Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.715
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(39): e2320537121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39302963

RESUMO

To respond and adapt, cells use surface receptors to sense environmental cues. While biochemical signal processing inside the cell is studied in depth, less is known about how physical processes during cell-cell contact impact signal acquisition. New experiments found that fast-evolving immune B cells in germinal centers (GCs) apply force to acquire antigen clusters prior to internalization, suggesting adaptive benefits of physical information extraction. We present a theory of stochastic antigen transfer and show that maximizing information gain via physical extraction can explain the dramatic phenotypic transition from naive to GC B cells-attenuated receptor signaling, enhanced force usage, and decentralized contact architecture. Our model suggests that binding-lifetime measurement and physical extraction serve as complementary modes of antigen recognition, greatly extending the dynamic range of affinity discrimination when combined. This physical-information framework further predicts that the optimal size of receptor clusters decreases as affinity improves, rationalizing the use of a multifocal synaptic pattern seen in GC B cells. By linking extraction dynamics to selection fidelity via discriminatory performance, we propose that cells may physically enhance information acquisition to sustain adaptive evolution.


Assuntos
Antígenos , Linfócitos B , Linfócitos B/imunologia , Linfócitos B/metabolismo , Antígenos/imunologia , Antígenos/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/citologia , Animais , Transdução de Sinais/imunologia , Humanos , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/imunologia , Modelos Imunológicos
2.
JCI Insight ; 9(18)2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315545

RESUMO

BACKGROUNDThe level of nasal spike-specific secretory IgA (sIgA) is inversely correlated with the risk of SARS-CoV-2 Omicron infection. This study aimed to evaluate the safety and immunogenicity of intranasal vaccination using Ad5-S-Omicron (NB2155), a replication-incompetent human type 5 adenovirus carrying Omicron BA.1 spike.METHODSAn open-label, single-center, investigator-initiated trial was carried out on 128 health care workers who had never been infected with SARS-CoV-2 and had previously received 2 or 3 injections of inactivated whole-virus vaccines, with the last dose given 3-19 months previously (median 387 days, IQR 333-404 days). Participants received 2 intranasal sprays of NB2155 at 28-day intervals between November 30 and December 30, 2022. Safety was evaluated by solicited adverse events and laboratory tests. The elevation of nasal mucosal spike-specific sIgA and serum neutralizing activities were assessed. All participants were monitored for infection by antigen tests, disease symptoms, and the elevation of nucleocapsid-specific sIgA in the nasal passage.RESULTSThe vaccine-related solicited adverse events were mild. Nasal spike-specific sIgA against 10 strains had a mean geometric mean fold increase of 4.5 after the first dose, but it increased much higher to 51.5 after the second dose. Serum neutralizing titers also increased modestly to 128.1 (95% CI 74.4-220.4) against authentic BA.1 and 76.9 (95% CI 45.4-130.2) against BA.5 at 14 days after the second dose. Due to the lifting of the zero-COVID policy in China on December 7, 2022, 57.3% of participants were infected with BA.5 between days 15 and 28 after the first dose, whereas no participants reported having any symptomatic infections between day 3 and day 90 after the second dose. The elevation of nasal nucleocapsid-specific sIgA on days 0, 14, 42, and 118 after the first dose was assessed to verify that these 2-dose participants had no asymptomatic infections.CONCLUSIONA 2-dose intranasal vaccination regimen using NB2155 was safe, was well tolerated, and could dramatically induce broad-spectrum spike-specific sIgA in the nasal passage. Preliminary data suggested that the intranasal vaccination may establish an effective mucosal immune barrier against infection and warranted further clinical studies.TRIAL REGISTRATIONChinese Clinical Trial Registry (ChiCTR2300070346).FUNDINGNatural Science Foundation of China, Guangzhou Laboratory, The First Affiliated Hospital of Guangzhou Medical University.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunidade nas Mucosas , Imunoglobulina A Secretora , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adenoviridae , Administração Intranasal , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , Vetores Genéticos/administração & dosagem , Imunoglobulina A Secretora/imunologia , Mucosa Nasal/imunologia , Mucosa Nasal/virologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-39316061

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal disease characterized by neuronal degeneration of the spinal cord and brain and believed to be related to the immune system. In this study, our aim is to use Mendelian randomization (MR) to search for immune markers related to ALS. A total of 731 immune cell traits were included in this study. MR analysis was used to identify the causality between 731 immune cell traits (with 3,757 Europeans) and ALS (with 138,086 Europeans). Colocalization analysis was used to verify the found causality, protein-protein interaction prediction was used to look for the interacting proteins that are known to be involved in ALS. We found low expression levels of CD3 on central memory CD8+ T cell is risk factor for ALS (OR = 0.90, 95% CI: 0.86-0.95, P = 0.0000303). CD3 can interact with three ALS-related proteins: VCP, HLA-DRA and HLA-DRB5, which are associated with adaptive immune response. Our study reported for the first time that low-level CD3 is a risk factor for ALS and the possible mechanism, which could provide a potential strategy for ALS diagnosis and therapy.

4.
Biomater Adv ; 165: 214024, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39232353

RESUMO

Graphene oxide (GO), a carbon-based nanomaterial, presents significant potential across biomedical fields such as bioimaging, drug delivery, biosensors, and phototherapy. This study examines the effects of integrating GO into poly(lactic-co-glycolic acid) (PLGA) scaffolds on human immune cell function. Our results demonstrate that high concentrations of GO reduce the viability of peripheral blood mononuclear cells (PBMCs) following stimulation with anti-CD3 antibody. This reduction extends to T lymphocyte activation, evident from the diminished proliferative response to T cell receptor engagement and impaired differentiation into T helper subsets and regulatory T cells. Interestingly, although GO induces a minimal response in resting monocytes, but it significantly affects both the viability and the differentiation potential of monocytes induced to mature toward M1 pro-inflammatory and M2-like immunoregulatory macrophages. This study seeks to address a critical gap by investigating the in vitro immunomodulatory effects of PLGA scaffolds incorporating various concentrations of GO on primary immune cells, specifically PBMCs isolated from healthy donors. Our findings emphasize the need to optimize the GO to PLGA ratios and scaffold design to advance PLGA-GO-based biomedical applications. STATEMENT OF SIGNIFICANCE: Graphene oxide (GO) holds immense promise for biomedical applications due to its unique properties. However, concerns regarding its potential to trigger adverse immune responses remain. This study addresses this critical gap by investigating the in vitro immunomodulatory effects of PLGA scaffolds incorporating increasing GO concentrations on human peripheral blood mononuclear cells (PBMCs). By elucidating the impact on cell viability, T cell proliferation and differentiation, and the maturation/polarization of antigen-presenting cells, this work offers valuable insights for designing safe and immunologically compatible GO-based biomaterials for future clinical translation.


Assuntos
Grafite , Leucócitos Mononucleares , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Alicerces Teciduais , Grafite/química , Grafite/farmacologia , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Alicerces Teciduais/química , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia
5.
JCI Insight ; 9(17)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39253973

RESUMO

Elevated numbers of antibody-secreting cells (ASCs) and anti-double-stranded DNA (anti-dsDNA) antibodies are found in nasal polyp (NP) tissue. The presence of anti-dsDNA IgG in tissue prospectively predicts recurrent NP but the characteristics of the source ASCs are unknown. Here, we investigated whether NP B cells expressing the extrafollicular marker EBI2 have increased propensity for autoantibody production and evaluated the molecular characteristics of NP ASCs. NPs showed increased frequencies of anti-dsDNA IgG and total IgG ASCs compared with tonsils, with more pronounced differences among EBI2+ cells. In NPs, EBI2+ cells were frequently double negative (IgD-CD27-) and ASCs. Single-cell RNA-Seq analysis of tonsils and NPs revealed substantial differences in B lineage composition, including differences in percentages of ASCs, germinal centers, proliferative cells, and non-ASCs. NPs exhibited higher expression of specific isotypes (IGHE, IGHA1, IGHA2, and IGHG4) and mature plasma genes, including SDC1 and XBP1, than tonsils. Gene Ontology biological processes indicated upregulated NF-κB and downregulated apoptosis pathways in NP ASCs. Together, these data indicate that NP EBI2+ ASCs secret increased total and anti-dsDNA IgG compared with those from tonsils and had molecular features of mature plasma cell differentiation.


Assuntos
Células Produtoras de Anticorpos , Imunoglobulina G , Pólipos Nasais , Humanos , Pólipos Nasais/imunologia , Pólipos Nasais/patologia , Pólipos Nasais/metabolismo , Células Produtoras de Anticorpos/imunologia , Células Produtoras de Anticorpos/metabolismo , Masculino , Feminino , Adulto , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Pessoa de Meia-Idade , Tonsila Palatina/imunologia , Tonsila Palatina/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/imunologia , Anticorpos Antinucleares/imunologia , Idoso , Adulto Jovem
6.
Expert Rev Clin Immunol ; : 1-10, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39230194

RESUMO

INTRODUCTION: Kawasaki disease [KD] is a systemic disorder characterized by acute febrile illness due to widespread medium-vessel vasculitis, mainly affecting children. Despite the ongoing advanced research into the disease pathophysiology and molecular mechanisms, the exact etiopathogenesis of KD is still an enigma. Recently, single-cell RNA sequencing [scRNA-seq], has been utilized to elucidate the pathophysiology of KD at a resolution higher than that of previous methods. AREA COVERED: In the present article, we re-emphasize the pivotal role of this high-resolution technique, scRNA-seq, in the characterization of immune cell transcriptomic profile and signaling/response pathways in KD and explore the diagnostic, prognostic, and therapeutic potential of this new technique in KD. Using combinations of the search phrases 'KD, scRNA-seq, CAA, childhood vasculitis' a literature search was carried out on Scopus, Google Scholar, and PubMed until the beginning of 2024. EXPERT OPINION: scRNA-seq presents a transformative tool for dissecting KD at the cellular level. By revealing rare cell populations, gene expression alterations, and disease-specific pathways, scRNA-seq aids in understanding the intricacies of KD pathogenesis. This review will provide new insights into pathogenesis of KD and the field of applications of scRNA-seq in personalized therapeutics for KD in the future.

7.
JCI Insight ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264727

RESUMO

Epstein Barr virus (EBV) contributes to around 2% of all tumors worldwide. Simultaneously, more than 90% of healthy human adults persistently carry EBV without clinical symptoms. In most EBV carriers it is thought that virus-induced tumorigenesis is prevented by cell-mediated immunity. Specifically, memory CD8+ T cells recognize EBV-infected cells during latent and lytic infection. Using a symptomatic primary infection model, similar to infectious mononucleosis (IM), we found EBV-induced CD8+ tissue-resident memory T cells (TRMs) in mice with a humanized immune system. These human TRMs were preferentially established after intranasal EBV infection in nasal-associated lymphoid tissues (NALT), equivalent to tonsils, the primary site of EBV infection in humans. They expressed canonical TRM markers, including CD69, CD103, and BLIMP-1, as well as Granzyme B, CD107a and CCL5. Despite cytotoxic activity and cytokine production ex vivo, these TRMs demonstrated reduced CD27 expression and proliferation and failed to control EBV viral loads in the NALT during infection although effector memory T cells (TEMs) controlled viral titers in spleen and blood. Overall, TRMs are established in mucosal lymphoid tissues by EBV infection, but primarily systemic CD8+ T cell expansion seems to control viral loads in the context of IM-like infection.

8.
Front Immunol ; 15: 1419527, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39286244

RESUMO

Mucosal barrier tissues and their mucosal associated lymphoid tissues (MALT) are attractive targets for vaccines and immunotherapies due to their roles in both priming and regulating adaptive immune responses. The upper and lower respiratory mucosae, in particular, possess unique properties: a vast surface area responsible for frontline protection against inhaled pathogens but also simultaneous tight regulation of homeostasis against a continuous backdrop of non-pathogenic antigen exposure. Within the upper and lower respiratory tract, the nasal and bronchial associated lymphoid tissues (NALT and BALT, respectively) are key sites where antigen-specific immune responses are orchestrated against inhaled antigens, serving as critical training grounds for adaptive immunity. Many infectious diseases are transmitted via respiratory mucosal sites, highlighting the need for vaccines that can activate resident frontline immune protection in these tissues to block infection. While traditional parenteral vaccines that are injected tend to elicit weak immunity in mucosal tissues, mucosal vaccines (i.e., that are administered intranasally) are capable of eliciting both systemic and mucosal immunity in tandem by initiating immune responses in the MALT. In contrast, administering antigen to mucosal tissues in the absence of adjuvant or costimulatory signals can instead induce antigen-specific tolerance by exploiting regulatory mechanisms inherent to MALT, holding potential for mucosal immunotherapies to treat autoimmunity. Yet despite being well motivated by mucosal biology, development of both mucosal subunit vaccines and immunotherapies has historically been plagued by poor drug delivery across mucosal barriers, resulting in weak efficacy, short-lived responses, and to-date a lack of clinical translation. Development of engineering strategies that can overcome barriers to mucosal delivery are thus critical for translation of mucosal subunit vaccines and immunotherapies. This review covers engineering strategies to enhance mucosal uptake via active targeting and passive transport mechanisms, with a parallel focus on mechanisms of immune activation and regulation in the respiratory mucosa. By combining engineering strategies for enhanced mucosal delivery with a better understanding of immune mechanisms in the NALT and BALT, we hope to illustrate the potential of these mucosal sites as targets for immunomodulation.


Assuntos
Imunidade nas Mucosas , Imunomodulação , Humanos , Animais , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Tecido Linfoide/imunologia , Vacinas/imunologia , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Administração Intranasal
9.
MedComm (2020) ; 5(10): e714, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39286776

RESUMO

The innate immune system serves as the body's first line of defense, utilizing pattern recognition receptors like Toll-like receptors to detect pathogens and initiate rapid response mechanisms. Following this initial response, adaptive immunity provides highly specific and sustained killing of pathogens via B cells, T cells, and antibodies. Traditionally, it has been assumed that innate immunity activates adaptive immunity; however, recent studies have revealed more complex interactions. This review provides a detailed dissection of the composition and function of the innate and adaptive immune systems, emphasizing their synergistic roles in physiological and pathological contexts, providing new insights into the link between these two forms of immunity. Precise regulation of both immune systems at the same time is more beneficial in the fight against immune-related diseases, for example, the cGAS-STING pathway has been found to play an important role in infections and cancers. In addition, this paper summarizes the challenges and future directions in the field of immunity, including the latest single-cell sequencing technologies, CAR-T cell therapy, and immune checkpoint inhibitors. By summarizing these developments, this review aims to enhance our understanding of the complexity interactions between innate and adaptive immunity and provides new perspectives in understanding the immune system.

10.
Cardiovasc Res ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298642

RESUMO

AIMS: Interleukin (IL)-12p40 is a common subunit of the bioactive cytokines IL-12 and IL-23, and it also has its own intrinsic functional activity. However, its role in doxorubicin-induced chronic cardiomyopathy (DICCM) as well as the underlying mechanisms are still unknown. METHODS AND RESULTS: In this study, we used IL-12p40-knockout mice, IL-23p19-knockout mice, Rag1-knockout mice, a ferroptosis inhibitor, recombinant IL-12 (rIL-12), rIL-23, rIL-12p40, rIL-12p80, and anti-IL17A to investigate the effects of IL-12p40 on DICCM and elucidate the underlying mechanisms. We found that myocardial ferroptosis were increased in DICCM and that the inhibition of ferroptosis protected against DICCM. The expression of IL-12p40 was upregulated, and IL-12p40 was predominantly expressed by CD4+ T cells in the hearts of mice with DICCM. IL-12p40 knockout attenuated cardiac dysfunction, fibrosis and ferroptosis in DICCM, and similar results were observed in the context of CD4+ T cell IL-12p40 deficiency in Rag1-/- mice. Treatment with rIL-23, but not rIL-12, rIL-12p40 monomer or rIL-12p80, abolished the protective effects of IL-12p40 knockout. Moreover, rIL-23 treatment and IL-23p19 knockout exacerbated and ameliorated DICCM, respectively. IL-12p40 knockout might protect against DICCM by inhibiting Th17 differentiation and IL-17A production but not Th1, Th2 and Treg differentiation. Neutralizing IL-17A with an antibody also attenuated cardiac dysfunction, fibrosis and ferroptosis. The IL-12p40/Th17/IL-17A axis might promote cardiomyocyte ferroptosis by activating TNF receptor-associated factor 6 (TRAF6)/mitogen-activated protein kinase (MAPK)/P53 signaling in DICCM. CONCLUSIONS: Interleukin-12p40 deficiency protects against DICCM by inhibiting Th17 differentiation and the production of IL-17A, which plays critical roles in cardiomyocyte ferroptosis in DICCM via activating TRAF6/MAPK/P53 signaling. Our study may provide novel insights for the identification of therapeutic targets for treating DICCM in the clinic.

11.
Sci China Life Sci ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39235561

RESUMO

Gut microbiota have been reported to play an important role in the occurrence and development of malignant tumors. Currently, clinical studies have identified specific gut microbiota and its metabolites associated with efficacy of immunotherapy in multiple types of cancers. Preclinical investigations have elucidated that gut microbiota modulate the antitumor immunity and affect the efficacy of cancer immunotherapy. Certain microbiota and its metabolites may favorably remodel the tumor microenvironment by engaging innate and/or adaptive immune cells. Understanding how the gut microbiome interacts with cancer immunotherapy opens new avenues for improving treatment strategies. Fecal microbial transplants, probiotics, dietary interventions, and other strategies targeting the microbiota have shown promise in preclinical studies to enhance the immunotherapy. Ongoing clinical trials are evaluating these approaches. This review presents the recent advancements in understanding the dynamic interplay among the host immunity, the microbiome, and cancer immunotherapy, as well as strategies for modulating the microbiome, with a view to translating into clinical applications.

12.
Int Rev Immunol ; : 1-14, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39262163

RESUMO

The occurrence of incidents involving radiation-combined burn injuries (RCBI) poses a significant risk to public health. Understanding the immunological and physiological responses associated with such injuries is crucial for developing care triage to counter the mortality that occurs due to the synergistic effects of radiation and burn injuries. The core focus of this narrative review lies in unraveling the immune response against RCBI. Langerhans cells, mast cells, keratinocytes, and fibroblasts, which induce innate immunity, have been explored for their response to radiation, burns, and combined injuries. In the case of adaptive immune response, exploring behavioral changes in T regulatory (Treg) cells, T helper cells (Th1, Th2, and Th17), and immunoglobulin results in delayed healing compared to burn and radiation injury. The review also includes the function of complement system components such as neutrophils, acute phase proteins (CRP, C3, and C5), and cytokines for their role in RCBI. Combined insults resulting in a reduction in the cell population of immune cells display variation in response based on radiation doses, burn injury types, and their intrinsic radiosensitivity. The lack of approved countermeasures against RCBI poses a significant challenge. Drug repurposing might help to balance immune cell alteration, resulting in fast recovery and decreasing mortality, which gives it clinical significance for its implication on the site of such incidence. However, the exact immune response in RCBI remains insufficiently explored in pre-clinical and clinical stages, which might be due to the non-availability of in vitro models, standard animal models, or human subjects, warranting further research.


In the realm of public health, RCBI presents significant risks and obstacles. This hazard is quite serious, and it might get worse in the future as evidenced by incidents like nuclear meltdowns and medical mistakes. Diagnosis and treatment become more challenging when serious injuries, particularly burns, are combined with radiation exposure. Features like early shock, poor wound healing, and hematopoietic instability call for advancements in both diagnosis and therapy. Furthermore, the immune system's response to RCBI is complicated and involves changes in cytokine concentrations, immune cell activity, and adaptive immune responses compared to single injuries. Immune cell radiosensitivity varies depending on the type of cell, radiation dose, and length of exposure, so it's important to understand. Repurposing drugs is one of the potential techniques to reduce mortality and speed up healing which are discussed in the manuscript. Still, more research is needed. To effectively tackle RCBI, more investigation into molecular processes, treatment strategy optimization, and information gap closure are essential.

13.
Front Immunol ; 15: 1426173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221256

RESUMO

Artificial-intelligence and machine-learning (AI/ML) approaches to predicting T-cell receptor (TCR)-epitope specificity achieve high performance metrics on test datasets which include sequences that are also part of the training set but fail to generalize to test sets consisting of epitopes and TCRs that are absent from the training set, i.e., are 'unseen' during training of the ML model. We present TCR-H, a supervised classification Support Vector Machines model using physicochemical features trained on the largest dataset available to date using only experimentally validated non-binders as negative datapoints. TCR-H exhibits an area under the curve of the receiver-operator characteristic (AUC of ROC) of 0.87 for epitope 'hard splitting' (i.e., on test sets with all epitopes unseen during ML training), 0.92 for TCR hard splitting and 0.89 for 'strict splitting' in which neither the epitopes nor the TCRs in the test set are seen in the training data. Furthermore, we employ the SHAP (Shapley additive explanations) eXplainable AI (XAI) method for post hoc interrogation to interpret the models trained with different hard splits, shedding light on the key physiochemical features driving model predictions. TCR-H thus represents a significant step towards general applicability and explainability of epitope:TCR specificity prediction.


Assuntos
Epitopos de Linfócito T , Aprendizado de Máquina , Receptores de Antígenos de Linfócitos T , Máquina de Vetores de Suporte , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Epitopos de Linfócito T/imunologia , Humanos , Ligação Proteica , Biologia Computacional/métodos
14.
J Infect Dis ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248523

RESUMO

Evaluating the adaptive immune responses to natural infection with Crimean-Congo hemorrhagic fever (CCHF) virus (CCHFV) in human survivors is critical to the development of medical countermeasures. However, the correlates of protection are unknown. As the most prevalent tick-borne human hemorrhagic fever virus with case fatality rates of 5%-30% and worldwide distribution, there is an urgent need to fill these knowledge gaps. Here, we describe adaptive immune responses in a cohort of Ugandan CCHF survivors via serial sampling over 6 years. We demonstrate persistent antibodies after infection and cross-neutralization against various clades of authentic CCHFV, as well as potent effector function. Moreover, we show for the first time persistent, polyfunctional antigen-specific memory T-cell responses to multiple CCHFV proteins up to 9 years after infection. Together, this data provides immunological benchmarks for evaluating CCHFV medical countermeasures and information that can be leveraged toward vaccine immunogen design and viral target identification for monoclonal antibody therapies.

15.
Immunol Res ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254909

RESUMO

Multiple myeloma (MM) is a malignancy of plasma cells accompanied by immune dysfunction. This study aimed to provide a comprehensive and dynamic characterization of the peripheral immune environment in MM patients and find its diagnostic and prognostic values for therapy. The peripheral immune profiles of MM inpatients and healthy controls were assessed by flow cytometry. A longitudinal study of immune subsets was observed during cycles of chemotherapy. The diagnostic and prognostic models were established based on immune subsets by the absolute shrinkage and selection operator (LASSO) and multivariate regression. MM patients possessed an impeded immune landscape, including reduced activation of B cells, increased effective T cells and regulatory T cells (Tregs), augmented CD16 expression on monocytes and dendritic cell percentages, decreased CD56dimCD16+ natural killer cells (NKs), and amplified CD56bright and HLA-DR+ natural killer T cells (NKTs). Chemotherapy has different dynamic effects on specific cells, of which 2 cycles is the key turning point. NKT, dendritic cells, naïve Tc and Th cells, HLA-DR+ Tc cells, CD56dim NKTs, CD16++ monocytes, and CD25+ B cells could have the diagnostic value, and a prognostic model including neutrophils, naïve Tc cells, CD56brightCD16dim NKs, and CD16+ dendritic cells was established with acceptable accuracy. Our data showed dynamic and abnormal peripheral immune profiles in MM patients, which had prognostic values and could provide the basis for clinical therapy.

16.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(4): 450-459, 2024 Aug 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39183057

RESUMO

Bone remodeling and bone regeneration are essential for preserving skeletal integrity and maintaining mineral homeostasis. T cells, as key members of adaptive immunity, play a pivotal role in bone remodeling and bone regeneration by producing a range of cytokines and growth factors. In the physiological state, T cells are involved in the maintenance of bone homeostasis through interactions with mesenchymal stem cells, osteoblasts, and osteoclasts. In pathological states, T cells participate in the pathological process of different types of osteoporosis through interaction with estrogen, glucocorticoids, and parathyroid hormone. During fracture healing for post-injury repair, T cells play different roles during the inflammatory hematoma phase, the bone callus formation phase and the bone remodeling phase. Targeting T cells thus emerges as a potential strategy for regulating bone homeostasis. This article reviews the research progress on related mechanisms of T cells immunity involved in bone remodeling and bone regeneration, with a view to providing a scientific basis for targeting T cells to regulate bone remodeling and bone regeneration.


Assuntos
Regeneração Óssea , Remodelação Óssea , Linfócitos T , Remodelação Óssea/imunologia , Remodelação Óssea/fisiologia , Humanos , Regeneração Óssea/imunologia , Linfócitos T/imunologia , Animais
17.
JCI Insight ; 9(18)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088277

RESUMO

Rift Valley fever (RVF) is an emerging arboviral disease affecting both humans and livestock. In humans, RVF displays a spectrum of clinical manifestations, including encephalitis. To date, there are no FDA-approved vaccines or therapeutics for human use, although several are in preclinical development. Few small-animal models of RVF encephalitis exist, further complicating countermeasure assessment. Human mAbs RVFV-140, RVFV-268, and RVFV-379 are recombinant potently neutralizing antibodies that prevent infection by binding the RVFV surface glycoproteins. Previous studies showed that both RVFV-268 and RVFV-140 improve survival in a lethal mouse model of disease, and RVFV-268 has prevented vertical transmission in a pregnant rat model of infection. Despite these successes, evaluation of mAbs in the context of brain disease has been limited. This is the first study to our knowledge to assess neutralizing antibodies for prevention of RVF neurologic disease using a rat model. Administration of RVFV-140, RVFV-268, or RVFV-379 24 hours prior to aerosol exposure to the virulent ZH501 strain of RVFV resulted in substantially enhanced survival and lack of neurological signs of disease. These results using a stringent and highly lethal aerosol infection model support the potential use of human mAbs to prevent the development of RVF encephalitis.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Modelos Animais de Doenças , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/prevenção & controle , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Ratos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Humanos , Vírus da Febre do Vale do Rift/imunologia , Anticorpos Antivirais/imunologia , Feminino , Camundongos
18.
Vet Immunol Immunopathol ; 275: 110816, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39173398

RESUMO

CD4+ T cells are an integral component of the adaptive immune response, carrying out many functions to combat a diverse range of pathogenic challenges. These cells exhibit remarkable plasticity, differentiating into specialized subsets such as T helper type 1 (TH1), TH2, TH9, TH17, TH22, regulatory T cells (Tregs), and follicular T helper (TFH) cells. Each subset is capable of addressing a distinct immunological need ranging from pathogen eradication to regulation of immune homeostasis. As the immune response subsides, CD4+ T cells rest down into long-lived memory phenotypes-including central memory (TCM), effector memory (TEM), resident memory (TRM), and terminally differentiated effector memory cells (TEMRA) that are localized to facilitate a swift and potent response upon antigen re-encounter. This capacity for long-term immunological memory and rapid reactivation upon secondary exposure highlights the role CD4+ T cells play in sustaining both adaptive defense mechanisms and maintenance. Decades of mouse, human, and to a lesser extent, pig T cell research has provided the framework for understanding the role of CD4+ T cells in immune responses, but these model systems do not always mimic each other. Although our understanding of pig immunology is not as extensive as mouse or human research, we have gained valuable insight by studying this model. More akin to pigs, our understanding of CD4+ T cells in dogs is much less complete. This disparity exists in part because canine immunologists depend on paradigms from mouse and human studies to characterize CD4+ T cells in dogs, with a fraction of available lineage-defining antibody markers. Despite this, every major CD4+ T cell subset has been described to some extent in dogs. These subsets have been studied in various contexts, including in vitro stimulation, homeostatic conditions, and across a range of disease states. Canine CD4+ T cells have been categorized according to lineage-defining characteristics, trafficking patterns, and what cytokines they produce upon stimulation. This review addresses our current understanding of canine CD4+ T cells from a comparative perspective by highlighting both the similarities and differences from mouse, human, and pig CD4+ T cell biology. We also discuss knowledge gaps in our current understanding of CD4+ T cells in dogs that could provide direction for future studies in the field.


Assuntos
Linfócitos T CD4-Positivos , Diferenciação Celular , Animais , Cães/imunologia , Diferenciação Celular/imunologia , Linfócitos T CD4-Positivos/imunologia , Memória Imunológica , Humanos
19.
Clin Immunol ; 267: 110336, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39117044

RESUMO

INTRODUCTION: Overweight and obesity are linked to increased hospitalization and mortality in COVID-19 patients. This study aimed to characterize induced immune responses and deep immune cell profiles stratified by BMI in hospitalized COVID-19 patients. METHODS AND RESULTS: This observational multicenter cohort pilot study included 122 adult patients with PCR-confirmed COVID-19 in Denmark, stratified by BMI (normal weight, overweight, obese). Inflammation was assessed using TruCulture® and immune cell profiles by flow cytometry with a customized antibody panel (DuraClone®). Patients with obesity had a more pro-inflammatory phenotype with increased TNF-α, IL-8, IL-17, and IL-10 levels post-T cell stimulation, and altered B cell profiles. Patients with obesity showed higher concentrations of naïve, transitional, and non-isotype switched memory B cells, and plasmablasts compared to normal weight patients and healthy controls. CONCLUSIONS: Obesity in hospitalized COVID-19 patients may correlate with elevated pro-inflammatory cytokines, anti-inflammatory IL-10, and increased B cell subset activation, highlighting the need for further studies.


Assuntos
Índice de Massa Corporal , COVID-19 , Citocinas , Obesidade , SARS-CoV-2 , Humanos , COVID-19/imunologia , Masculino , Projetos Piloto , Feminino , Pessoa de Meia-Idade , Obesidade/imunologia , Obesidade/complicações , Idoso , SARS-CoV-2/imunologia , Citocinas/imunologia , Citocinas/sangue , Estudos de Coortes , Adulto , Hospitalização , Dinamarca , Imunofenotipagem , Linfócitos B/imunologia , Sobrepeso/imunologia
20.
Fish Shellfish Immunol ; 153: 109839, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153581

RESUMO

As one of subunits for interleukin-2 receptor (IL-2R), CD122 can bind to IL-2 and then activate downstream signal transduction to participate in adaptive immune response. Although CD122 has been identified and investigated from several teleost species, studies on its function at T-cell level are still scarce for lack of specific antibodies. In this study, a typical CD122 in Nile tilapia (Oreochromis niloticus) was characterized by bioinformatics analysis, cloned to produce retrovirus infected NIH/3T3 cells for mouse immunization. After cell fusion and screening, we successfully developed a mouse anti-tilapia CD122 monoclonal antibody (mAb), which could specifically recognize CD122 and identify CD122-producing T cells of tilapia. Using the mAb to detect, CD122 was found to widely distribute in immune-related tissues, and significantly elevate post Edwardsiella piscicida infection or T-cell activation. More importantly, the expansion of CD122+ T cells and up-regulation of CD122 occurred both in total T cells and T-cell subsets during T-cell activation upon in vitro stimulation or in vivo infection. These results indicate that CD122 can be used as a T-cell activation marker in tilapia. Notably, CD122 mAb blocking blunted the activation of MAPK/Erk and mTORC1 pathways, and inhibited T-cell proliferation, suggesting a critical role of CD122 in ensuring proper proliferation of tilapia T cells. Therefore, this study enriches the knowledge of T-cell responses in fish and provides new evidence for understanding the evolution of lymphocyte-mediated adaptive immunity.


Assuntos
Ciclídeos , Doenças dos Peixes , Proteínas de Peixes , Subunidade beta de Receptor de Interleucina-2 , Linfócitos T , Animais , Ciclídeos/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Linfócitos T/imunologia , Subunidade beta de Receptor de Interleucina-2/imunologia , Subunidade beta de Receptor de Interleucina-2/genética , Ativação Linfocitária , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Proliferação de Células/efeitos dos fármacos , Filogenia , Camundongos , Sequência de Aminoácidos , Alinhamento de Sequência/veterinária , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA