Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834750

RESUMO

Circulating tumor cells (CTCs) play an important role in the prognosis and efficacy evaluation of metastatic tumors. Since CTCs are present in very low concentrations in the blood and the phenotype is dynamically changing, it is a great challenge to achieve efficient separation while maintaining their viability. In this work, we designed an acoustofluidic microdevice for CTCs separation based on the differences in cell physical properties of size and compressibility. Efficient separation can be achieved with only one piece of piezoceramic working on alternating frequency mode. The separation principle was simulated by numerical calculation. Cancer cells from different tumor types were separated from peripheral blood mononuclear cells (PBMCs), with capture efficiency higher than 94% and a contamination rate of about 1% was obtained. Furthermore, this method was validated to have no negative effect on the viability of the separated cells. Finally, blood samples from patients with different cancer types and stages were tested, with measured concentrations of 36-166 CTCs per milliliter. Effective separation was achieved even when the size of CTCs is similar to that of PBMCs, which has the prospect of clinical application in cancer diagnosis and efficacy evaluation.


Assuntos
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Microfluídica/métodos , Separação Celular/métodos , Leucócitos Mononucleares/patologia , Linhagem Celular Tumoral , Acústica
2.
Colloids Surf B Biointerfaces ; 222: 113138, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36638753

RESUMO

The isolation of circulating tumor cells (CTCs) from whole blood is a challenging task. Although various studies on the separation of CTCs by acoustofluidic devices have been reported, difficulties still persist, such as the complicated equipment, high cost, and difficult operation. Those problems should be resolved urgently. Herein, we developed an acoustofluidic chip separation system coupled with an ultrasonic concentrated energy transducer (UCET) system for efficient separation of CTCs. In the separation system, the acoustically sensitive particles were pre-focused by inertial forces of the PDMS chip channel structure. Then, the particles with different sizes were separated by acoustic radiation forces (ARF). In this study, the circulating tumor cells was simulated (CTCs-like particles) by aminated mesoporous acoustically sensitive particles (MSN@AM) encapsulated carboxylate polystyrene microspheres (PS-COOH). Subsequently, efficient CTCs-like particles separation was achieved by the acoustofluidic chip coupling system. This study effectively separated polystyrene microspheres carrying acoustically sensitive particles (MSN@AM@PS-COOH). However, the MSNs agglomerates and PS microspheres without acoustically sensitive particles did not show phenomenon of separation. This method allows to efficiently separate 2 µm MSNs agglomerates,8.0-8.9 µm PS microspheres and 10-10.5 µm MSN@AM@PS-COOH particles. It is demonstrated that the CTCs-like particles show more sensitive response, longer moving distance, and more obvious separation effect at the condition of the low frequency traveling wave sound field (20 kHz from UCET). This system can maintain the same separation with reduced amount of reagents used for cancer detection. It may provide a reliable basis for sorting out CTCs efficiently from the whole blood of cancer patients.


Assuntos
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Ultrassom , Células Neoplásicas Circulantes/patologia , Poliestirenos , Transdutores , Separação Celular , Linhagem Celular Tumoral , Técnicas Analíticas Microfluídicas/métodos
3.
Colloids Surf B Biointerfaces ; 157: 347-354, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28622655

RESUMO

We present a facile particle-based cell manipulation method using acoustic radiation forces. In this work, we selected several representative particles including poly(lactic-co-glycolic acid) (PLGA) microspheres, silica-coated magnetic microbeads, polydimethylsiloxane (PDMS) microspheres and investigated the responses of these particle systems to ultrasonic standing waves (USWs) in a microfluidic chip. We show that depending on the nature (positive or negative acoustic contrast factors) of the particles, these particle systems display different alignment behaviors along the microfluidic channel under USWs. Specifically, PLGA microspheres and silica-coated magnetic microbeads are able to be aligned in the middle of the microfluidic channel, while PDMS microspheres are translocated to the side walls of the channel, which is beneficial for cell trapping and manipulation. Further results demonstrate that the functional PDMS microspheres with a negative acoustic contrast factor can be used to trap cells to the pressure antinodes in the acoustofluidic chip. Cell viability tests reveal that the ultrasonic manipulation does not exert any harmful effect to the cells. This acoustic-based particle and cell manipulation technique may hold a great promise for the development of rapid, noninvasive, continuous assays for detecting of cells and separation of biological samples.


Assuntos
Dimetilpolisiloxanos/química , Ácido Láctico/química , Ácido Poliglicólico/química , Acústica , Sobrevivência Celular , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA