Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi ; 41(11): 808-813, 2023 Nov 20.
Artigo em Chinês | MEDLINE | ID: mdl-38073206

RESUMO

Objective: To explore the effect of nerve injury in rats by neurobehavioral experiments, in order to provide a model and idea for further clarification of the traumatic brain injury mechanism under explosion exposure. Methods: From May 2021 to August 2022, 160 SPF male rats were randomly divided into four groups, including control group, 60 kPa group (low intensity group), 90 kPa group (medium intensity group) and 120 kPa group (high intensity group). The blast induced traumatic brain injury (bTBI) model of rats was established by using the shock tube platform to simulate the shock wave parameters of the explosion overpressure of 60 kPa, 90 kPa and 120 kPa. Acute observation was carried out after 24 h and 7 d of explosive exposure, and chronic recovery observation was carried out after 28 d and 90 d. The time effect of shock wave brain injury in different situations was discussed by open field, light dark test, active avoidance test. Finally, the results of brain injury in rats were detected by pathological tissue staining. Results: After 24 h explosion exposure, compared with the control group, the rest time of rats in low and high intensity groups increased, the total movement distance decreased, and the number of visits to the camera obscura decreased, with statistical significance (P<0.05). After 7 days of exposure, compared with the control group, the rest time of rats in high intensity group increased, and the number of visits to the obscura decreased, with statistical significance (P<0.05). After 28 and 90 days of exposure, compared with the control group, there were no significant differences in rest time, total exercise distance and times of visiting the camera obscura in all intensity groups (P>0.05). After 24 h of explosive exposure, compared with the control group, the cell morphology of rats in each intensity group was normal, and no inflammatory cell infiltration was observed. Conclusion: In the acute phase (24 h) of blast exposure, rats have no desire to explore the outside world, and shock wave exposure may damage the neurological function of rats.


Assuntos
Traumatismos por Explosões , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Ratos , Masculino , Animais , Explosões , Traumatismos por Explosões/patologia , Lesões Encefálicas/patologia , Modelos Animais de Doenças
2.
Brain Res ; 1817: 148481, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37429455

RESUMO

Active avoidance (AA) is an adaptive response to potentially harmful situations while maladapted avoidance that does not extinguish is one of the core symptoms of anxiety and post-traumatic stress disorder. However, the neural mechanisms of AA extinction and its relationship to anxiety remain unclear. We examined AA extinction during three extinction training sessions in two-way active avoidance paradigm and tested the effect of anxiolytic on AA extinction. Then we performed a meta-analysis of rodent studies, identified anxiolytic diazepam facilitates AA acquisition, and tested the same treatment in AA extinction. Diazepam-treated rats significantly reduced avoidance in the first two extinction training, compared with the saline-treated rats, and the reduction in avoidance remained in the third drug-free session. Then we explored extinction associated hippocampal and amygdala activity in saline-and diazepam-treated rats using c-Fos immunostaining following the last extinction session. The density of c-Fos positive cells was higher in dorsal CA3 of the diazepam group than in that of saline-treated animals, and was also higher in the central and basolateral amygdala regions of diazepam-treated rats than in that of saline-treated animals. Combined, these results suggest anxiolytics promotes AA extinction associated with dorsal CA3 and amygdala activity changes.


Assuntos
Ansiolíticos , Diazepam , Ratos , Animais , Diazepam/farmacologia , Ansiolíticos/farmacologia , Extinção Psicológica/fisiologia , Tonsila do Cerebelo/metabolismo , Ansiedade/tratamento farmacológico , Proteínas Proto-Oncogênicas c-fos/metabolismo , Aprendizagem da Esquiva/fisiologia
3.
Trends Neurosci ; 46(9): 701-711, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495461

RESUMO

Plasticity elicited by fear conditioning (FC) is thought to support the storage of aversive associative memories. Although work over the past decade has revealed FC-induced plasticity beyond canonical sites in the basolateral complex of the amygdala (BLA), it is not known whether modifications across distributed circuits make equivalent or distinct contributions to aversive memory. Here, we review evidence demonstrating that experience-dependent synaptic plasticity in the central nucleus of the amygdala (CeA) has a circumscribed role in memory expression per se, guiding the selection of defensive programs in response to acquired threats. We argue that the CeA may be a key example of a broader phenomenon by which synaptic plasticity at specific nodes of a distributed network makes a complementary contribution to distinct memory processes.


Assuntos
Núcleo Central da Amígdala , Humanos , Medo/fisiologia , Plasticidade Neuronal/fisiologia , Memória/fisiologia , Afeto
4.
Behav Brain Res ; 451: 114500, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37207979

RESUMO

In clinical research, aberrant avoidance behavior and inhibitory control deficit have a high comorbidity in different psychopathological disorders. Therefore, avoidance and impulsive and/or compulsive behaviors might be classified as transdiagnostic traits, where the assessment through animal models could address evidence of their contribution as neurobehavioral mechanisms in psychopathology. The objective of the present review has been to assess the avoidance trait and the implication of inhibitory control behaviors, through studies using passive and active avoidance tests in rodents, and a preclinical model using selective breeding of high- or low-avoidance Roman rats (RHA, RLA). A systematic search strategy was carried out in the PubMed and Web of Science databases, where a total of 40 studies were accepted in the qualitative synthesis. The results of the different studies reviewed pointed to a relation between a reduced avoidance profile in passive avoidance (PA) with impulsive decision making and novelty-seeking behaviors; an increased avoidance profile in PA with compulsive drinking; a high active avoidance profile, including RHA rats, with different types of impulsivity and novelty- seeking behaviors; and regarding compulsivity depending on its measure, a low active avoidance profile, including RLA rats, has been associated with increased anxiety in the EPM and increased grooming, while a high active avoidance profile, including RHA rats, has been associated with increased rearing, compulsive drinking including alcohol, and cognitive inflexibility. The results have been discussed in terms of environmental factors and the underlying mechanisms between these possible transdiagnostic traits in psychopathology.


Assuntos
Aprendizagem da Esquiva , Comportamento Exploratório , Ratos , Animais , Modelos Animais , Fenótipo , Etanol , Comportamento Animal
5.
Neuropharmacology ; 235: 109572, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37149214

RESUMO

Conditioned stimuli (CS) paired with foot-shock can enhance memory consolidation. Because the dopamine D3 receptor (D3R) has been implicated in mediating various responses to CSs, the current study explored its potential role in modulation of memory consolidation by an avoidance CS. Male Sprague-Dawley rats trained to avoid foot-shocks in a two-way signalled active avoidance task (8 sessions, 30 trials per session, 0.8 mA foot-shock) were pre-treated with the D3R antagonist NGB-2904 (Vehicle, 0.1 or 5 mg/kg) and exposed to the CS immediately after the sample phase of an object recognition memory task. Discrimination ratios were assessed 72 h later. Immediate, but not delayed (6 h), post-sample exposure to the CS enhanced object recognition memory and this effect was blocked by NGB-2904. Control experiments with the beta-noradrenergic receptor antagonist propranolol (10 or 20 mg/kg) and D2R antagonist pimozide (0.2 or 0.6 mg/kg) indicated that NGB-2904 targeted post-training memory consolidation. Exploring the pharmacological selectivity of the NGB-2904 effect, it was found that: 1) 5 mg/kg NGB-2904 blocked conditioned memory modulation produced by post-sample exposure to a "weak" CS (one day of avoidance training) and concurrent stimulation of catecholamine activity by 10 mg/kg bupropion; and 2) post-sample exposure to a "weak" CS and concurrent administration of the D3R agonist 7-OH-DPAT (1 mg/kg) enhanced consolidation of object memory. Finally, because 5 mg/kg NGB-2904 had no effect on modulation by avoidance training in the presence of foot-shocks, the findings herein support the hypothesis that the D3R plays an important role in modulation of memory consolidation by CSs.


Assuntos
Consolidação da Memória , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Condicionamento Operante , Condicionamento Clássico , Receptores de Dopamina D3 , Propranolol/farmacologia , Aprendizagem da Esquiva
6.
Learn Behav ; 51(4): 468-481, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37095421

RESUMO

Renewal is the return of extinguished responding after removal from the extinction context. Renewal has been extensively studied using classical aversive conditioning procedures that measure a passive freezing response to an aversive conditioned stimulus. However, coping responses to aversive stimuli are complex and can be reflected in passive and active behaviours. Using the shock-probe defensive burying task, we investigated whether different coping responses are susceptible to renewal. During conditioning, male, Long-Evans rats were placed into a specific context (Context A) where an electrified shock-probe delivered a 3 mA shock upon contact. During extinction, the shock-probe was unarmed in either the same (Context A) or a different context (Context B). Renewal of conditioned responses was assessed in the conditioning context (ABA) or in a novel context (ABC or AAB). Renewal of passive coping responses, indicated by an increased latency and a decreased duration of shock-probe contacts, was observed in all groups. However, renewal of passive coping, measured by increased time spent on the side of the chamber opposite the shock-probe, was only found in the ABA group. Renewal of active coping responses linked to defensive burying was not observed in any group. The present findings highlight the presence of multiple psychological processes underlying even basic forms of aversive conditioning and demonstrate the importance of assessing a broader set of behaviours to tease apart these different underlying mechanisms. The current findings suggest that passive coping responses may be more reliable indicators for assessing renewal than active coping behaviours associated with defensive burying.


Assuntos
Condicionamento Clássico , Ratos , Masculino , Animais , Ratos Long-Evans , Condicionamento Clássico/fisiologia , Condicionamento Psicológico , Extinção Psicológica/fisiologia
7.
ACS Chem Neurosci ; 14(5): 947-957, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36780706

RESUMO

Reduced haloperidol (1) was previously reported to act as a potent sigma-1 receptor (S1R) ligand with substantially lower affinity to the dopamine D2 receptor (D2R) compared to haloperidol. It was also found to facilitate brain-derived neurotrophic factor (BDNF) secretion from astrocytic glial cell lines in a sigma-1 receptor (S1R)-dependent manner. Although an increase in BDNF secretion may have beneficial effects in some neurological conditions, the therapeutic utility of reduced haloperidol (1) is limited because it can be oxidized back to haloperidol in the body, a potent dopamine D2 receptor antagonist associated with well-documented adverse effects. A difluorinated analogue of reduced haloperidol, (±)-4-(4-chlorophenyl)-1-(3,3-difluoro-4-(4-fluorophenyl)-4-hydroxybutyl)piperidin-4-ol (2), was synthesized in an attempt to minimize the oxidation. Compound (±)-2 was found to exhibit high affinity to S1R and facilitate BDNF release from mouse brain astrocytes. It was also confirmed that compound 2 cannot be oxidized back to the corresponding haloperidol analogue in liver microsomes. Furthermore, compound 2 was distributed to the brain following intraperitoneal administration in mice and reversed the learning deficits in active avoidance tasks. These findings suggest that compound 2 could serve as a promising S1R ligand with therapeutic potential for the treatment of cognitive impairments.


Assuntos
Haloperidol , Receptores sigma , Camundongos , Animais , Haloperidol/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ligantes , Receptor Sigma-1
8.
Behav Res Ther ; 159: 104227, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36423413

RESUMO

Anhedonia impairs various components of the pleasure cycle, including wanting, liking, and the learning of pleasure-related associations. While successfully controlling threats might be inherently pleasurable, it remains unclear whether anhedonia affects this form of pleasure as well. With aversive pictures as threats, we conducted an online study ( N = 200) to investigate the role of anhedonia during active avoidance learning process. Participants first learned cue-threat associations for different cues (threat vs. safety cues). In a subsequent avoidance learning phase, these cues signaled either avoidable, unavoidable, or no threat; participants could perform avoidance responses to prevent the upcoming threats during those cue presentations. Subjective relief pleasantness was measured after each threat omission. We found that higher trait anticipatory and consummatory anhedonia were both associated with lower relief pleasantness. Higher trait anticipatory anhedonia was also associated with fewer avoidance attempts. Since reduced threat-controlling behavior is reminiscent of a learned-helplessness state, the current results contribute to a better understanding of the connections between anhedonia and learned helplessness that have mostly been studied separately in the context of mood disturbance.


Assuntos
Anedonia , Prazer , Humanos , Motivação , Emoções , Aprendizagem da Esquiva
9.
Front Behav Neurosci ; 16: 995422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299293

RESUMO

Animal research focused on chronic tinnitus associated with noise-induced hearing loss can be expensive and time-consuming as a result of the behavioral training required. Although there exist a number of behavioral tests for tinnitus; there have been few formal direct comparisons of these tests. Here, we evaluated animals in two different tinnitus assessment methods. CBA/CaJ mice were trained in an operant conditioning, active avoidance (AA) test, and a reflexive, gap-induced pre-pulse inhibition of acoustic startle (GPIAS) test, or both. Tinnitus was induced in awake mice by unilateral continuous sound exposure using a 2-kHz- or 1 2 octave-wide noise centered at 16 kHz and presented at 113- or 116-dB SPL. Tinnitus was assessed 8 weeks after sound overexposure. Most mice had evidence of tinnitus behavior in at least one of the two behaviors. Of the mice evaluated in AA, over half (55%) had tinnitus positive behavior. In GPIAS, fewer animals (13%) were positive than were identified using the AA test. Few mice were positive in both tests (10%), and only one was positive for tinnitus behavior at the same spectral frequency in both tests. When the association between tinnitus behavior and spontaneous activity recorded in the inferior colliculus was compared, animals with tinnitus behavior in AA exhibited increased spontaneous activity, while those positive in GPIAS did not. Thus, it appears that operant conditioning tests, like AA, maybe more reliable and accurate tests for tinnitus than reflexive tests.

10.
Front Behav Neurosci ; 16: 983026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275848

RESUMO

In the face of a possible threat, a range of physiological (e.g., increased heart rate) and behavioral (e.g., avoidance or escape) responses are recruited. Here, we will focus on avoidance, in its persistent form one of the core symptoms of anxiety disorders and obsessive-compulsive disorder. The initial goal of fear and avoidance responses is to increase survival, but if they become persistent or overgeneralize, they can disrupt normal daily functioning, and ultimately even result in anxiety-related disorders. Relatedly, acute stress responses promote adaptation and survival, while chronic stress has been found to aggravate pathophysiology. Thus, stress might trigger the transition from adaptive to maladaptive responses, e.g., from goal-directed to persistent avoidance. Animal models are prime tools to unravel if and how stress influences avoidance. This is typically done by performing stress inductions prior to the assessment of (passive or active) avoidance behavior. Despite its clinical relevance, the current literature on this topic is fragmented, and an overall conclusion is lacking. In this Review, we first recapitulate the state of the art regarding stress and active as well as passive avoidance procedures. We then summarize the behavioral effects of acute and chronic stress on active and passive avoidance, and discuss the main neurobiological findings of the field. Finally, we highlight possible reasons for the largely contradictory findings in the literature and we propose strategies to further unravel the effect of stress on avoidance behavior. A deeper understanding of this currently unresolved matter may provide further insights in the etiology and treatment of anxiety-related disorders.

11.
Adv Exp Med Biol ; 1370: 381-393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35882812

RESUMO

Researchers have begun to direct their research to focus on the use of taurine as a psychopharmacotherapeutic compound to treat a wide range of health- related conditions as well as neuropathological diseases. Moreover, taurine has been shown to improve emotional and cognitive declines associated with senescence in neurotypical animal models. However, despite these advances in the field of taurine therapeutics, much less is known regarding the effects of sex and taurine on neurotypical animal models that are then manipulated, modified, and/or mutated to study human diseases. The present study sought to investigate this matter in a Long Evans Hooded rat model of mature age (i.e., postnatal day 60-90) in an active avoidance test (AAT). Rats were trained for 20 trials, given a 1 h. test break, retrained for another 20 trials, and then tested at 24 h, 48 h, and 1 week for learning and memory retention. An N = 63 rats were randomly assigned to three groups: (1) Control (n = 22), (2) Taurine Pre-Train (n = 19), and (3) Taurine Post-Train (n = 20). The aim of the present study was to determine the effects of taurine given 15 min before training when compared to being given after training but 15 min before testing at 24 h on learning and memory consolidation of the AAT. The results showed in Control rats that females had shorter latencies to cross in the shuttle box, increased rates of correct learning by the % Avoids/Escapes, and decreased rates of learning errors by the % Shocks. In Taurine Post-Train male rats, taurine treatment decreased their latency to cross in the shuttle box and their rate of learning errors by the % Shocks at 24 h and 48 h Testing, but it had no effect on their rate of correct learning by the % Avoids/Escapes when compared to Control and Taurine Pre-Train male rats. In contrast, Taurine Post-Train female rats increased their latency to cross in the shuttle box during Training, 24 h and 48 h Testing, when compared to the Control and Taurine Pre-Train female rats. Further, Taurine Post-Train female rats decreased their rate of learning % Avoids/Escapes and increased the rate of learning errors % Shocks when compared to Control female rats during Training and 24 h Testing but decreased their rate of learning % Avoids/Escapes and increased the rate of learning errors % Shocks when compared to Taurine Pre-Train female rats across all test conditions. These findings suggest that neurotypical female rats may be more sensitive to the aversive stimuli (i.e., foot shocks) used in the AAT as a motivating factor for learning that may cause paradoxical behavioral learning and memory patterns. This phenomenon raises an important concern for researchers to consider when studying learning and behavioral tests in rodents that use aversive and non-aversive stimuli or a combination of both such as in the AAT. Taurine, albeit neuroprotective, may not have as much benefit in a neurotypical animal model and may increase the susceptibility for anxiogenic behaviors and interfere with cognitive learning and memory behaviors. Therefore, the mechanistic way(s) in which taurine can treat, recovery, ameliorate, and forestall other neuropathological diseases in animal models may have different psychopharmacodynamics and psychopharmacokinetics in a neurotypical animal model and should be studied with caution. This does not preclude the continued investigation of taurine psychopharmacotherapies for neuropathological diseases but encourages the careful investigation of taurine supplementation and treatment in neurotypical animals as paradoxical behavioral and cognitive outcomes have been observed herein.


Assuntos
Aprendizagem da Esquiva , Taurina , Animais , Emoções , Feminino , Humanos , Masculino , Memória , Ratos , Ratos Long-Evans , Taurina/farmacologia
12.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35396256

RESUMO

θ-Scale coordination of prelimbic medial prefrontal cortex (mPFC) local field potentials (LFPs) and its influence via direct or indirect projections to the ventral hippocampus (vHC) and dorsal hippocampus (dHC) during spatial learning remains poorly understood. We hypothesized that θ frequency coordination dynamics within and between the mPFC, dHC, and vHC would be predetermined by the level of connectivity rather than reflecting differing circuit throughput relationships depending on cognitive demands. Moreover, we hypothesized that coherence levels would not change during learning of a complex spatial avoidance task. Adult male rats were bilaterally implanted with EEG electrodes and LFPs recorded in each structure. Contrary to predictions, θ coherence averaged across "Early" or "Late" training sessions in the mPFC-HC, mPFC-mPFC, and HC-HC increased as a function of task learning. Coherence levels were also highest between the indirectly connected mPFC-dHC circuit, particularly during early training. Although mPFC postacquisition coherence remained higher with dHC than vHC, dynamic mPFC coherence patterns with both hippocampal poles across avoidance epochs were similar. In the 3 s before avoidance, a regional temporal sequence of transitory coherence peaks emerged between the mPFC-mPFC, the mPFC-HC, and then dHC-dHC. During this sequence, coherence within θ bandwidth fluctuated between epochs at distinct subfrequencies, suggesting frequency-specific roles for the propagation of task-relevant processing. On a second timescale, coherence frequency within and between the mPFC and hippocampal septotemporal axis change as a function of avoidance learning and cognitive demand. The results support a role for θ coherence subbandwidths, and specifically an 8- to 9-Hz mPFC θ signal, for generating and processing qualitatively different types of information in the organization of spatial avoidance behavior in the mPFC-HC circuit.


Assuntos
Córtex Pré-Frontal , Ritmo Teta , Animais , Aprendizagem da Esquiva , Eletroencefalografia , Hipocampo , Masculino , Ratos
13.
Epilepsy Behav ; 126: 108430, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902661

RESUMO

BACKGROUND: Febrile seizures are the most common type of seizures in children. While in most children the outcome is favorable, children with febrile status epilepticus may exhibit modest cognitive impairment. Whether children with other forms of complex febrile seizure, such as repetitive febrile seizures within the same illness are at risk of cognitive deficits is not known. In this study, we used a well-established model of experimental febrile seizures in rat pups to compare the effects of febrile status epilepticus and recurrent febrile seizures on subsequent spatial cognition and anxiety. METHODS: Male and female rat pups were subjected to hyperthermic seizures at postnatal day 10 and were divided into groups of rats with continuous seizures for ≥40 min or recurrent febrile seizures. They were then tested as adults in the active avoidance and spatial accuracy tests to assess spatial learning and memory and the elevated plus maze to measure anxiety. RESULTS: Febrile status epilepticus rats demonstrated impaired spatial cognition in active avoidance and spatial accuracy and exhibited reduced anxiety-like behavior in the elevated plus maze. Rats with recurrent febrile seizures did not differ significantly from the controls on any measures. There were also significant sex-related differences with females with FSE performing far better than males with FSE in active avoidance but demonstrating a navigational learning impairment relative to CTL females in spatial accuracy. However, once learned, females with FSE performed the spatial accuracy task as well as CTL females. CONCLUSION: There is a duration-dependent effect of febrile seizures on subsequent cognitive and behavioral outcomes. Febrile status epilepticus resulted in spatial cognitive deficits and reduced anxiety-related behaviors whereas rats with recurrent febrile seizures did not differ from controls. Sex had a remarkable effect on spatial cognitive outcome where males with FSE fared worse than females with FSE. The results demonstrate that sex should be considered as a biological variable in studies evaluating the effects of seizures on the developing brain.


Assuntos
Disfunção Cognitiva , Convulsões Febris , Estado Epiléptico , Animais , Cognição , Disfunção Cognitiva/etiologia , Feminino , Hipocampo , Humanos , Masculino , Aprendizagem em Labirinto , Ratos , Convulsões/complicações , Convulsões Febris/complicações , Estado Epiléptico/complicações
14.
Front Behav Neurosci ; 16: 1098343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761697

RESUMO

Adolescent binge-like alcohol exposure impairs cognitive function and decision making in adulthood and may be associated with dysfunction of threat avoidance, a critical mechanism of survival which relies upon executive function. The present study investigated the impact of binge-like alcohol exposure during adolescence on active avoidance in adulthood. Male and female rats were subjected to adolescent intermittent ethanol (AIE) exposure by vapor inhalation and then tested in adulthood using a platform-mediated avoidance task. After training to press a lever to receive a sucrose reward, the rats were conditioned to a tone that co-terminated with a foot-shock. A motivational conflict was introduced by the presence of an escape platform that isolated the rat from the shock, but also prevented access to the sucrose reward while the rat was on the platform. During the task training phase, both male and female rats exhibited progressive increases in active avoidance (platform escape) in response to the conditioned tone, whereas innate fear behavior (freezing) remained relatively constant over training days. A history of AIE exposure did not impact either active avoidance or freezing behavior during task acquisition. On the test day following platform acquisition training, female rats exhibited higher levels of both active avoidance and freezing compared to male rats, while AIE-exposed male but not female rats exhibited significantly greater levels of active avoidance compared to controls. In contrast, neither male nor female AIE-exposed rats exhibited alterations in freezing compared to controls. Following 5 days of extinction training, female rats continued to display higher levels of active avoidance and freezing during tone presentation compared to males. Male AIE-exposed rats also had higher levels of both active avoidance and freezing compared to the male control rats. Together, the results demonstrate that female rats exhibit elevated levels of active avoidance and freezing compared to males and further reveal a sex-specific impact of AIE on threat responding in adulthood.

15.
Epilepsy Behav ; 125: 108415, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34788732

RESUMO

The effects of non-convulsive status epilepticus (NCSE) on the developing brain remain largely elusive. Here we investigated potential hippocampal injury and learning deficits following one or two episodes of NCSE in periadolescent rats. Non-convulsive status epilepticus was induced with subconvulsive doses of intrahippocampal kainic acid (KA) under continuous EEG monitoring in postnatal day 43 (P43) rats. The RKA group (repeated KA) received intrahippocampal KA at P43 and P44, the SKA group (single KA injection) received KA at P43 and an intrahippocampal saline injection at P44. Controls were sham-treated with saline. The modified two-way active avoidance (MAAV) test was conducted between P45 and P52 to assess learning of context-cued and tone-signaled electrical foot-shock avoidance. Histological analyses were performed at P52 to assess hippocampal neuronal densities, as well as potential reactive astrocytosis and synaptic dysfunction with GFAP (glial fibrillary acidic protein) and synaptophysin (Syp) staining, respectively. Kainic acid injections resulted in electroclinical seizures characterized by behavioral arrest, oromotor automatisms and salivation, without tonic-clonic activity. Compared to controls, both the SKA and RKA groups had lower rates of tone-signaled shock avoidance (p < 0.05). In contextual testing, SKA rats were comparable to controls (p > 0.05), but the RKA group had learning deficits (p < 0.05). Hippocampal neuronal densities were comparable in all groups. Compared to controls, both the SKA and RKA groups had higher hippocampal GFAP levels (p < 0.05). The RKA group also had lower hippocampal Syp levels compared to the SKA and control groups (p < 0.05), which were comparable (p > 0.05). We show that hippocampal NCSE in periadolescent rats results in a seizure burden-dependent hippocampal injury accompanied by cognitive deficits. Our data suggest that the diagnosis and treatment of NCSE should be prompt.


Assuntos
Estado Epiléptico , Animais , Hipocampo , Ácido Caínico/toxicidade , Neurônios , Ratos , Convulsões , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/complicações
16.
Neuron ; 109(18): 2981-2994.e5, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34534455

RESUMO

The role of the cerebellum in predictive motor control and coordination has been thoroughly studied during movements of a single body part. In the real world, however, actions are often more complex. Here, we show that a small area in the rostral anterior interpositus nucleus (rAIN) of the mouse cerebellum is responsible for generating a predictive motor synergy that serves to protect the eye by precisely coordinating muscles of the eyelid, neck, and forelimb. Within the rAIN region, we discovered a new functional category of neurons with unique properties specialized for control of motor synergies. These neurons integrated inhibitory cutaneous inputs from multiple parts of the body, and their activity was correlated with the vigor of the defensive motor synergy on a trial-by-trial basis. We propose that some regions of the cerebellum are organized in poly-somatotopic "action maps" to reduce dimensionality and simplify motor control during ethologically relevant behaviors.


Assuntos
Piscadela/fisiologia , Núcleos Cerebelares/química , Núcleos Cerebelares/fisiologia , Extremidades/fisiologia , Movimento/fisiologia , Animais , Núcleos Cerebelares/citologia , Cerebelo/química , Cerebelo/citologia , Cerebelo/fisiologia , Previsões , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética/métodos , Gravação em Vídeo/métodos
17.
Brain Sci ; 11(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34573212

RESUMO

This study evaluates the modulation of phasic pain and empathy for pain induced by placebo analgesia during pain and empathy for pain tasks. Because pain can be conceptualized as a dangerous stimulus that generates avoidance, we evaluated how approach and avoidance personality traits modulate pain and empathy for pain responses. We induced placebo analgesia to test whether this also reduces self-pain and other pain. Amplitude measures of the N1, P2, and P3 ERPs components, elicited by electric stimulations, were obtained during a painful control, as well as during a placebo treatment expected to induce placebo analgesia. The placebo treatment produced a reduction in pain and unpleasantness perceived, whereas we observed a decrease in the empathy unpleasantness alone during the empathy pain condition. The moderator effects of the fight-flight-freeze system (FFFS) in the relationships linking P2 and P3 amplitude changes with pain reduction were both significant among low to moderate FFFS values. These observations are consistent with the idea that lower FFFS (active avoidance) scores can predict placebo-induced pain reduction. Finally, in line with the revised Reinforcement Sensitivity Theory (r-RST), we can assume that phasic pain is an aversive stimulus activating the active-avoidance behavior to bring the system back to homeostasis.

18.
J Pak Med Assoc ; 71(7): 1757-1760, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34410241

RESUMO

OBJECTIVE: To investigate the differences in negative coping styles used by individuals with cannabis use disorder and non-users. METHODS: The quantitative cross-sectional study was conducted from November, 2016 to August 2017 at Foundation University, Rawalpindi, Pakistan, and comprised individuals aged 15-34 years. Data was collected from drug rehabilitation and university students of Rawalpindi and Islamabad. The sample was divided into groups of cannabis users and non-users. Data was collected using the brief version of the Coping Orientation to Problems Experienced inventory and the Diagnostic and Statistical Manual of Mental Disorders version 5. Data was analysed using SPSS 21. RESULTS: Of the 204 participants, 104(51%) were users with a mean age of 27±5.37 years and 100(49%) were non-users with a mean age of 25±5.65 years. The users scored higher at active avoidance coping compared to the non-users (p<0.05). The differences were non-significant in case of denial and religious coping (p>0.05). Active avoidance coping differed across individuals with mild, moderate and severe cannabis use disorder (p<0.05), while religious and denial coping did not (p>0.05). CONCLUSIONS: Active avoidance coping was found to be an important characteristic in relation to cannabis use disorder.


Assuntos
Cannabis , Abuso de Maconha , Adaptação Psicológica , Adulto , Estudos Transversais , Humanos , Universidades , Adulto Jovem
19.
Front Behav Neurosci ; 15: 682927, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234653

RESUMO

Available two-way active avoidance paradigms do not provide contextual testing, likely due to challenges in performing repetitive trials of context exposure. To incorporate contextual conditioning in the two-way shuttle box, we contextually modified one of the chambers of a standard two-chamber rat shuttle box with visual cues consisting of objects and black and white stripe patterns. During the 5 training days, electrical foot shocks were delivered every 10 s in the contextually modified chamber but were signaled by a tone in the plain chamber. Shuttling between chambers prevented an incoming foot shock (avoidance) or aborted an ongoing one (escape). During contextual retention testing, rats were allowed to freely roam in the box. During auditory retention testing, visual cues were removed, and tone-signaled shocks were delivered in both chambers. Avoidance gradually replaced escape or freezing behaviors reaching 80% on the last training day in both chambers. Rats spent twice more time in the plain chamber during contextual retention testing and had 90% avoidance rates during auditory retention testing. Our modified test successfully assesses both auditory and contextual two-way active avoidance. By efficiently expanding its array of outcomes, our novel test will complement standard two-way active avoidance in mechanistic studies and will improve its applications in translational research.

20.
eNeuro ; 8(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33952613

RESUMO

When animals repeatedly receive a combination of neutral conditional stimulus (CS) and aversive unconditional stimulus (US), they learn the relationship between CS and US, and show conditioned fear responses after CS. They show passive responses such as freezing or panic movements (classical or Pavlovian fear conditioning), or active behavioral responses to avoid aversive stimuli (active avoidance). Previous studies suggested the roles of the cerebellum in classical fear conditioning but it remains elusive whether the cerebellum is involved in active avoidance conditioning. In this study, we analyzed the roles of cerebellar neural circuits during active avoidance in adult zebrafish. When pairs of CS (light) and US (electric shock) were administered to wild-type zebrafish, about half of them displayed active avoidance. The expression of botulinum toxin, which inhibits the release of neurotransmitters, in cerebellar granule cells (GCs) or Purkinje cells (PCs) did not affect conditioning-independent swimming behaviors, but did inhibit active avoidance conditioning. Nitroreductase (NTR)-mediated ablation of PCs in adult zebrafish also impaired active avoidance. Furthermore, the inhibited transmission of GCs or PCs resulted in reduced fear-conditioned Pavlovian fear responses. Our findings suggest that the zebrafish cerebellum plays an active role in active avoidance conditioning.


Assuntos
Condicionamento Clássico , Peixe-Zebra , Animais , Aprendizagem da Esquiva , Cerebelo , Condicionamento Operante , Medo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA