/metabolismo , DNA Metiltransferase 3B , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Citosina/metabolismo
6.
Biochimie ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038730

RESUMO

N-terminal acetylation is being recognized as a factor affecting protein lifetime and proteostasis. It is a modification where an acetyl group is added to the N-terminus of proteins, and this occurs in 80 % of the human proteome. N-terminal acetylation is catalyzed by enzymes called N-terminal acetyltransferases (NATs). The various NATs acetylate different N-terminal amino acids, and methionine is a known target for some of the NATs. Currently, the acetylation status of most proteins can only be assessed with a limited number of methods, including mass spectrometry, which although powerful and robust, remains laborious and can only survey a fraction of the proteome. We here present testing of an antibody that was developed to specifically recognize Nt-acetylated methionine-starting proteins. We have used dot blots with synthetic acetylated and non-acetylated peptides in addition to protein analysis of lysates from NAT knockout cell lines to assess the specificity and application of this anti-Nt-acetylated methionine antibody (anti-NtAc-Met). Our results demonstrate that this antibody is indeed NtAc-specific and further show that it has selectivity for some subtypes of methionine-starting N-termini, specifically potential substrates of the NatC, NatE and NatF enzymes. We propose that this antibody may be a powerful tool to identify NAT substrates or to analyse changes in N-terminal acetylation for specific cellular proteins of interest.

7.
J Ovarian Res ; 17(1): 150, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030559

RESUMO

BACKGROUND: Epithelial ovarian carcinoma (EOC) is a prevalent gynaecological malignancy. The prognosis of patients with EOC is related to acetylation modifications and immune responses in the tumour microenvironment (TME). However, the relationships between acetylation-related genes, patient prognosis, and the tumour immune microenvironment (TIME) are not yet understood. Our research aims to investigate the link between acetylation and the tumour microenvironment, with the goal of identifying new biomarkers for estimating survival of patients with EOC. METHODS: Using data downloaded from the tumour genome atlas (TCGA), genotypic tissue expression (GTEx), and gene expression master table (GEO), we comprehensively evaluated acetylation-related genes in 375 ovarian cancer specimens and identified molecular subtypes using unsupervised clustering. The prognosis, TIME, stem cell index and functional concentration analysis were compared among the three groups. A risk model based on differential expression of acetylation-related genes was established through minimum absolute contraction and selection operator (LASSO) regression analysis, and the predictive validity of this feature was validated using GEO data sets. A nomogram is used to predict a patient's likelihood of survival. In addition, different EOC risk groups were evaluated for timing, tumour immune dysfunction and exclusion (TIDE) score, stemness index, somatic mutation, and drug sensitivity. RESULTS: We used the mRNA levels of the differentially expressed genes related to acetylation to classify them into three distinct clusters. Patients with increased immune cell infiltration and lower stemness scores in cluster 2 (C2) exhibited poorer prognosis. Immunity and tumourigenesis-related pathways were highly abundant in cluster 3 (C3). We developed a prognostic model for ten differentially expressed acetylation-related genes. Kaplan-Meier analysis demonstrated significantly worse overall survival (OS) in high-risk patients. Furthermore, the TIME, tumour immune dysfunction and exclusion (TIDE) score, stemness index, tumour mutation burden (TMB), immunotherapy response, and drug sensitivity all showed significant correlations with the risk scores. CONCLUSIONS: Our study demonstrated a complex regulatory mechanism of acetylation in EOC. The assessment of acetylation patterns could provide new therapeutic strategies for EOC immunotherapy to improve the prognosis of patients.


Assuntos
Carcinoma Epitelial do Ovário , Neoplasias Ovarianas , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Feminino , Carcinoma Epitelial do Ovário/imunologia , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/mortalidade , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/metabolismo , Acetilação , Prognóstico , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade
8.
Artigo em Inglês | MEDLINE | ID: mdl-39046654

RESUMO

Our objective was to determine the role of acetyl-Hsp90 and its relationship with the NF-κB p65 signaling pathway in CVDs. We investigated the effect of acetyl-Hsp90 on cardiac inflammation and apoptosis after ischemia-reperfusion injury (I/RI). The results showed that the induction of acetyl-Hsp90 occurred in the heart during I/R and in primary cardiomyocytes during oxygen-glucose deprivation/reoxygenation (OGD/R). Moreover, the nonacetylated mutant of Hsp90 (Hsp90-K284R), through the regulation of ATPase activities within its N-terminal domain (NTD), indirectly or directly increases its interaction with NF-κB p65. This led to a reduction in the activation of the NF-κB p65 pathway, thereby attenuating inflammation, apoptosis, and fibrosis, ultimately leading to an improvement in cardiac function. Furthermore, we demonstrated that recombinant human interleukin-37 (rIL-37) exerts a similar cardioprotective effect by reducing acetylation at K284 of Hsp90 after inhibiting the expression of KAT2A.

9.
Methods Mol Biol ; 2823: 173-191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39052221

RESUMO

Immunoprecipitation is one of the most effective methods for enrichment of lysine-acetylated peptides for comprehensive acetylome analysis using mass spectrometry. Manual acetyl peptide enrichment method using non-conjugated antibodies and agarose beads has been developed and applied in various studies. However, it is time-consuming and can introduce contaminants and variability that leads to potential sample loss and decreased sensitivity and robustness of the analysis. Here we describe a fast, automated enrichment protocol that enables reproducible and comprehensive acetylome analysis using a magnetic bead-based immunoprecipitation reagent.


Assuntos
Imunoprecipitação , Fluxo de Trabalho , Imunoprecipitação/métodos , Acetilação , Humanos , Proteômica/métodos , Lisina/metabolismo , Peptídeos/química , Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional , Proteoma/análise
10.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062771

RESUMO

Nucleoside diphosphate (NDP) kinases 1 and 2 (NME1/2) are well-characterized enzymes known for their NDP kinase activity. Recently, these enzymes have been shown by independent studies to bind coenzyme A (CoA) or acyl-CoA. These findings suggest a hitherto unknown role for NME1/2 in the regulation of CoA/acyl-CoA-dependent metabolic pathways, in tight correlation with the cellular NTP/NDP ratio. Accordingly, the regulation of NME1/2 functions by CoA/acyl-CoA binding has been described, and additionally, NME1/2 have been shown to control the cellular pathways consuming acetyl-CoA, such as histone acetylation and fatty acid synthesis. NME1/2-controlled histone acetylation in turn mediates an important transcriptional response to metabolic changes, such as those induced following a high-fat diet (HFD). This review discusses the CoA/acyl-CoA-dependent NME1/2 activities and proposes that these enzymes be considered as the first identified carriers of CoA/short-chain acyl-CoAs.


Assuntos
Trifosfato de Adenosina , Humanos , Animais , Trifosfato de Adenosina/metabolismo , Acil Coenzima A/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Nucleosídeo NM23 Difosfato Quinases/genética , Núcleosídeo-Difosfato Quinase/metabolismo , Núcleosídeo-Difosfato Quinase/genética , Acetilação
11.
Insects ; 15(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39057231

RESUMO

Overwintering survival by insects, whether of the freeze-tolerant or freeze-avoiding types, is typically associated with a strong suppression of metabolic rate (e.g., entry into diapause) that involves the differential expression of many genes with regulation at the transcriptional, translational or post-translational levels. Epigenetic modifications have been suggested to play a vital role in regulating cold responses of insects. However, knowledge of the roles of epigenetic mechanisms in modulating gene expression for winter survival of the larvae of two goldenrod gall formers, the freeze-tolerant dipteran Eurosta solidaginis and the freeze-avoiding lepidopteran Epiblema scudderiana, remain unknown. The current study evaluates the role of cold-induced lysine methylation and histone modifications, with enzymes of lysine methylation (SETD8, SETD7, SUV39H1, SMYD2 and ASH2L), as well as relative levels of histone H3 acetylation (H3K9ac, H3K18ac, H3K27ac, H3K56ac) and methylation (H3K4me1, H3K9me3, H3K36me2) examined in two insects. Significant (p < 0.05) reductions were observed in most of the targets of histone methylation/acetylation for decreasing temperatures of Ep. scudderiana larvae, whereas selected histone methylation/acetylation targets were conversely elevated (p < 0.05) in E. solidaginis, particularly under conditions of 5 °C for 4 h. Histone H3 expression was found to be variable without statistical differences in larval goldenrod gall moths and gall flies. These results provide basic information on the patterns of epigenetic regulation involved in insect cold hardiness.

12.
Food Chem ; 458: 140252, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38964113

RESUMO

Ethylene plays diverse roles in post-harvest processes of horticultural crops. However, its impact and regulation mechanism on the postharvest physiological deterioration (PPD) of cassava storage roots is unknown. In this study, a notable delay in PPD of cassava storage roots was observed when ethephon was utilized as an ethylene source. Physiological analyses and quantitative acetylproteomes were employed to investigate the regulation mechanism regulating cassava PPD under ethephon treatment. Ethephon was found to enhance the reactive oxygen species (ROS) scavenging system, resulting in a significant decrease in H2O2 and malondialdehyde (MDA) content. The comprehensive acetylome analysis identified 12,095 acetylation sites on 4403 proteins. Subsequent analysis demonstrated that ethephon can regulate the acetylation levels of antioxidant enzymes and members of the energy metabolism pathways. In summary, ethephon could enhance the antioxidant properties and regulate energy metabolism pathways, leading to the delayed PPD of cassava.

13.
Front Cell Infect Microbiol ; 14: 1408947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027134

RESUMO

Lysine acetylation is an evolutionarily conserved protein modification that changes protein functions and plays an essential role in many cellular processes, such as central metabolism, transcriptional regulation, chemotaxis, and pathogen virulence. It can alter DNA binding, enzymatic activity, protein-protein interactions, protein stability, or protein localization. In prokaryotes, lysine acetylation occurs non-enzymatically and by the action of lysine acetyltransferases (KAT). In enzymatic acetylation, KAT transfers the acetyl group from acetyl-CoA (AcCoA) to the lysine side chain. In contrast, acetyl phosphate (AcP) is the acetyl donor of chemical acetylation. Regardless of the acetylation type, the removal of acetyl groups from acetyl lysines occurs only enzymatically by lysine deacetylases (KDAC). KATs are grouped into three main superfamilies based on their catalytic domain sequences and biochemical characteristics of catalysis. Specifically, members of the GNAT are found in eukaryotes and prokaryotes and have a core structural domain architecture. These enzymes can acetylate small molecules, metabolites, peptides, and proteins. This review presents current knowledge of acetylation mechanisms and functional implications in bacterial metabolism, pathogenicity, stress response, translation, and the emerging topic of protein acetylation in the gut microbiome. Additionally, the methods used to elucidate the biological significance of acetylation in bacteria, such as relative quantification and stoichiometry quantification, and the genetic code expansion tool (CGE), are reviewed.


Assuntos
Bactérias , Proteínas de Bactérias , Processamento de Proteína Pós-Traducional , Acetilação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Bactérias/metabolismo , Bactérias/genética , Lisina/metabolismo , Lisina Acetiltransferases/metabolismo , Lisina Acetiltransferases/genética , Acetilcoenzima A/metabolismo
14.
Clin Exp Immunol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028614

RESUMO

Severe trauma can lead to numerous serious complications, threating the well-being and vitality of the afflicted. The quantity and functionality of PMNs undergo rapid transformations in response to severe trauma, playing a pivotal role in the trauma response. The absence of CCAAT/enhancer-binding protein ε (C/EBPε) profoundly impairs the functionality of polymorphonuclear neutrophils (PMNs), a function of paramount importance in trauma. In this study, by generating mice with C/EBPε knocked out or overexpressed, we substantiate that C/EBPε ensures the restoration of PMN function, enhancing the expression of antimicrobial proteins and thereby promoting trauma recovery. Furthermore, diminished expression of C/EBPε is observed in trauma patients, with levels displaying a negative correlation with ISS and APACHE II scores, suggesting its potential as a prognostic indicator for clinical treatment. Mechanistically, we uncover the upregulation of SIRT1 and the inhibition of P300 participating in the suppression of C/EBPε acetylation, consequently reducing the resilience of mice to trauma. As therapeutic interventions, whether through the sole administration of PMN, NAM treatment, or their combination, all result in an increased survival rate in traumatic mice. In conclusion, our study elucidates the role of C/EBPε in enhancing the resilience to trauma and identifies C/EBPε acetylation as a critical regulatory mechanism, offering potential therapeutic approaches involving PMN transfusion and NAM treatment.

15.
Mol Cell Biol ; 44(7): 273-288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38961766

RESUMO

Here, we report a novel role for the yeast lysine acetyltransferase NuA4 in regulating phospholipid availability for organelle morphology. Disruption of the NuA4 complex results in 70% of cells displaying nuclear deformations and nearly 50% of cells exhibiting vacuolar fragmentation. Cells deficient in NuA4 also show severe defects in the formation of nuclear-vacuole junctions (NJV), as well as a decrease in piecemeal microautophagy of the nucleus (PMN). To determine the cause of these defects we focused on Pah1, an enzyme that converts phosphatidic acid into diacylglycerol, favoring accumulation of lipid droplets over phospholipids that are used for membrane expansion. NuA4 subunit Eaf1 was required for Pah1 localization to the inner nuclear membrane and artificially tethering of Pah1 to the nuclear membrane rescued nuclear deformation and vacuole fragmentation defects, but not defects related to the formation of NVJs. Mutation of a NuA4-dependent acetylation site on Pah1 also resulted in aberrant Pah1 localization and defects in nuclear morphology and NVJ. Our work suggests a critical role for NuA4 in organelle morphology that is partially mediated through the regulation of Pah1 subcellular localization.


Assuntos
Núcleo Celular , Metabolismo dos Lipídeos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vacúolos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Vacúolos/metabolismo , Núcleo Celular/metabolismo , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Fosfatidato Fosfatase/metabolismo , Fosfatidato Fosfatase/genética , Acetilação , Membrana Nuclear/metabolismo , Fosfolipídeos/metabolismo , Mutação
16.
Front Oncol ; 14: 1427725, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983924

RESUMO

Head and neck cancer is the main cause of cancer death worldwide, with squamous cell carcinoma (HNSCC) being the second most frequent subtype. HNSCC poses significant health threats due to its high incidence and poor prognosis, underscoring the urgent need for advanced research. Histone modifications play a crucial role in the regulation of gene expression and influencing various biological processes. In the context of HNSCC, aberrant histone modifications are increasingly recognized as critical contributors to its development and pathologic progression. This review demonstrates the molecular mechanisms, by which histone modifications such as acetylation, methylation, phosphorylation, and ubiquitination, impact the pathogenesis of HNSCC. The dysregulation of histone-modifying enzymes, including histone acetyltransferases (HATs), histone deacetylases (HDACs), and histone methyltransferases (HMTs), is discussed for its role in altering chromatin structure and gene expression in HNSCC. Moreover, we will explore the potential of targeting histone modifications as a therapeutic strategy, highlighting current preclinical and clinical studies that investigate histone deacetylase inhibitors (HDIs) and other epigenetic drugs, referring to the completed and ongoing clinical trials on those medications.

17.
Future Med Chem ; : 1-17, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949857

RESUMO

PD-L1 is overexpressed on the surface of tumor cells and binds to PD-1, resulting in tumor immune escape. Therapeutic strategies to target the PD-1/PD-L1 pathway involve blocking the binding. Immune checkpoint inhibitors have limited efficacy against tumors because PD-L1 is also present in the cytoplasm. PD-L1 of post-translational modifications (PTMs) have uncovered numerous mechanisms contributing to carcinogenesis and have identified potential therapeutic targets. Therefore, small molecule inhibitors can block crucial carcinogenic signaling pathways, making them a potential therapeutic option. To better develop small molecule inhibitors, we have summarized the PTMs of PD-L1. This review discusses the regulatory mechanisms of small molecule inhibitors in carcinogenesis and explore their potential applications, proposing a novel approach for tumor immunotherapy based on PD-L1 PTM.


[Box: see text].

18.
Cell Mol Life Sci ; 81(1): 298, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992327

RESUMO

In spite of its essential role in culture media, the precise influence of lactate on early mouse embryonic development remains elusive. Previous studies have implicated lactate accumulation in medium affecting histone acetylation. Recent research has underscored lactate-derived histone lactylation as a novel epigenetic modification in diverse cellular processes and diseases. Our investigation demonstrated that the absence of sodium lactate in the medium resulted in a pronounced 2-cell arrest at the late G2 phase in embryos. RNA-seq analysis revealed that the absence of sodium lactate significantly impaired the maternal-to-zygotic transition (MZT), particularly in zygotic gene activation (ZGA). Investigations were conducted employing Cut&Tag assays targeting the well-studied histone acetylation and lactylation sites, H3K18la and H3K27ac, respectively. The findings revealed a noticeable reduction in H3K18la modification under lactate deficiency, and this alteration showed a significant correlation with changes in gene expression. In contrast, H3K27ac exhibited minimal correlation. These results suggest that lactate may preferentially influence early embryonic development through H3K18la rather than H3K27ac modifications.


Assuntos
Histonas , Ácido Láctico , Zigoto , Histonas/metabolismo , Histonas/genética , Animais , Acetilação , Zigoto/metabolismo , Camundongos , Ácido Láctico/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Epigênese Genética , Genoma , Processamento de Proteína Pós-Traducional
19.
J Cell Mol Med ; 28(13): e18510, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953409

RESUMO

In recent years, inflammatory disorders have emerged as a significant concern for human health. Through ongoing research on anti-inflammatory agents, alpinetin has shown promising anti-inflammatory properties, including involvement in epigenetic modification pathways. As a crucial regulator of epigenetic modifications, Mecp2 may play a role in modulating the epigenetic effects of alpinetin, potentially impacting its anti-inflammatory properties. To test this hypothesis, two key components, p65 (a member of NF-KB family) and p300 (a type of co-activator), were screened by the expression profiling microarray, which exhibited a strong correlation with the intensity of LPS stimulation in mouse macrophages. Meanwhile, alpinetin demonstrates the anti-inflammatory properties through its ability to disrupt the synthesis of p65 and its interaction with promoters of inflammatory genes, yet it did not exhibit similar effects on p300. Additionally, Mecp2 can inhibit the binding of p300 by attaching to the methylated inflammatory gene promoter induced by alpinetin, leading to obstacles in promoter acetylation and subsequently impacting the binding of p65, ultimately enhancing the anti-inflammatory capabilities of alpinetin. Similarly, in a sepsis mouse model, it was observed that homozygotes overexpressing Mecp2 showed a greater reduction in organ damage and improved survival rates compared to heterozygotes when administered by alpinetin. However, blocking the expression of DNA methyltransferase 3A (DNMT3A) resulted in the loss of Mecp2's anti-inflammatory assistance. In conclusion, Mecp2 may augment the anti-inflammatory effects of alpinetin through epigenetic 'crosstalk', highlighting the potential efficacy of a combined therapeutic strategy involving Mecp2 and alpinetin for anti-inflammatory intervention.


Assuntos
Anti-Inflamatórios , Epigênese Genética , Flavanonas , Proteína 2 de Ligação a Metil-CpG , Regiões Promotoras Genéticas , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Animais , Flavanonas/farmacologia , Epigênese Genética/efeitos dos fármacos , Camundongos , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Metilação de DNA/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Fator de Transcrição RelA/metabolismo , Sepse/tratamento farmacológico , Sepse/genética , Sepse/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/genética , Inflamação/metabolismo , DNA Metiltransferase 3A/metabolismo , Masculino , Proteína p300 Associada a E1A/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética
20.
Essays Biochem ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994669

RESUMO

Metabolism within an organism is regulated by various processes, including post-translational modifications (PTMs). These types of chemical modifications alter the molecular, biochemical, and cellular properties of proteins and allow the organism to respond quickly to different environments, energy states, and stresses. Malate dehydrogenase (MDH) is a metabolic enzyme that is conserved in all domains of life and is extensively modified post-translationally. Due to the central role of MDH, its modification can alter metabolic flux, including the Krebs cycle, glycolysis, and lipid and amino acid metabolism. Despite the importance of both MDH and its extensively post-translationally modified landscape, comprehensive characterization of MDH PTMs, and their effects on MDH structure, function, and metabolic flux remains underexplored. Here, we review three types of MDH PTMs - acetylation, ADP-ribosylation, and methylation - and explore what is known in the literature and how these PTMs potentially affect the 3D structure, enzymatic activity, and interactome of MDH. Finally, we briefly discuss the potential involvement of PTMs in the dynamics of metabolons that include MDH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA