Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Colloid Interface Sci ; 677(Pt A): 400-415, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39096708

RESUMO

Chemodynamic therapy (CDT), an emerging cancer treatment modality, uses multivalent metal elements to convert endogenous hydrogen peroxide (H2O2) to toxic hydroxyl radicals (•OH) via a Fenton or Fenton-like reaction, thus eliciting oxidative damage of cancer cells. However, the antitumor potency of CDT is largely limited by the high glutathione (GSH) concentration and low catalytic efficiency in the tumor sites. The combination of CDT with chemotherapy provides a promising strategy to overcome these limitations. In this work, to enhance antitumor potency by tumor-targeted and GSH depletion-amplified chemodynamic-chemo therapy, the hyaluronic acid (HA)/polydopamine (PDA)-decorated Fe2+-doped ZIF-8 nano-scaled metal-organic frameworks (FZ NMs) were fabricated and utilized to load doxorubicin (DOX), a chemotherapy drug, via hydrophobic, π-π stacking and charge interactions. The attained HA/PDA-covered DOX-carrying FZ NMs (HPDFZ NMs) promoted DOX and Fe2+ release in weakly acidic and GSH-rich milieu and exhibited acidity-activated •OH generation. Through efficient CD44-mediated endocytosis, the HPDFZ NMs internalized by CT26 cells not only prominently enhanced •OH accumulation by consuming GSH via PDA-mediated Michael addition combined with Fe2+/Fe3+ redox couple to cause mitochondria damage and lipid peroxidation, but also achieved intracellular DOX release, thus eliciting apoptosis and ferroptosis. Importantly, the HPDFZ NMs potently inhibited CT26 tumor growth in vivo at a low DOX dose and had good biosafety, thereby showing promising potential in tumor-specific treatment.


Assuntos
Doxorrubicina , Glutationa , Ácido Hialurônico , Indóis , Ferro , Estruturas Metalorgânicas , Polímeros , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Glutationa/metabolismo , Glutationa/química , Indóis/química , Indóis/farmacologia , Humanos , Animais , Polímeros/química , Polímeros/farmacologia , Camundongos , Ferro/química , Ferro/metabolismo , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Propriedades de Superfície , Portadores de Fármacos/química , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Tamanho da Partícula , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Liberação Controlada de Fármacos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química
2.
Biomed Pharmacother ; 180: 117460, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39316967

RESUMO

Nanotechnology has emerged as a promising innovative avenue for therapeutic intervention in cancer research. However, achieving satisfactory accumulation of nanoparticles in the tumor and fabricating optimized nanoparticles remain challenging. In this work, we developed a novel polymeric micelle system to actively target integrin receptors, which are usually overexpressed in breast cancer. We first synthesized a targeted peptide-modified cyclic (Arg-Gly-Asp-D-Phe-Cys) (c(RGDfc))-polyethylene glycol-acitretin amphipathic conjugate (RPA) and prepared doxorubicin (DOX)-loaded RPADm (RPA@DOX) micelles with a high drug loading content of more than 11 %. Compared with unmodified DOX-containing micelles, RPADm demonstrated increased cytotoxicity and cellular uptake by MCF-7 cells. Importantly, competitive binding experiments confirmed that the observed enhancement effect was attributed to the modification of c(RGDfc) on the surface of the micelles. Furthermore, due to its active tumor-targeting ability, compared with the other DOX-based formulations, the RPADm exhibited the highest tumor distribution and strongest therapeutic efficacy in MCF-7 tumor-bearing nude mice. Additionally, the safety evaluation experiments revealed that the DOX-loaded micelles had no obvious systemic toxicity. These results suggest that the developed micelles modified with c(RGDfc) are promising candidates for tumor-active targeting therapies.

3.
J Liposome Res ; : 1-12, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38379249

RESUMO

The intricate cooperation between cancer cells and nontumor stromal cells within melanoma microenvironment (MME) enables tumor progression and metastasis. We previously demonstrated that the interplay between tumor-associated macrophages (TAMs) and melanoma cells can be disrupted by using long-circulating liposomes (LCLs) encapsulating prednisolone phosphate (PLP) (LCL-PLP) that inhibited tumor angiogenesis coordinated by TAMs. In this study, our goal was to improve LCL specificity for protumor macrophages (M2-like (i.e., TAMs) macrophages) and to induce a more precise accumulation at tumor site by loading PLP into IL-13-conjugated liposomes (IL-13-LCL-PLP), since IL-13 receptor is overexpressed in this type of macrophages. The IL-13-LCL-PLP liposomal formulation was obtained by covalent attachment of thiolated IL-13 to maleimide-functionalized LCL-PLP. C57BL/6 mice bearing B16.F10 s.c melanoma tumors were used to investigate the antitumor action of LCL-PLP and IL-13-LCL-PLP. Our results showed that IL-13-LCL-PLP formulation remained stable in biological fluids after 24h and it was preferentially taken up by M2 polarized macrophages. IL-13-LCL-PLP induced strong tumor growth inhibition compared to nonfunctionalized LCL-PLP at the same dose, by altering TAMs-mediated angiogenesis and oxidative stress, limiting resistance to apoptosis and invasive features in MME. These findings suggest IL-13-LCL-PLP might become a promising delivery platform for chemotherapeutic agents in melanoma.

4.
Adv Mater ; 36(23): e2314132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38353332

RESUMO

Radiation therapy (RT) is one of the primary options for clinical cancer therapy, in particular advanced head and neck squamous cell carcinoma (HNSCC). Herein, the crucial role of bromodomain-containing protein 4 (BRD4)-RAD51 associated protein 1 (RAD51AP1) axis in sensitizing RT of HNSCC is revealed. A versatile nanosensitizer (RPB7H) is thus innovatively engineered by integrating a PROteolysis TArgeting Chimeras (PROTAC) prodrug (BPA771) and hafnium dioxide (HfO2) nanoparticles to downregulate BRD4-RAD51AP1 pathway and sensitize HNSCC tumor to RT. Upon intravenous administration, the RPB7H nanoparticles selectively accumulate at the tumor tissue and internalize into tumor cells by recognizing neuropilin-1 overexpressed in the tumor mass. HfO2 nanoparticles enhance RT effectiveness by amplifying X-ray deposition, intensifying DNA damage, and boosting oxidative stress. Meanwhile, BPA771 can be activated by RT-induced H2O2 secretion to degrade BRD4 and inactivate RAD51AP1, thus impeding RT-induced DNA damage repair. This versatile nanosensitizer, combined with X-ray irradiation, effectively regresses HNSCC tumor growth in a mouse model. The findings introduce a PROTAC prodrug-based radiosensitization strategy by targeting the BRD4-RAD51AP1 axis, may offer a promising avenue to augment RT and more effective HNSCC therapy.


Assuntos
Nanopartículas , Pró-Fármacos , Radiossensibilizantes , Fatores de Transcrição , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Animais , Humanos , Linhagem Celular Tumoral , Camundongos , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Fatores de Transcrição/metabolismo , Nanopartículas/química , Proteínas de Ciclo Celular/metabolismo , Proteólise/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Neuropilina-1/metabolismo , Proteínas que Contêm Bromodomínio
5.
J Nanobiotechnology ; 21(1): 442, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37993888

RESUMO

Imaging-guided photothermal therapy (PTT) for cancers recently gathered increasing focus thanks to its precise diagnosis and potent therapeutic effectiveness. Croconaine (CR) dyes demonstrate potential in expanding utility for near infrared (NIR) dyes in bio-imaging/theranostics. However, reports on CR dyes for PTT are scarce most likely due to the short of the efficacious delivery strategies to achieve specific accumulation in diseased tissues to induce PTT. Extracellular vesicles (EVs) are multifunctional nanoparticle systems that function as safe platform for disease theragnostics, which provide potential benefits in extensive biomedical applications. Here, we developed a novel delivery system for photothermal molecules based on a CR dye that exerts photothermal activity through CDH17 nanobody-engineered EVs. The formed CR@E8-EVs showed strong NIR absorption, excellent photothermal performance, good biological compatibility and superb active tumor-targeting capability. The CR@E8-EVs can not only visualize and feature the tumors through CR intrinsic property as a photoacoustic imaging (PAI) agent, but also effectively retard the tumor growth under laser irradiation to perform PTT. It is expected that the engineered EVs will become a novel delivery vehicle of small organic photothermal agents (SOPTAs) in future clinical PTT applications.


Assuntos
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Terapia Fototérmica , Fototerapia/métodos , Nanomedicina Teranóstica/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Corantes , Técnicas Fotoacústicas/métodos , Linhagem Celular Tumoral
6.
Biomaterials ; 301: 122285, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37619265

RESUMO

Antibody-drug conjugates (ADCs) are the most potent active tumor-targeting agents used clinically. However, the preparation of ADCs with high drug-to-antibody ratios (DARs) remains a major challenge. Herein, a Fab-nondestructive SN38-loaded antibody-polymeric-drug conjugate (APDC), aPDL1-NPLG-SN38, was prepared that had a DAR as high as 72 for the first time, by increased numbers of payload binding sites via the carboxyl groups of poly (l-glutamic acid) (PLG). The bonding of Fc-III-4C peptide with PLG-graft-mPEG/SN38 (Fc-NPLG-SN38) was achieved using a click reaction between azide and DBCO groups. The aPDL1-NPLG-SN38 conjugate was then synthesized by the high-affinity interaction between the Fc-III-4C peptide in Fc-NPLG-SN38 and the crystallizable fragment (Fc) of PDL1 monoclonal antibody (aPDL1). This approach avoided the potential deleterious effects on the Fab structure of the monoclonal antibody. The aqueous environment used in its preparation helped maintain monoclonal antibody recognition capability. Through the specific recognition by aPDL1 of PDL1 that is highly expressed on MC38 tumors, the accumulation of aPDL1-NPLG-SN38 in the tumors was 2.8-fold greater than achieved with IgG-NPLG-SN38 that had no active tumor-targeting capability. aPDL1-NPLG-SN38 exhibited excellent therapeutic properties in both medium-sized and large MC38 tumor animal models. The present study provides the details of a novel preparation strategy for SN38-loaded ADCs having a high DAR.


Assuntos
Neoplasias do Colo , Imunoconjugados , Animais , Neoplasias do Colo/tratamento farmacológico , Polímeros , Anticorpos Monoclonais/uso terapêutico , Imunoconjugados/uso terapêutico
7.
Adv Mater ; 35(9): e2207271, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36479742

RESUMO

Ligand/receptor-mediated targeted drug delivery has been widely recognized as a promising strategy for improving the clinical efficacy of nanomedicines but is attenuated by the binding of plasma protein on the surface of nanoparticles to form a protein corona. Here, it is shown that ultrasonic cavitation can be used to unravel surface plasma coronas on liposomal nanoparticles through ultrasound (US)-induced liposomal reassembly. To demonstrate the feasibility and effectiveness of the method, transcytosis-targeting-peptide-decorated reconfigurable liposomes (LPGLs) loaded with gemcitabine (GEM) and perfluoropentane (PFP) are developed for cancer-targeted therapy. In the blood circulation, the targeting peptides are deactivated by the plasma corona and lose their targeting capability. Once they reach tumor blood vessels, US irradiation induces transformation of the LPGLs from nanodrops into microbubbles via liquid-gas phase transition and decorticate the surface corona by reassembly of the lipid membrane. The activated liposomes regain the capability to recognize the receptors on tumor neovascularization, initiate ligand/receptor-mediated transcytosis, achieve efficient tumor accumulation and penetration, and lead to potent antitumor activity in multiple tumor models of patient-derived tumor xenografts. This study presents an effective strategy to tackle the fluid biological barriers of the protein corona and develop transcytosis-targeting liposomes for active tumor transport and efficient cancer therapy.


Assuntos
Neoplasias , Coroa de Proteína , Humanos , Lipossomos , Doxorrubicina/farmacologia , Ultrassom , Ligantes , Neoplasias/metabolismo , Sistemas de Liberação de Medicamentos , Peptídeos , Proteínas Sanguíneas , Linhagem Celular Tumoral
8.
Ther Deliv ; 12(4): 325-336, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33759568

RESUMO

Multifunctional nanoparticles have been identified as a promising drug-delivery system for sustainable drug release. The structural and size tunability and disease-targeting ability of nanoparticles have made them more suitable for multiple drug loading and delivery, thereby enhancing therapeutic results through synergistic effects. Nanoparticulate carriers with specific features such as target specificity and stimuli-responsiveness enable selective drug delivery with lower potential side effects. In this review we have classified the recently published articles on polymeric and inorganic nanoparticle-mediated drug delivery into three different categories based on functionality and discussed their efficiency for drug delivery and their therapeutic outcomes in preclinical models. Most of the drug-loaded nanodelivery systems discussed have demonstrated negligible or very low systemic toxicity throughout the experimental period in animal models compared with free drug administration. In addition, some challenges associated with the translation of nanoparticle-based drug carrier responses to clinical application are highlighted.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Animais , Portadores de Fármacos , Polímeros
9.
Adv Sci (Weinh) ; 8(3): 2002253, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552856

RESUMO

Active-targeted nanoparticles are attractive carriers due to their potentials to facilitate specific delivery of drugs into tumor cells while sparing normal cells. However, the therapeutic outcomes of active-targeted nanomedicines are hampered by the multiple physiological barriers in the tumor microenvironment (TME). Herein, an epidermal growth factor receptor-targeted ultra-pH-sensitive nanophotosensitizer is fabricated, and the regulation of the TME to augment the active targeting ability and therapeutic efficacy is pinpointed. The results reveal that tumor vasculature normalization with thalidomide indiscriminately enhance the tumor accumulation of passive and active targeted nanoparticles, both of which are sequestered in the stromal bed of tumor mass. Whereas, photoablation of stromal cells located in perivascular regions significantly improves the accessibility of antibody-modified nanophotosensitizer to receptor-overexpressed cancer cells. After sequential regulation of TME, the antitumor efficacy of antibody-modified nanophotosensitizer is drastically enhanced through synergistic enhancements of tumor accumulation and cancer cell accessibility of active-targeted nanoparticles. The study offers deep insights about the intratumoral barriers that hinder the active-targeted nanoparticles delivery, and provides a basis for developing more effective strategies to accelerate the clinical translation of active-targeted nanomedicines.

10.
Adv Sci (Weinh) ; 7(8): 1903332, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32328426

RESUMO

Immunotherapy aiming to harness the exquisite power of the immune system has emerged as a crucial part of clinical cancer management. However, only a subset of cancer patients responds to current immunotherapy because of low immunogenicity of the tumor cells and immunosuppressive tumor microenvironment. Herein, host-guest prodrug nanovectors are reported for active tumor targeting and combating immune tolerance in tumors. The prodrug nanovectors are designed by integrating hyaluronic acid (HA) and reduction-labile heterodimer of Pheophorbide A (PPa) and NLG919 into the supramolecular nanocomplexes, where PPa and NLG919 act as a photosensitizer and potent inhibitor of indoleamine 2,3-dioxygenase 1 (IDO-1), respectively. Meanwhile, HA is employed to achieve active tumor targeting by recognizing CD44 overexpressed on the surface of tumor cell membranes. Near infrared (NIR) laser irradiation triggers the release of reactive oxygen species to provoke antitumor immunogenicity and intratumoral infiltration of cytotoxic T lymphocytes (CTLs). Meanwhile, the immunosuppressive tumor microenvironment (ITM) is reversed by NLG919-mediated IDO-1 inhibition. Combination of photodynamic immunotherapy and IDO-1 blockade efficiently eradicates CT26 colorectal tumors in the immunocompetent mice. The host-guest nanoplatform capable of eliciting effective antitumor immunity by inactivating inhibitory immune response can be applied to other immune modulators for improved cancer immunotherapy.

11.
Int J Mol Sci ; 21(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182734

RESUMO

On account of their excellent capacity to significantly improve the bioavailability and solubility of chemotherapy drugs, amphiphilic block copolymer-based micelles have been widely utilized for chemotherapy drug delivery. In order to further improve the antitumor ability and to also reduce undesired side effects of drugs, cell-penetrating peptides have been used to functionalize the surface of polymer micelles endowed with the ability to target tumor tissues. Herein, we first synthesized functional polyethylene glycol-polylactic acid (PEG-PLA) tethered with maleimide at the PEG section of the block polymer, which was further conjugated with a specific peptide, the transactivating transcriptional activator (TAT), with an approved capacity of aiding translocation across the plasma membrane. Then, TAT-conjugated, paclitaxel-loaded nanoparticles were self-assembled into stable nanoparticles with a favorable size of 20 nm, and displayed a significantly increased cytotoxicity, due to their enhanced accumulation via peptide-mediated cellular association in human breast cancer cells (MCF-7) in vitro. But when further used in vivo, TAT-NP-PTX showed an acceleration of the drug's plasma clearance rate compared with NP-PTX, and therefore weakened its antitumor activities in the mice model, because of its positive charge, its elimination by the endoplasmic reticulum system more quickly, and its targeting effect on normal cells leading towards being more toxic. So further modification of TAT-NP-PTX to shield TAT peptide's positive charges may be a hot topic to overcome the present dilemma.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/química , Paclitaxel/administração & dosagem , Poliésteres/química , Polietilenoglicóis/química , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Portadores de Fármacos/química , Retículo Endoplasmático/metabolismo , Feminino , Produtos do Gene tat/química , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Micelas , Nanopartículas/química , Tamanho da Partícula , Polímeros/química
12.
Mater Sci Eng C Mater Biol Appl ; 108: 110381, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31924035

RESUMO

Hyaluronic acid (HA)-functionalized lanthanide-doped KGdF4 nanoparticles were synthesized through two steps on a microfluidic platform. This microfluidic synthesis method allows better control of experimental conditions with lower labor and energy input than traditional beaker synthesis methods for large-scale production of nanoparticles with higher uniformity. First, Ln3+-doped KGdF4 nanoparticles were ultrafast (in minutes) and continuously synthesized using a four-inlets microfluidic chip at room temperature. Then, HA is continuously functionalized on the surface of Ln3+-doped KGdF4 nanoparticles using a T-shape chip through electrostatic adsorption. The synthesized nanoparticles show good uniformity, high biocompatibility, targeted cellular uptake, photoluminescence (PL) and magnetic resonance (MR) properties. This work highlights the potential of microfluidic platform for the development of multifunctional nanoparticles in biomedicine.


Assuntos
Gadolínio/química , Elementos da Série dos Lantanídeos/química , Microfluídica , Nanopartículas/química , Linhagem Celular Tumoral , Sobrevivência Celular , Cor , Difusão Dinâmica da Luz , Humanos , Ácido Hialurônico/química , Luminescência , Nanopartículas/ultraestrutura , Tamanho da Partícula
13.
Cancer Lett ; 472: 165-174, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31857156

RESUMO

Tumor-targeted drug delivery systems with stimuli-response drug release have been increasingly used to improve the therapeutic efficacy of antitumor drugs. Here, we report a specific molecular recognition activation drug nanoplatform based on specially designed DNA sensor-capped doxorubicin (DOX)-loaded mesoporous silica nanoparticles (MSNs), designated as specific molecular recognition-activated nanoparticle (SMRAN). DNA sensors on the targeted nanoparticles can trigger DOX release through a conformational switch induced by MUC-1. This causes a significant difference in cell viability between breast cancer MCF-7 and normal breast Hs578bst cells (24.8% and 86.0%). In vivo experiments showed that the tumor volume was reduced 1.5-times in the SMRAN treatment group. Compared with that in the DOX group, due to significantly improved tumor accumulation and retention of DOX. The strategy of the MUC-1 activated drug delivery system is expected to provide a new perspective for clinical application.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Mucina-1/genética , Nanopartículas/química , Mama/efeitos dos fármacos , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Adutos de DNA/química , Adutos de DNA/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos , Liberação Controlada de Fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7
14.
Nano Lett ; 19(12): 8550-8564, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31694378

RESUMO

Nanorobots are safe and exhibit powerful functionalities, including delivery, therapy, and diagnosis. Therefore, they are in high demand for the development of new cancer therapies. Although many studies have contributed to the progressive development of the nanorobot system for anticancer drug delivery, these systems still face some critical limitations, such as potentially toxic materials in the nanorobots, unreasonable sizes for passive targeting, and the lack of several essential functions of the nanorobot for anticancer drug delivery including sensing, active targeting, controlling drug release, and sufficient drug loading capacity. Here, we developed a multifunctional nanorobot system capable of precise magnetic control, sufficient drug loading for chemotherapy, light-triggered controlled drug release, light absorption for photothermal therapy, enhanced magnetic resonance imaging, and tumor sensing. The developed nanorobot system exhibits an in vitro synergetic antitumor effect of photothermal therapy and chemotherapy and outstanding tumor-targeting efficiency in both in vitro and in vivo environments. The results of this study encourage further explorations of an efficient active drug delivery system for cancer treatment and the development of nanorobot systems for other biomedical applications.


Assuntos
Sistemas de Liberação de Medicamentos , Hipertermia Induzida , Nanoestruturas , Neoplasias/terapia , Fototerapia , Robótica , Linhagem Celular Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
15.
Nano Lett ; 19(10): 7035-7042, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31502461

RESUMO

Nanosized oncolytic viral light particles (L-particles), separated from progeny virions, are composed of envelopes and several tegument proteins of viruses, free of nucleocapsids. The noninfectious L-particles experience the same internalization process as mature oncolytic virions, which exhibits great potential to act as targeted therapeutic platforms. However, the clinical applications of L-particle-based theranostic platforms are rare due to the lack of effective methods to transform L-particles into nanovectors. Herein, a convenient and mild strategy has been developed to transform L-particles into near-infrared (NIR) fluorescence Ag2Se quantum dot (QD)-labeled active tumor-targeting nanovectors for real-time in situ imaging and drug delivery. Utilizing the electroporation technique, L-particles can be labeled with ultrasmall water-dispersible NIR fluorescence Ag2Se QDs with a labeling efficiency of ca. 85% and loaded with antitumor drug with a loading efficiency of ca. 87%. Meanwhile, by harnessing the infection mechanism of viruses, viral L-particles are able to recognize and enter tumor cells without further modification. In sum, a trackable and actively tumor-targeted theranostics nanovector can be obtained efficiently and simultaneously. Such multifunctional nanovectors transformed from viral L-particles have exhibited excellent properties of active tumor-targeting, in vivo tumor imaging, and antitumor efficacy, which opens a new window for the development of natural therapeutic nanoplatforms.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Neoplasias/tratamento farmacológico , Vírus Oncolíticos/química , Pontos Quânticos/química , Prata/química , Animais , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Feminino , Corantes Fluorescentes/química , Células HeLa , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/diagnóstico por imagem , Imagem Óptica , Nanomedicina Teranóstica
16.
J Control Release ; 308: 29-43, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31252039

RESUMO

Because of the tumor heterogeneity, poor therapeutic outcome is obtained while the conventional treatments, such as surgery, radiotherapy, or chemotherapy are utilized alone. Herein, combinational therapy strategies have been introduced to solve this problem. Photothermal therapy (PTT) as a non-invasive thermal therapeutic manner has attracting enormous attentions not only for the effective inhibition in primary tumors, but also for producing tumor-associated antigens from ablated tumor cell residues which exhibit the feasibility to enhance the therapeutic outcome of immunotherapy. Here, we report the construction and application of Au@Pt-based nanosystem with rationally designed peptide (LyP-1-PLGVRG-DPPA-1, LMDP) conjugation for cancer photothermal-immunotherapy. The obtained Au@Pt-LMDP nanosystem can serve as a matrix metalloproteinase (MMP) activated tumor targeting agents for effective photothermal therapy together with immune checkpoint blockade immunotherapy by the on-demand release of a D-peptide antagonist of programmed cell death-ligand 1 (PD-L1). The PA imaging demonstrates its effective accumulation in the tumor region by the activated tumor targeting moiety derived from the LMDP. Moreover, in vivo anti-tumor studies reveal that Au@Pt-LMDP nanosystem can effectively eliminate primary tumors via PTT, and further stimulate the activation of cytotoxic T lymphocytes by PD-L1 immune checkpoint blockage, result in inhibiting the growth of distal tumors and alleviating tumor metastasis. The present study provides a promising strategy for the combination treatment of advanced cancer and obtains a valuable therapeutic outcome in tumor photothermal-immunotherapy.


Assuntos
Imunoterapia/métodos , Nanopartículas Metálicas , Peptídeos/química , Fototerapia/métodos , Animais , Antígenos de Neoplasias/imunologia , Antígeno B7-H1/antagonistas & inibidores , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Ouro/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Platina/química
17.
Trends Biotechnol ; 37(6): 573-577, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30826094

RESUMO

Pharmaceutical uses of cancer therapeutics, such as intravenous thrombin to elicit blood coagulation, have been hampered by lack of tumor specificity. Based on rapid progress in DNA origami-based machines capable of transporting molecular payloads, DNA nanorobots have been constructed to specifically deliver therapeutic agents into tumor vessels.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos , Nanomedicina , Nanoestruturas , Neoplasias/terapia , Humanos , Robótica
18.
ACS Appl Bio Mater ; 2(8): 3613-3621, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35030748

RESUMO

Herein, multifunctional nanoparticles (MnIO-MCP) have been constructed for active-tumor-targeting T1-weighted and T2-weighted (T1-T2) dual-modal magnetic resonance imaging (MRI)-guided bio-photothermal therapy (bio-PTT) through bioconjugation of the monocyclic peptides (MCP, the CXC chemokine receptor 4 (CXCR4) antagonist) with manganese-doped iron oxide nanoparticles (MnIO NPs). MnIO-MCP displays both T1-weighted and T2-weighted MR contrast abilities (r1 = 13.1 mM-1 S-1; r2 = 46.6 mM-1 S-1, and r2/r1 = 3.56), allowing generation of enhanced T1-T2 dual-modal MRI. The MnIO-MCP exhibits reasonable photothermal conversion efficiency (28.8% with 200 µg mL-1 MnIO-MCP in H2O) under 808 nm NIR laser irradiation, endowing them with the capacity for PTT of a tumor. Moreover, MnIO-MCP affords the strong tumor-targeting and inhibition of cancer cell growth by the interactions of MCP with overexpressed CXCR4 in the tumor. We demonstrate that MnIO-MCP can accumulate in MCF-7 tumors as high as ∼15.9% ID g-1 at 1 h after intravenous injection into mice with the aid of an external magnetic field (MF), creating the opportunity for complete eradication of the tumor by T1-T2 dual-modal MRI-guided bio-PTT.

19.
Adv Funct Mater ; 28(5)2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29706855

RESUMO

A theranostic platform combining synergistic therapy and real-time imaging attracts enormous attention but still faces great challenges, such as tedious modifications and lack of efficient accumulation in tumor. Here, a novel type of theranostic agent, bismuth sulfide@mesoporous silica (Bi2S3@ mPS) core-shell nanoparticles (NPs), for targeted image-guided therapy of human epidermal growth factor receptor-2 (HER-2) positive breast cancer is developed. To generate such NPs, polyvinylpyrrolidone decorated rod-like Bi2S3 NPs are chemically encapsulated with a mesoporous silica (mPS) layer and loaded with an anticancer drug, doxorubicin. The resultant NPs are then chemically conjugated with trastuzumab (Tam, a monoclonal antibody targeting HER-2 overexpressed breast cancer cells) to form Tam-Bi2S3@mPS NPs. By in vitro and in vivo studies, it is demonstrated that the Tam-Bi2S3@mPS bear multiple desired features for cancer theranostics, including good biocompatibility and drug loading ability as well as precise and active tumor targeting and accumulation (with a bismuth content in tumor being ≈16 times that of nontargeted group). They can simultaneously serve both as an excellent contrast enhancement probe (due to the presence of strong X-ray-attenuating bismuth element) for computed tomography deep tissue tumor imaging and as a therapeutic agent to destruct tumors and prevent metastasis by synergistic photothermalchemo therapy.

20.
Nanomedicine ; 14(3): 713-723, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29317344

RESUMO

Nanotechnology-based chemotherapy is efficient in cancer treatment due to the targeted delivery of small molecules via nano-carriers, which are usually regarded as "inert". However, nano-materials are more preferred as carriers since many cause synergistic anti-tumor effects along with the drug cargo. In this study, a "bioactive" tocopherol succinate (TOS) was grafted to hyaluronic acid (HA) via of disulfide bonds to obtain HA-ss-TOS conjugates which can assemble into nano-micelles but dissociate when exposed to reducing environments in vitro and in vivo. Moreover, paclitaxel-loaded HA-ss-TOS micelles (HA-ss-TOS-PTX) can be efficiently taken up by B16F10 cells overexpressing CD 44, thereafter exhibiting enhanced cytotoxicity. The in vivo imaging study here revealed much greater tumor accumulation of Dir-labeled HA-ss-TOS compared to the free Dir group. In vivo antitumor activities further ensured that the PTX-loaded HA-ss-TOS micelles provided superior antineoplastic responses versus PTX-loaded HA-TOS micelles and Taxol. Moreover, the subcellular dissociated TOS from HA-ss-TOS showed synergistic effects with PTX. These experimental results revealed that reduction-responsive PTX-loaded polymeric nano-micelles with multi-functional properties hold great potential for anti-tumor treatment and, thus, should be further studied.


Assuntos
Dissulfetos/química , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/química , Melanoma Experimental/tratamento farmacológico , Micelas , Paclitaxel/farmacologia , alfa-Tocoferol/química , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nanopartículas/química , Oxirredução , Paclitaxel/administração & dosagem , Paclitaxel/química , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA