Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 250: 121014, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128307

RESUMO

Electrochlorination has gained research interest for its potential application as decentralized water treatment. A number of studies have displayed promising efficiency for water disinfection. However, a comprehensive comparison of in situ electrodisinfection to existing disinfection techniques, particularly under realistic water composition and flow rates, still needs additional research efforts. The aim of this study is to evaluate in situ electrochlorination while comparing the treatment with conventional chemical chlorination for point-of-entry decentralized disinfection at the household level. An electrochemical flow cell reactor was operated in a single pass mode considering water flow and water consumption for a household of four family members. Disinfection efficiency assessment of both electrochemical and chemical chlorination was conducted using bacterial and viral surrogates, E. coli and MS2 bacteriophage. Furthermore, a techno-economic analysis was conducted, using the levelized cost of water, to compare two electrochemical chlorination scenarios (i.e., electrical grid energy use, and solar panel powered system) and benchmarked against the baseline treatment of chemical chlorination. The findings revealed increased inactivation efficiency of in situ electrochlorination over conventional chlorination (p-value < 0.05). The synergetic impact of radicals and chlorine, and/or contribution of high chlorine concentration at acidic pH near anode surface were identified as key factors that could enhance disinfection performance of in situ electrochlorination. The techno-economic analysis demonstrated that electrochemical treatment, when operated using renewable energy sources, is not only a more environmentally sustainable approach, but also emerges as a more economically feasible solution for decentralized water treatment application. The results highlight that in situ electrochlorination is a more advanced alternative to decentralized water chlorination. However, further fundamental research on products and by-products formation under various water matrices is required.


Assuntos
Desinfecção , Purificação da Água , Desinfecção/métodos , Halogenação , Cloro/química , Escherichia coli , Purificação da Água/métodos
2.
Chemosphere ; 344: 140407, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838029

RESUMO

Ciprofloxacin (CIP) is a commonly prescribed fluoroquinolone antibiotic that, even after uptake, remains unmetabolized to a significant extent-over 70%. Unmetabolized CIP is excreted through both urine and feces. This persistent compound manages to evade removal in municipal wastewater facilities, leading to its substantial accumulation in aquatic environments. This accumulation raises concerns about potential risks to the health of various living organisms. Herein, we present a study on the remediation of CIP in synthetic urine by electrochemical oxidation in an undivided cell with a DSA (Ti/IrO2) anode and a stainless-steel cathode. Physisorbed hydroxyl radical formed at the anode surface from water discharge and free chlorine generated from Cl- oxidation were the main oxidizing agents. The effect of pH and current density (j) on CIP degradation was examined, and its total removal was easily achieved at pH ≥ 7.0 and j ≥ 60 mA cm-2 due to the action of free chlorine. The CIP decay always followed a pseudo-first-order kinetics. The components of the synthetic urine were also oxidized. The main nitrogenated species released was NH3. A very small concentration of free chlorine was quantified at the end of the treatment, thus demonstrating the good performance of electrochemical oxidation and its effectiveness to destroy all the organic pollutants. The present study demonstrates the simultaneous oxidation of the organic components of urine during CIP degradation, thus showing a unique perspective for its electrochemical oxidation that enhances the environmental remediation strategies.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/química , Ciprofloxacina/química , Cloro , Oxirredução , Eletrodos , Poluentes Químicos da Água/análise
3.
Environ Technol ; 44(12): 1782-1797, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-34842066

RESUMO

The degradation of the chemotherapeutic drug cyclophosphamide in artificial urine was evaluated by Electrochemical Advanced Oxidation Processes (EAOP). The system consisted of an electrochemical flow reactor with a commercial DSA® electrode (nominal composition Ti / Ru0,3Ti0,7O2) and Ti-mesh cathode. In order to assess the best parameters, the effect of current density, time and flow rate were analyzed using an initial 23 factorial design. The chosen response variable was the energy efficiency to produce free chlorine species (HClO/ClO-). After obtaining the most significant factors, the Central Composite Design (CCD) was performed, where the optimum conditions were determined for the current density range (11.714 mA cm-2 and 66.57 mA cm-2), flow rate (31.33 mL min-1) and time range (19 and 37 min). Under an optimized condition, the efficiency of other combined methods (photo-assisted electrochemical, photochemical, sonoelectrochemical and photo-assisted sonoelectrochemical) was evaluated. The efficiency of degradation processes was determined by removal of Chemical Oxygen Demand (COD), creatinine and urea. Analysis by HPLC demonstrates that the cyclophosphamide was substantially removed during the treatment process of ∼77%. Based on these results, it can be observed that the coupling between electrochemical and photochemical processes is a promising alternative for the treatment of this effluent, as a marked reduction of organic matter is observed (63, 94% of creatinine, 29.62% of urea, 39.1% of TOC) and a low treatment cost ratio.


Assuntos
Poluentes Químicos da Água , Creatinina/análise , Poluentes Químicos da Água/química , Oxirredução , Cloro/análise , Cloro/química , Eletrodos , Ureia
4.
Environ Res ; 216(Pt 3): 114673, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332673

RESUMO

The purpose of this research is to study the pulse electrochemical oxidation of paracetamol (PCT) using a novel PbO2 anode based on pulse electrodeposition strategy (PbO2-PE). The pulse electrodeposition strategy used to prepare a PbO2 anode resulted in rougher surface, higher directional specificity of ß(101) and more redox couples of Pb4+/Pb2+. Additionally, the oxygen evolution potential (OEP) and charge transfer resistance were also improved. When compared to direct current electrochemical oxidation process, pulse electrolysis in had a slightly higher PCT removal efficiency and active species (·OH and active chlorine) production, while 72.04% of energy consumption was saved. The effects of operating parameters on PCT degradation efficiency and specific energy consumption were studied. The findings suggested that the pulse electrochemical oxidation of PCT followed a pseudo-first-order kinetic model, with PCT removal reaching 98.63% after 60 min of electrolysis under optimal conditions. Possible mechanisms describing reaction pathways for PCT were also proposed. Finally, combinating with the economic feasibility and safety evaluation, we could conclude that pulse electrolysis with a PbO2-PE electrode was a promising option for improving the practicability of electrochemical treatment for refractory organic wastewater.


Assuntos
Galvanoplastia , Poluentes Químicos da Água , Acetaminofen , Cinética , Óxidos , Chumbo , Poluentes Químicos da Água/análise , Eletrodos , Oxirredução , Titânio
5.
Environ Sci Technol ; 56(13): 9722-9731, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35737582

RESUMO

Active chlorine species-mediated electrocatalytic oxidation is a promising strategy for ammonia removal in decentralized wastewater treatment. Flow-through electrodes (FTEs) provide an ideal platform for this strategy because of enhanced mass transport and sufficient electrochemically accessible sites. However, limited insight into spatial distribution of electrochemically accessible sites within FTEs inhibits the improvement of reactor efficiency and the reduction of FTE costs. Herein, a microfluidic-based electrochemical system is developed for the operando observation of microspatial reactions within pore channels, which reveals that reactions occur only in the surface layer of the electrode thickness. To further quantify the spatial distribution, finite element simulations demonstrate that over 75.0% of the current is accumulated in the 20.0% thickness of the electrode surface. Based on these findings, a gradient-coated method for the active layer was proposed and applied to a Ti/RuO2 porous electrode with an optimized pore diameter of ∼25 µm, whose electrochemically accessible surface area was 381.7 times that of the planar electrode while alleviating bubble entrapment. The optimized reactor enables complete ammonia removal with an energy consumption of 60.4 kWh kg-1 N, which was 24.2% and 39.9% less than those with pore diameters of ∼3 µm and ∼90 µm, respectively.

6.
Environ Res ; 211: 113057, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35271837

RESUMO

Electrochemical oxidation is an effective technique for treating persistent organic pollutants, which are hardly removed in conventional wastewater treatment plants. Sulfate and chloride salts commonly used and present in natural wastewater influence the electrochemical degradation process. In this study, the effect of electrolyte composition on the active sulfate species (SO4●⁻ and S2O82⁻) formation, benzotriazole degradation-a model organic compound, and chlorinated by-products distribution have been investigated while using a boron-doped diamond (BDD) anode. Different Na2SO4:NaNO3 and Na2SO4:NaCl ratios with constant conductivity of 10 mS/cm were used in the experiments and applied anode potential was kept constant at 4.3 V vs. Ag/AgCl. The electrogenerated SO4●⁻ and S2O82⁻ formation were faster in 10:1 and 2:1 Na2SO4:NaNO3 ratios than in the 1:0 ratio. The ●OH-mediated SO4●⁻ production has prevailed in 10:1 and 2:1 ratios. However, ●OH-mediated SO4●⁻ production has hindered the 1:0 ratio due to excess chemisorption of SO42⁻ on the BDD anode. Similarly, the faster benzotriazole degradation, mineralization, and lowest energy consumption were achieved in the 10:1 Na2SO4:NaNO3 and Na2SO4:NaCl ratio. Besides, chlorinated organic by-product concentration (AOX) was lower in the 10:1 Na2SO4:NaCl ratio but increased with the increasing chloride ratio in the electrolyte. LC-MS analysis shows that several chlorinated organic transformation products were produced in 0:1 to 2:1 ratio, which was not found in the 10:1 Na2SO4:NaCl ratio. A comparatively higher amount of ClO4⁻ was formed in the 10:1 ratio than in 2:1 to 0:1 ratio. This ClO4⁻ formation train evidence the effective ●OH generation in a sulfate-enriched condition because the ClO4⁻ formation is positively correlated to ●OH concentration. Overall results show that sulfate-enriched electrolyte compositions are beneficial for electrochemical oxidation of biorecalcitrant organic pollutants.


Assuntos
Sulfatos , Poluentes Químicos da Água , Boro , Cloretos , Diamante , Eletrólitos/química , Oxirredução , Cloreto de Sódio , Sulfatos/química , Triazóis , Poluentes Químicos da Água/química
7.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502389

RESUMO

Metal-oxide nanoparticles (MO-NPs), such as the highly bioreactive copper-based nanoparticles (CuO-NPs), are widely used in manufacturing of hundreds of commercial products. Epidemiological studies correlated levels of nanoparticles in ambient air with a significant increase in lung disease. CuO-NPs, specifically, were among the most potent in a set of metal-oxides and carbons studied in parallel regarding DNA damage and cytotoxicity. Despite advances in nanotoxicology research and the characterization of their toxicity, the exact mechanism(s) of toxicity are yet to be defined. We identified chlorination toxicity as a damaging consequence of inflammation and myeloperoxidase (MPO) activation, resulting in macromolecular damage and cell damage/death. We hypothesized that the inhalation of CuO-NPs elicits an inflammatory response resulting in chlorination damage in cells and lung tissues. We further tested the protective action of LGM2605, a synthetic small molecule with known scavenging properties for reactive oxygen species (ROS), but most importantly, for active chlorine species (ACS) and an inhibitor of MPO. CuO-NPs (15 µg/bolus) were instilled intranasally in mice and the kinetics of the inflammatory response in lungs was evaluated 1, 3, and 7 days later. Evaluation of the protective action of LGM2605 was performed at 24 h post-challenge, which was selected as the peak acute inflammatory response to CuO-NP. LGM2605 was given daily via gavage to mice starting 2 days prior to the time of the insult (100 mg/kg). CuO-NPs induced a significant inflammatory influx, inflammasome-relevant cytokine release, and chlorination damage in mouse lungs, which was mitigated by the action of LGM2605. Preventive action of LGM2605 ameliorated the adverse effects of CuO-NP in lung.


Assuntos
Butileno Glicóis/farmacologia , Glucosídeos/farmacologia , Inflamação/tratamento farmacológico , Animais , Líquido da Lavagem Broncoalveolar/citologia , Butileno Glicóis/metabolismo , Cloro/metabolismo , Cobre/metabolismo , Cobre/toxicidade , Dano ao DNA/efeitos dos fármacos , Feminino , Glucosídeos/metabolismo , Inflamassomos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Óxidos/farmacologia , Peroxidase/farmacologia , Espécies Reativas de Oxigênio/farmacologia
8.
Heliyon ; 6(2): e03394, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32072068

RESUMO

Several studies have been conducted worldwide to develop effective and affordable methods to degrade pharmaceuticals and their metabolites/intermediates/oxidation products found in surface water, wastewater and drinking water. In this work, acetaminophen and its transformation products were successfully degraded in surface water by electrochemical oxidation using stainless steel electrodes. The effect of pH and current density on the oxidation process was assessed and the oxidation kinetics and mechanisms involved were described. Additionally, the results were compared with those obtained in acetaminophen synthetic solutions. It was found that conducting the electrochemical oxidation at 16.3 mA/cm2 and pH 5, good performance of the process was achieved and not only acetaminophen, but also its transformation products were totally degraded in only 7.5 min; furthermore, small number of transformation products were generated. On the other hand, degradation rates of acetaminophen and its transformation products in surface water were much faster (more than 2.5 times) and the reaction times much shorter (more than 4.0 times) than in synthetic solutions at all current densities and pH values evaluated. At pH 3 and pH 5, greater soluble chlorine formation due to the higher HCl amount used to acidify the surface water solutions could enhance the degradation rates of acetaminophen and its transformation products. However, constituents of surface water (ions and solids) could also have an important role on the oxidation process because at pH 9 (non-acidified solutions) the degradation rates were also much greater and the reaction times were much shorter in surface water than in acetaminophen synthetic solutions.

9.
Biochim Biophys Acta Gen Subj ; 1864(7): 129548, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32035161

RESUMO

BACKGROUND: Radiation exposure of tissues is associated with inflammatory cell influx. Myeloperoxidase (MPO) is an enzyme expressed in granulocytes, such as neutrophils (PMN) and macrophages, responsible for active chlorine species (ACS) generation. The present study aimed to: 1) determine whether exposure to γ-irradiation induces MPO-dependent ACS generation in murine PMN; 2) elucidate the mechanism of radiation-induced ACS generation; and 3) evaluate the effect of the synthetic lignan LGM2605, known for ACS scavenging properties. METHODS: MPO-dependent ACS generation was determined by using hypochlorite-specific 3'-(p-aminophenyl) fluorescein (APF) and a highly potent MPO inhibitor, 4-aminobenzoic acid hydrazide (ABAH), and confirmed in PMN derived from MPO-/- mice. Radiation-induced MPO activation was determined by EPR spectroscopy and computational analysis identified tyrosine, serine, and threonine residues near MPO's active site. RESULTS: γ-radiation increased MPO-dependent ACS generation dose-dependently in human MPO and in wild-type murine PMN, but not in PMN from MPO-/- mice. LGM2605 decreased radiation-induced, MPO-dependent ACS. Protein tyrosine phosphatase (PTP) and protein serine/threonine phosphatase (PSTP) inhibitors decreased the radiation-induced increase in ACS. Peroxidase cycle results demonstrate that tyrosine phosphorylation blocks MPO Compound I formation by preventing catalysis on H2O2 in the active site of MPO. EPR data demonstrate that γ-radiation increased tyrosyl radical species formation in a dose-dependent manner. CONCLUSIONS: We demonstrate that γ-radiation induces MPO-dependent generation of ACS, which is dependent, at least in part, by protein tyrosine and Ser/Thr dephosphorylation and is reduced by LGM2605. This study identified for the first time a novel protein dephosphorylation-dependent mechanism of radiation-induced MPO activation.


Assuntos
Butileno Glicóis/farmacologia , Cloro/metabolismo , Glucosídeos/farmacologia , Peroxidase/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação
10.
Environ Eng Sci ; 35(11): 1248-1254, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30479471

RESUMO

Paracetamol and its toxic transformation products have been found in surface water, wastewater, and drinking water. Effective methods to degrade these products must be found to reduce their detrimental effects on microorganisms in aquatic systems and minimize the concern on human health. Thus, this study looked into the electrochemical oxidation of paracetamol and its oxidation products on surface water, and results were compared with those of paracetamol synthetic solution oxidation. Degradation of paracetamol was conducted using a stainless steel electrode cell, a pH of 3, and direct current densities of 5.7 mA/cm2 (6 V) and 7.6 mA/cm2 (12 V). For both current densities applied, the pharmaceutical and its oxidation products observed by high-performance liquid chromatography with diode-array detection (HPLC-DAD) at 254 nm were totally degraded. Faster degradation of paracetamol was observed at a higher current density. Indeed, 95% of paracetamol was oxidized in only 15 min at the 7.6 mA/cm2 current density. In comparison to the paracetamol synthetic solution's oxidation, degradation of paracetamol was faster in the surface water than the synthetic solution, at 5.7 mA/cm2. Nevertheless, at 7.6 mA/cm2, total degradation of paracetamol in surface water was delayed up to 40 min, versus 7.5 min in the synthetic solution. Three oxidation products, observed by HPLC-DAD at 254 nm, were fully oxidized. In comparison with the paracetamol synthetic solution, degradation of the oxidation products in surface water was faster than in synthetic solutions for both current densities. Furthermore, the 7.6 mA/cm2 current density resulted in faster degradation of oxidation products. Results obtained from this work are promising for practical applications because short reaction times and low current densities are needed for degradation of paracetamol and its oxidation products. These densities can be potentially supplied by photovoltaic cells.

11.
Biochim Biophys Acta ; 1860(9): 1884-97, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27261092

RESUMO

BACKGROUND: Secoisolariciresinol diglucoside (SDG), the main lignan in whole grain flaxseed, is a potent antioxidant and free radical scavenger with known radioprotective properties. However, the exact mechanism of SDG radioprotection is not well understood. The current study identified a novel mechanism of DNA radioprotection by SDG in physiological solutions by scavenging active chlorine species (ACS) and reducing chlorinated nucleobases. METHODS: The ACS scavenging activity of SDG was determined using two highly specific fluoroprobes: hypochlorite-specific 3'-(p-aminophenyl) fluorescein (APF) and hydroxyl radical-sensitive 3'-(p-hydroxyphenyl) fluorescein (HPF). Dopamine, an SDG structural analog, was used for proton (1)H NMR studies to trap primary ACS radicals. Taurine N-chlorination was determined to demonstrate radiation-induced generation of hypochlorite, a secondary ACS. DNA protection was assessed by determining the extent of DNA fragmentation and plasmid DNA relaxation following exposure to ClO(-) and radiation. Purine base chlorination by ClO(-) and γ-radiation was determined by using 2-aminopurine (2-AP), a fluorescent analog of 6-aminopurine. RESULTS: Chloride anions (Cl(-)) consumed >90% of hydroxyl radicals in physiological solutions produced by γ-radiation resulting in ACS formation, which was detected by (1)H NMR. Importantly, SDG scavenged hypochlorite- and γ-radiation-induced ACS. In addition, SDG blunted ACS-induced fragmentation of calf thymus DNA and plasmid DNA relaxation. SDG treatment before or after ACS exposure decreased the ClO(-) or γ-radiation-induced chlorination of 2-AP. Exposure to γ-radiation resulted in increased taurine chlorination, indicative of ClO(-) generation. NMR studies revealed formation of primary ACS radicals (chlorine atoms (Cl) and dichloro radical anions (Cl2¯)), which were trapped by SDG and its structural analog dopamine. CONCLUSION: We demonstrate that γ-radiation induces the generation of ACS in physiological solutions. SDG treatment scavenged ACS and prevented ACS-induced DNA damage and chlorination of 2-aminopurine. This study identified a novel and unique mechanism of SDG radioprotection, through ACS scavenging, and supports the potential usefulness of SDG as a radioprotector and mitigator for radiation exposure as part of cancer therapy or accidental exposure.


Assuntos
Butileno Glicóis/farmacologia , Cloro/metabolismo , DNA/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Raios gama/efeitos adversos , Glucosídeos/farmacologia , Protetores contra Radiação/farmacologia , 2-Aminopurina/farmacologia , Animais , Antioxidantes/farmacologia , Bovinos , Fragmentação do DNA/efeitos dos fármacos , Linho/química , Radical Hidroxila/metabolismo , Lignanas/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Plasmídeos/genética
12.
Chemosphere ; 144: 2415-20, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26613359

RESUMO

Chloride ion is known to affect on degradation kinetics in different ways during HO· and SO4(·-)-based advanced oxidation processes (AOPs). However, its effect on absorbable organic halogen (AOX) evolution and acute toxicity of treated water remains unknown, despite the importance of the two parameters in evaluating the applicability of AOPs. In the present study, Co/peroxymonosulfate (Co/PMS) and UV/hydrogen peroxide (UV/H2O2) treatment of 2,4,6-trichlorophenol was compared in terms of AOX formation, chlorinated byproducts and acute toxicity. Both Co/PMS and UV/H2O2 systems were more reactive under acidic conditions, resulting in elevated AOX levels when compared with those at neutral pH. The presence of high levels of chloride led to an accumulation and increase of AOX in the Co/PMS system. The toxicity of chlorinated byproducts was evaluated using Photobacterium phosphoreum, and the results revealed a sharp increase in acute toxicity of Co/PMS reaction solutions on addition of chloride ion. However, addition of Cl(-) had no apparent impact on AOX and toxicity of UV/H2O2 reaction solutions. These findings may have significant technical implications for selecting feasible technologies to treat high salinity wastewater.


Assuntos
Cloretos/química , Clorofenóis/toxicidade , Photobacterium/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Clorofenóis/química , Cobalto/química , Peróxido de Hidrogênio/química , Oxirredução , Peróxidos/química , Raios Ultravioleta , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA