Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
J Comput Aided Mol Des ; 38(1): 25, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39014124

RESUMO

Adenosine deaminases acting on RNA (ADARs) are pivotal RNA-editing enzymes responsible for converting adenosine to inosine within double-stranded RNA (dsRNA). Dysregulation of ADAR1 editing activity, often arising from genetic mutations, has been linked to elevated interferon levels and the onset of autoinflammatory diseases. However, understanding the molecular underpinnings of this dysregulation is impeded by the lack of an experimentally determined structure for the ADAR1 deaminase domain. In this computational study, we utilized homology modeling and the AlphaFold2 to construct structural models of the ADAR1 deaminase domain in wild-type and two pathogenic variants, R892H and Y1112F, to decipher the structural impact on the reduced deaminase activity. Our findings illuminate the critical role of structural complementarity between the ADAR1 deaminase domain and dsRNA in enzyme-substrate recognition. That is, the relative position of E1008 and K1120 must be maintained so that they can insert into the minor and major grooves of the substrate dsRNA, respectively, facilitating the flipping-out of adenosine to be accommodated within a cavity surrounding E912. Both amino acid replacements studied, R892H at the orthosteric site and Y1112F at the allosteric site, alter K1120 position and ultimately hinder substrate RNA binding.


Assuntos
Adenosina Desaminase , Simulação de Dinâmica Molecular , Proteínas de Ligação a RNA , Adenosina Desaminase/química , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Humanos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Mutação , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/genética , Conformação Proteica , Edição de RNA
2.
Trends Cell Biol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39030076

RESUMO

Adenosine deaminase acting on RNA 1 (ADAR1) converts adenosine to inosine in double-stranded RNA (dsRNA) molecules, a process known as A-to-I editing. ADAR1 deficiency in humans and mice results in profound inflammatory diseases characterised by the spontaneous induction of innate immunity. In cells lacking ADAR1, unedited RNAs activate RNA sensors. These include melanoma differentiation-associated gene 5 (MDA5) that induces the expression of cytokines, particularly type I interferons (IFNs), protein kinase R (PKR), oligoadenylate synthase (OAS), and Z-DNA/RNA binding protein 1 (ZBP1). Immunogenic RNAs 'defused' by ADAR1 may include transcripts from repetitive elements and other long duplex RNAs. Here, we review these recent fundamental discoveries and discuss implications for human diseases. Some tumours depend on ADAR1 to escape immune surveillance, opening the possibility of unleashing anticancer therapies with ADAR1 inhibitors.

3.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000531

RESUMO

Epitranscriptomics is a field that delves into post-transcriptional changes. Among these modifications, the conversion of adenosine to inosine, traduced as guanosine (A>I(G)), is one of the known RNA-editing mechanisms, catalyzed by ADARs. This type of RNA editing is the most common type of editing in mammals and contributes to biological diversity. Disruption in the A>I(G) RNA-editing balance has been linked to diseases, including several types of cancer. Drug resistance in patients with cancer represents a significant public health concern, contributing to increased mortality rates resulting from therapy non-responsiveness and disease progression, representing the greatest challenge for researchers in this field. The A>I(G) RNA editing is involved in several mechanisms over the immunotherapy and genotoxic drug response and drug resistance. This review investigates the relationship between ADAR1 and specific A>I(G) RNA-edited sites, focusing particularly on breast cancer, and the impact of these sites on DNA damage repair and the immune response over anti-cancer therapy. We address the underlying mechanisms, bioinformatics, and in vitro strategies for the identification and validation of A>I(G) RNA-edited sites. We gathered databases related to A>I(G) RNA editing and cancer and discussed the potential clinical and research implications of understanding A>I(G) RNA-editing patterns. Understanding the intricate role of ADAR1-mediated A>I(G) RNA editing in breast cancer holds significant promise for the development of personalized treatment approaches tailored to individual patients' A>I(G) RNA-editing profiles.


Assuntos
Adenosina Desaminase , Neoplasias da Mama , Edição de RNA , Proteínas de Ligação a RNA , Humanos , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Feminino , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Adenosina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Inosina/metabolismo , Inosina/genética , Animais , Guanosina/metabolismo , Dano ao DNA
4.
Cell Biol Toxicol ; 40(1): 57, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39060787

RESUMO

It is well established that sevoflurane exposure leads to widespread neuronal cell death in the developing brain. Adenosine deaminase acting on RNA-1 (ADAR1) dependent adenosine-to-inosine (A-to-I) RNA editing is dynamically regulated throughout brain development. The current investigation is designed to interrogate the contributed role of ADAR1 in developmental sevoflurane neurotoxicity. Herein, we provide evidence to show that developmental sevoflurane priming triggers neuronal pyroptosis, apoptosis and necroptosis (PANoptosis), and elicits the release of inflammatory factors including IL-1ß, IL-18, TNF-α and IFN-γ. Additionally, ADAR1-P150, but not ADAR1-P110, depresses cellular PANoptosis and inflammatory response by competing with Z-DNA/RNA binding protein 1 (ZBP1) for binding to Z-RNA in the presence of sevoflurane. Further investigation demonstrates that ADAR1-dependent A-to-I RNA editing mitigates developmental sevoflurane-induced neuronal PANoptosis. To restore RNA editing, we utilize adeno-associated virus (AAV) to deliver engineered circular ADAR-recruiting guide RNAs (cadRNAs) into cells, which is capable of recruiting endogenous adenosine deaminases to promote cellular A-to-I RNA editing. As anticipated, AAV-cadRNAs diminishes sevoflurane-induced cellular Z-RNA production and PANoptosis, which could be abolished by ADAR1-P150 shRNA transfection. Moreover, AAV-cadRNAs delivery ameliorates developmental sevoflurane-induced spatial and emotional cognitive deficits without influence on locomotor activity. Taken together, these results illustrate that ADAR1-P150 exhibits a prominent role in preventing ZBP1-dependent PANoptosis through A-to-I RNA editing in developmental sevoflurane neurotoxicity. Application of engineered cadRNAs to rectify the compromised ADAR1-dependent A-to-I RNA editing provides an inspiring direction for possible clinical preventions and therapeutics.


Assuntos
Adenosina Desaminase , Adenosina , Edição de RNA , Proteínas de Ligação a RNA , Sevoflurano , Animais , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Apoptose/efeitos dos fármacos , Inosina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/metabolismo , Piroptose/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
5.
RNA ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844344

RESUMO

In recent years, numerous evidence has been accumulated about the extent of A-to-I editing in human RNAs and the key role ADAR1 plays in the cellular editing machinery. It has been shown that A-to-I editing occurrence and frequency are tissue specific and essential for some tissue development, such as liver. To study the effect of ADAR1 function in hepatocytes, we have created Huh7.5 ADAR1 KO cell lines. Upon IFN treatment, the Huh7.5 ADAR1 KO cells show rapid arrest of growth and translation, from which they do not recover. We analyzed translatome changes by employing a method based on sequencing of separate polysome profile RNA fractions. We found significant changes in transcriptome and translatome of the Huh7.5 ADAR1 KO cells. The most prominent changes include negatively affected transcription by RNA polymerase III and the deregulation of snoRNA and Y RNA levels. Furthermore, we observed that ADAR1 KO polysomes are enriched in mRNAs coding for proteins pivotal in a wide range of biological processes such as RNA localization and RNA processing, whereas the unbound fraction is enriched mainly in mRNAs coding for ribosomal proteins and translational factors. This indicates that ADAR1 plays more relevant role in small RNA metabolism and ribosome biogenesis.

6.
BMC Biol ; 22(1): 132, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835016

RESUMO

BACKGROUND: ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, is thought to play a significant role both in tumor suppression and tumor initiation, which is highly dependent upon context. Previous studies have suggested that ARID1A deficiency may contribute to cancer development. The specific mechanisms of whether ARID1A loss affects tumorigenesis by RNA editing remain unclear. RESULTS: Our findings indicate that the deficiency of ARID1A leads to an increase in RNA editing levels and alterations in RNA editing categories mediated by adenosine deaminases acting on RNA 1 (ADAR1). ADAR1 edits the CDK13 gene at two previously unidentified sites, namely Q113R and K117R. Given the crucial role of CDK13 as a cyclin-dependent kinase, we further observed that ADAR1 deficiency results in changes in the cell cycle. Importantly, the sensitivity of ARID1A-deficient tumor cells to SR-4835, a CDK12/CDK13 inhibitor, suggests a promising therapeutic approach for individuals with ARID1A-mutant tumors. Knockdown of ADAR1 restored the sensitivity of ARID1A deficient cells to SR-4835 treatment. CONCLUSIONS: ARID1A deficiency promotes RNA editing of CDK13 by regulating ADAR1.


Assuntos
Adenosina Desaminase , Quinases Ciclina-Dependentes , Proteínas de Ligação a DNA , Edição de RNA , Proteínas de Ligação a RNA , Fatores de Transcrição , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Linhagem Celular Tumoral , Proteína Quinase CDC2
7.
Viruses ; 16(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38932237

RESUMO

The genomes of positive-sense (+) single-stranded RNA (ssRNA) viruses are believed to be subjected to a wide range of RNA modifications. In this study, we focused on the chikungunya virus (CHIKV) as a model (+) ssRNA virus to study the landscape of viral RNA modification in infected human cells. Among the 32 distinct RNA modifications analysed by mass spectrometry, inosine was found enriched in the genomic CHIKV RNA. However, orthogonal validation by Illumina RNA-seq analyses did not identify any inosine modification along the CHIKV RNA genome. Moreover, CHIKV infection did not alter the expression of ADAR1 isoforms, the enzymes that catalyse the adenosine to inosine conversion. Together, this study highlights the importance of a multidisciplinary approach to assess the presence of RNA modifications in viral RNA genomes.


Assuntos
Vírus Chikungunya , Genoma Viral , Processamento Pós-Transcricional do RNA , RNA Viral , Transcriptoma , Vírus Chikungunya/genética , Humanos , RNA Viral/genética , RNA Viral/metabolismo , Febre de Chikungunya/virologia , Inosina/metabolismo , Inosina/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Adenosina/metabolismo , Adenosina Desaminase
8.
J Biol Chem ; 300(8): 107504, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944123

RESUMO

Z-nucleic acid structures play vital roles in cellular processes and have implications in innate immunity due to their recognition by Zα domains containing proteins (Z-DNA/Z-RNA binding proteins, ZBPs). Although Zα domains have been identified in six proteins, including viral E3L, ORF112, and I73R, as well as, cellular ADAR1, ZBP1, and PKZ, their prevalence across living organisms remains largely unexplored. In this study, we introduce a computational approach to predict Zα domains, leading to the revelation of previously unidentified Zα domain-containing proteins in eukaryotic organisms, including non-metazoan species. Our findings encompass the discovery of new ZBPs in previously unexplored giant viruses, members of the Nucleocytoviricota phylum. Through experimental validation, we confirm the Zα functionality of select proteins, establishing their capability to induce the B-to-Z conversion. Additionally, we identify Zα-like domains within bacterial proteins. While these domains share certain features with Zα domains, they lack the ability to bind to Z-nucleic acids or facilitate the B-to-Z DNA conversion. Our findings significantly expand the ZBP family across a wide spectrum of organisms and raise intriguing questions about the evolutionary origins of Zα-containing proteins. Moreover, our study offers fresh perspectives on the functional significance of Zα domains in virus sensing and innate immunity and opens avenues for exploring hitherto undiscovered functions of ZBPs.

9.
Cell Rep ; 43(7): 114400, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38935501

RESUMO

ADAR1-mediated RNA editing establishes immune tolerance to endogenous double-stranded RNA (dsRNA) by preventing its sensing, primarily by MDA5. Although deleting Ifih1 (encoding MDA5) rescues embryonic lethality in ADAR1-deficient mice, they still experience early postnatal death, and removing other MDA5 signaling proteins does not yield the same rescue. Here, we show that ablation of MDA5 in a liver-specific Adar knockout (KO) murine model fails to rescue hepatic abnormalities caused by ADAR1 loss. Ifih1;Adar double KO (dKO) hepatocytes accumulate endogenous dsRNAs, leading to aberrant transition to a highly inflammatory state and recruitment of macrophages into dKO livers. Mechanistically, progranulin (PGRN) appears to mediate ADAR1 deficiency-induced liver pathology, promoting interferon signaling and attracting epidermal growth factor receptor (EGFR)+ macrophages into dKO liver, exacerbating hepatic inflammation. Notably, the PGRN-EGFR crosstalk communication and consequent immune responses are significantly repressed in ADAR1high tumors, revealing that pre-neoplastic or neoplastic cells can exploit ADAR1-dependent immune tolerance to facilitate immune evasion.


Assuntos
Adenosina Desaminase , Receptores ErbB , Hepatócitos , Helicase IFIH1 Induzida por Interferon , Fígado , Macrófagos , Camundongos Knockout , Progranulinas , Animais , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Receptores ErbB/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Progranulinas/metabolismo , Progranulinas/genética , Fígado/metabolismo , Fígado/imunologia , Fígado/patologia , Hepatócitos/metabolismo , Camundongos , Helicase IFIH1 Induzida por Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Transdução de Sinais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos Endogâmicos C57BL , RNA de Cadeia Dupla/metabolismo , Edição de RNA
10.
Cell Signal ; 121: 111258, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38866351

RESUMO

Adenosine deaminases acting on RNA 1(ADAR1), an RNA editing enzyme that converts adenosine to inosine by deamination in double-stranded RNAs, plays an important role in occurrence and progression of various types of cancer. Ferroptosis has emerged as a hot topic of cancer research in recent years. We have previously reported that ADAR1 promotes breast cancer progression by regulating miR-335-5p and METTL3. However, whether ADAR1 has effects on ferroptosis in breast cancer cells is largely unknown. In this study, we knocked down ADAR1 using CRISPR-Cas9 technology or over-expressed ADAR1 protein using plasmid expressing ADAR1 in MCF-7 and MDA-MB-231 breast cancer cell lines, then detected cell viability, and levels of ROS, MDA, GSH, Fe2+, GPX4 protein and miR-335-5p. We showed that the cell proliferation was inhibited, levels of ROS, MDA, Fe2+, and miR-335-5p were increased, while GSH and GPX4 levels were decreased after loss of ADAR1, compared to the control group. The opposite effects were observed after ADAR1 overexpression in the cells. Further, we demonstrated that ADAR1-controlled miR-335-5p targeted Sp1 transcription factor of GPX4, a known ferroptosis molecular marker, leading to inhibition of ferroptosis by ADAR1 in breast cancer cells. Moreover, RNA editing activity of ADAR1 is not essential for inducing ferroptosis. Collectively, loss of ADAR1 induces ferroptosis in breast cancer cells by regulating miR-335-5p/Sp1/GPX4 pathway. The findings may provide insights into the mechanism by which ADAR1 promotes breast cancer progression via inhibiting ferroptosis.


Assuntos
Adenosina Desaminase , Neoplasias da Mama , Ferroptose , Proteínas de Ligação a RNA , Ferroptose/genética , Humanos , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Proliferação de Células , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Regulação Neoplásica da Expressão Gênica
11.
Int Immunopharmacol ; 134: 112177, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696908

RESUMO

BACKGROUND: Ferroptosis, characterized by excessive iron ions and lipid peroxides accumulation, contributes to Nonalcoholic Fatty Liver Disease (NAFLD) development. The role of ADAR1, crucial for lipid metabolism and immune regulation, in ferroptosis-related NAFLD remains unexplored. METHODS: In this study, we analyzed the expression of ADAR1 in NAFLD patients using the GSE66676 database. Subsequently, We investigated the effects of ADAR1 knockdown on mitochondrial membrane potential (MMP), Fe2+ levels, oxidation products, and ferroptosis in NAFLD cells through in vitro and in vivo experiments. Additionally, RNA-seq analysis was performed following ADAR1 depletion in an NAFLD cell model. Overlapping and ferroptosis-related genes were identified using a Venn diagram, while Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted as well. Furthermore, a protein-protein interaction (PPI) network was constructed to identify hub genes associated with ferroptosis. RESULTS: We found the expression level of ADAR1 was downregulated in NAFLD patients and 22 ferroptosis-associated genes were differentially expressed in a NAFLD cell model upon ADAR1 knockdown. Based on PPI network, we identified NOS2, PTGS2, NOX4, ALB, IL6, and CCL5 as the central genes related to ferroptosis. ADAR1 deletion-related NAFLD was found to be involved in the ferroptosis signaling pathway. NOS2, PTGS2, ALB, and IL6 can serve as potential biomarkers. These findings offer new insights and expanded targets for NAFLD prevention and treatment. CONCLUSION: These findings provide new strategies and potential targets for preventing and treating NAFLD. NOS2, PTGS2, ALB, and IL6 may serve as biomarkers for ADAR1 deletion-related NAFLD, which could help for developing its new diagnostic and therapeutic strategies.


Assuntos
Adenosina Desaminase , Ferroptose , Hepatopatia Gordurosa não Alcoólica , Proteínas de Ligação a RNA , Ferroptose/genética , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Camundongos , RNA-Seq , Masculino , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas
12.
Placenta ; 153: 53-58, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38820942

RESUMO

INTRODUCTION: Chorioamnionitis (CAM) involves infection and inflammation of the chorion and amniotic membrane, but there are still no effective diagnostic biomarkers for CAM. METHODS: We investigated the correlation between RNA editing enzyme Adenosine deaminase family acting on RNA 1 (ADAR1) and CAM in chorion and amniotic membrane specimens derived from premature rupture of the membrane (PROM), CAM (pathologically diagnosed), and clinical CAM (clinically diagnosed) patients using reverse transcription polymerase chain reaction (RT-PCR). RESULTS: ADAR1 was upregulated in the chorion and amniotic membrane specimens of CAM and clinical CAM patients (p < 0.001 and p = 0.005). ADAR1 had a significantly higher area under the curve (AUC) (0.735 and 0.828) than markers of inflammation characteristics in diagnosing CAM and clinical CAM patients. ADAR1 also had significantly higher AUC (0.701 and 0.837) than clinical characteristics for CAM and clinical CAM patients. DISCUSSION: ADAR1 can be a useful diagnostic biomarker in CAM patients.


Assuntos
Adenosina Desaminase , Biomarcadores , Corioamnionite , Proteínas de Ligação a RNA , Humanos , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Feminino , Gravidez , Corioamnionite/diagnóstico , Adulto , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Ruptura Prematura de Membranas Fetais/diagnóstico , Ruptura Prematura de Membranas Fetais/metabolismo
13.
Biomedicines ; 12(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38672084

RESUMO

Dysregulated A>I(G) RNA editing, which is mainly catalyzed by ADAR1 and is a type of post-transcriptional modification, has been linked to cancer. A low response to therapy in breast cancer (BC) is a significant contributor to mortality. However, it remains unclear if there is an association between A>I(G) RNA-edited sites and sensitivity to genotoxic drugs. To address this issue, we employed a stringent bioinformatics approach to identify differentially RNA-edited sites (DESs) associated with low or high sensitivity (FDR 0.1, log2 fold change 2.5) according to the IC50 of PARP inhibitors, anthracyclines, and alkylating agents using WGS/RNA-seq data in BC cell lines. We then validated these findings in patients with basal subtype BC. These DESs are mainly located in non-coding regions, but a lesser proportion in coding regions showed predicted deleterious consequences. Notably, some of these DESs are previously reported as oncogenic variants, and in genes related to DNA damage repair, drug metabolism, gene regulation, the cell cycle, and immune response. In patients with BC, we uncovered DESs predominantly in immune response genes, and a subset with a significant association (log-rank test p < 0.05) between RNA editing level in LSR, SMPDL3B, HTRA4, and LL22NC03-80A10.6 genes, and progression-free survival. Our findings provide a landscape of RNA-edited sites that may be involved in drug response mechanisms, highlighting the value of A>I(G) RNA editing in clinical outcomes for BC.

14.
Animals (Basel) ; 14(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38672349

RESUMO

Recent research has identified ADAR1 as a participant in the regulation of lipid accumulation in mice. However, there are no reports on the roles of ADAR1 in proliferation, apoptosis and differentiation of porcine preadipocytes. In this study, we investigated the role of ADAR1 in differentiation, proliferation and apoptosis of porcine preadipocytes using CCK-8, EdU staining, cell cycle detection, RT-qPCR, Western blot, a triglyceride assay and Oil Red O staining. The over-expression of ADAR1 significantly promoted proliferation but inhibited the differentiation and apoptosis of porcine preadipocytes. The inhibition of ADAR1 had the opposite effect on the proliferation, differentiation and apoptosis of porcine preadipocytes with over-expressed ADAR1. Then, the regulation mechanisms of ADAR1 on preadipocyte proliferation were identified using RNA-seq, and 197 DEGs in response to ADAR1 knockdown were identified. The MAPK signaling pathway is significantly enriched, indicating its importance in mediating fat accumulation regulated by ADAR1. The study's findings will aid in uncovering the mechanisms that regulate fat accumulation through ADAR1.

15.
Exp Hematol Oncol ; 13(1): 30, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468359

RESUMO

BACKGROUND: A-to-I RNA editing is an abundant post-transcriptional modification event in hepatocellular carcinoma (HCC). Evidence suggests that adenosine deaminases acting on RNA 1 (ADAR1) correlates to oxidative stress that is a crucial factor of HCC pathogenesis. The present study investigated the effect of ADAR1 on survival and oxidative stress of HCC, and underlying mechanisms. METHODS: ADAR1 expression was measured in fifty HCC and normal tissues via real-time quantitative PCR, and immunohistochemistry. For stable knockdown or overexpression of ADAR1, adeno-associated virus vectors carrying sh-ADAR1 or ADAR1 overexpression were transfected into HepG2 and SMMC-7721 cells. Transfected cells were exposed to oxidative stress agonist tBHP or sorafenib Bay 43-9006. Cell proliferation, apoptosis, and oxidative stress were measured, and tumor xenograft experiment was implemented. RESULTS: ADAR1 was up-regulated in HCC and correlated to unfavorable clinical outcomes. ADAR1 deficiency attenuated proliferation of HCC cells and tumor growth and enhanced apoptosis. Moreover, its loss facilitated intracellular ROS accumulation, and elevated Keap1 and lowered Nrf2 expression. Intracellular GSH content and SOD activity were decreased and MDA content was increased in the absence of ADAR1. The opposite results were observed when ADAR1 was overexpressed. The effects of tBHP and Bay 43-9006 on survival, apoptosis, intracellular ROS accumulation, and Keap1/Nrf2 pathway were further exacerbated by simultaneous inhibition of ADAR1. CONCLUSIONS: The current study unveils that ADAR1 is required for survival and oxidative stress of HCC cells, and targeting ADAR1 may sensitize HCC cells to oxidative stress via modulating Keap1/Nrf2 pathway.

16.
RNA ; 30(5): 500-511, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38531645

RESUMO

Innate immunity must be tightly regulated to enable sensitive pathogen detection while averting autoimmunity triggered by pathogen-like host molecules. A hallmark of viral infection, double-stranded RNAs (dsRNAs) are also abundantly encoded in mammalian genomes, necessitating surveillance mechanisms to distinguish "self" from "nonself." ADAR1, an RNA editing enzyme, has emerged as an essential safeguard against dsRNA-induced autoimmunity. By converting adenosines to inosines (A-to-I) in long dsRNAs, ADAR1 covalently marks endogenous dsRNAs, thereby blocking the activation of the cytoplasmic dsRNA sensor MDA5. Moreover, beyond its editing function, ADAR1 binding to dsRNA impedes the activation of innate immune sensors PKR and ZBP1. Recent landmark studies underscore the utility of silencing ADAR1 for cancer immunotherapy, by exploiting the ADAR1-dependence developed by certain tumors to unleash an antitumor immune response. In this perspective, we summarize the genetic and mechanistic evidence for ADAR1's multipronged role in suppressing dsRNA-mediated autoimmunity and explore the evolving roles of ADAR1 as an immuno-oncology target.


Assuntos
Adenosina Desaminase , Edição de RNA , Animais , Adenosina Desaminase/metabolismo , Imunidade Inata/genética , Helicase IFIH1 Induzida por Interferon/genética , Mamíferos/genética , RNA de Cadeia Dupla/genética , Humanos
17.
FASEB J ; 38(5): e23515, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38470367

RESUMO

Endometriosis is a benign gynecological disease that shares some common features of malignancy. Autophagy plays vital roles in endometriosis and influences endometrial cell metastasis, and hypoxia was identified as the initiator of this pathological process through hypoxia inducible factor 1 alpha (HIF-1α). A newly discovered circular RNA FOXO3 (circFOXO3) is critical in cell autophagy, migration, and invasion of various diseases and is reported to be related to hypoxia, although its role in endometriosis remains to be elucidated up to now. In this study, a lower circFOXO3 expression in ectopic endometrium was investigated. Furthermore, we verified that circFOXO3 could regulate autophagy by downregulating the level of p53 protein to mediate the migration and invasion of human endometrial stromal cells (T HESCs). Additionally, the effects of HIF-1α on circFOXO3 and autophagy were examined in T HESCs. Notably, overexpression of HIF-1α could induce autophagy and inhibit circFOXO3 expression, whereas overexpressing of circFOXO3 under hypoxia significantly inhibited hypoxia-induced autophagy. Mechanistically, the direct combination between HIF-1α and HIF-1α-binding site on adenosine deaminase 1 acting on RNA (ADAR1) promoter increased the level of ADAR1 protein, which bind directly with circFOXO3 pre-mRNA to block the cyclization of circFOXO3. All these results support that hypoxia-mediated ADAR1 elevation inhibited the expression of circFOXO3, and then autophagy was induced upon loss of circFOXO3 via inhibition of p53 degradation, participating in the development of endometriosis.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/genética , Proteína Supressora de Tumor p53 , RNA , RNA Circular/genética , Autofagia , Hipóxia
18.
J Clin Transl Hepatol ; 12(2): 134-150, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38343614

RESUMO

Background and Aims: As sepsis progresses, immune cell apoptosis plays regulatory roles in the pathogenesis of immunosuppression and organ failure. We previously reported that adenosine deaminases acting on RNA-1 (ADAR1) reduced intestinal and splenic inflammatory damage during sepsis. However, the roles and mechanism of ADAR1 in sepsis-induced liver injury remain unclear. Methods: We performed transcriptome and single-cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) from patients with sepsis to investigate the effects of ADAR1 on immune cell activities. We also employed a cecal ligation and puncture (CLP) sepsis mouse model to evaluate the roles of ADAR1 in sepsis-induced liver injury. Finally, we treated murine RAW 264.7 macrophages with lipopolysaccharide to explore the underlying ADAR1-mediated mechanisms in sepsis. Results: PBMCs from patients with sepsis had obvious apoptotic morphological features. Single-cell RNA sequencing indicated that apoptosis-related pathways were enriched in monocytes, with significantly elevated ADAR1 and BCL2A1 expression in severe sepsis. CLP-induced septic mice had aggravated liver injury and Kupffer cell apoptosis that were largely alleviated by ADAR1 overexpression. ADAR1 directly bound to pre-miR-122 to modulate miR-122 biosynthesis. miR-122 was an upstream regulator of BCL2A1. Furthermore, ADAR1 also reduced macrophage apoptosis in mice with CLP-induced sepsis through the miR-122/BCL2A1 signaling pathway and protected against sepsis-induced liver injury. Conclusions: The findings show that ADAR1 alleviates macrophage apoptosis and sepsis-induced liver damage through the miR-122/BCL2A1 signaling pathway. The study provides novel insights into the development of therapeutic interventions in sepsis.

19.
In Vivo ; 38(2): 683-690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38418109

RESUMO

BACKGROUND/AIM: Adenosine deaminase family acting on RNA 1 (ADAR1) expression was examined to determine its correlation with endometriosis. The biological functions and inhibitory effects of ADAR1 knockdown were investigated in a human endometriotic cell line. MATERIALS AND METHODS: ADAR1 was examined in patients with and without endometriosis using reverse transcription polymerase chain reaction (RT-PCR), and the apoptotic expression of ADAR1 small interfering RNA (siRNA) was confirmed using flow cytometry. The biological functions and inhibitory effects of ADAR1 knockdown were investigated using RT-PCR in a 12Z immortalized human endometriotic cell line. RESULTS: ADAR1 expression was significantly higher in patients with endometriosis than in those without (p<0.001). ADAR1 siRNA increased early and late apoptosis, compared to the mock (24.83%) and control (19.96%) cells. ADAR1 knockdown led to apoptosis through MDA5, RIG-I, IRF3, IRF7, caspase 3, caspase 7, and caspase 8 expression in the cell lines. CONCLUSION: ADAR1 is a potential novel therapeutic target in endometriosis.


Assuntos
Adenosina Desaminase , Endometriose , Feminino , Humanos , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Endometriose/genética , Linhagem Celular , RNA Interferente Pequeno/genética , Caspase 3
20.
Exp Dermatol ; 33(2): e15031, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38375898

RESUMO

The pathogenesis of dyschromatosis symmetrica hereditaria (DSH) has not been well defined. In this study, we sought to investigate the influence of the ADAR1 gene on DSH both in vitro and in vivo. Morpholino knockdown of adar1 in zebrafish produced phenotypes characterized by polarity changes, and abnormal migration and distribution of melanocytes. Differential expression of C-KIT and distinct patterns of apoptosis between hyperpigmented and hypopigmented areas in DSH patient were detected by means of immunohistochemical methods and TUNEL assays, respectively. This study revealed that adar1 knockdown in a zebrafish model resulted in abnormal migration and changes in the cell polarity of melanocytes, and provided novel insight into the mechanism of DSH pathogenesis.


Assuntos
Adenosina Desaminase , Transtornos da Pigmentação , Proteínas de Ligação a RNA , Peixe-Zebra , Animais , Humanos , Adenosina Desaminase/genética , Mutação , Linhagem , Transtornos da Pigmentação/congênito , Proteínas de Ligação a RNA/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA