Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.632
Filtrar
1.
ChemistryOpen ; : e202400108, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989712

RESUMO

This review introduces the synthetic organic chemical value of α-bromocarbonyl compounds with tertiary carbons. This α-bromocarbonyl compound with a tertiary carbon has been used primarily only as a radical initiator in atom transfer radical polymerization (ATRP) reactions. However, with the recent development of photo-radical reactions (around 2010), research on the use of α-bromocarbonyl compounds as tertiary alkyl radical precursors became popular (around 2012). As more examples were reported, α-bromocarbonyl compounds were studied not only as radicals but also for their applications in organometallic and ionic reactions. That is, α-bromocarbonyl compounds act as nucleophiles as well as electrophiles. The carbonyl group of α-bromocarbonyl compounds is also attractive because it allows the skeleton to be converted after the reaction, and it is being applied to total synthesis. In our survey until 2022, α-bromocarbonyl compounds can be used to perform a full range of reactions necessary for organic synthesis, including multi-component reactions, cross-coupling, substitution, cyclization, rearrangement, stereospecific reactions, asymmetric reactions. α-Bromocarbonyl compounds have created a new trend in tertiary alkylation, which until then had limited reaction patterns in organic synthesis. This review focuses on how α-bromocarbonyl compounds can be used in synthetic organic chemistry.

2.
Mol Ther ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38981468

RESUMO

Recombinant adeno-associated virus (rAAV) vector gene delivery systems have demonstrated great promise in clinical trials but continue to face durability and dose-related challenges. Unlike rAAV gene therapy, integrating gene addition approaches can provide curative expression in mitotically active cells and pediatric populations. We explored a novel in vivo delivery approach based on an engineered transposase, Sleeping Beauty (SB100X), delivered as an mRNA within a lipid nanoparticle (LNP), in combination with an rAAV-delivered transposable transgene. This combinatorial approach achieved correction of ornithine transcarbamylase deficiency in the neonatal Spfash mouse model following a single delivery to dividing hepatocytes in the newborn liver. Correction remained stable into adulthood, while a conventional rAAV approach resulted in a return to the disease state. In non-human primates, integration by transposition, mediated by this technology, improved gene expression 10-fold over conventional rAAV-mediated gene transfer while requiring 5-fold less vector. Additionally, integration site analysis confirmed a random profile while specifically targeting TA dinucleotides across the genome. Together, these findings demonstrate that transposable elements can improve rAAV-delivered therapies by lowering the vector dose requirement and associated toxicity while expanding target cell types.

3.
J Control Release ; 373: 117-127, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38968970

RESUMO

Glucose has been extensively studied as a targeting ligand on nanoparticles for biomedical nanoparticles. A promising nanocarrier platform are single-chain polymer nanoparticles (SCNPs). SCNPs are well-defined 5-20 nm semi-flexible nano-objects, formed by intramolecularly crosslinked linear polymers. Functionality can be incorporated by introducing labile pentafluorophenyl (PFP) esters in the polymer backbone, which can be readily substituted by functional amine-ligands. However, not all ligands are compatible with PFP-chemistry, requiring different ligation strategies for increasing versatility of surface functionalization. Here, we combine active PFP-ester chemistry with copper(I)-catalyzed azide alkyne cycloaddition (CuAAC) click chemistry to yield dual-reactive SCNPs. First, the SCNPs are functionalized with increasing amounts of 1-amino-3-butyne groups through PFP-chemistry, leading to a range of butyne-SCNPs with increasing terminal alkyne-density. Subsequently, 3-azido-propylglucose is conjugated through the glucose C1- or C6-position by CuAAC click chemistry, yielding two sets of glyco-SCNPs. Cellular uptake is evaluated in HeLa cancer cells, revealing increased uptake upon higher glucose-surface density, with no apparent positional dependance. The general conjugation strategy proposed here can be readily extended to incorporate a wide variety of functional molecules to create vast libraries of multifunctional SCNPs.

4.
Plants (Basel) ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38999605

RESUMO

A community functional structure may respond to environmental changes such as nitrogen (N) enrichment by altering intraspecific and interspecific trait variations. However, the relative contributions of both components in determining the community response to N enrichment are unclear. In this study, we measured the plant height (H), leaf area (LA), leaf dry matter content (LDMC), and specific leaf area (SLA) based on a nine-year N addition gradient experiment in an alpine meadow on the Tibetan Plateau. We examined the intraspecific and interspecific variations within and among the communities, the responses of traits in terms of community weighted mean (CWM) and non-weighted mean (CM) to N addition, and the effects of these trait variations on aboveground net primary productivity (ANPP). Our results show that N addition increased the interspecific variation in H while decreasing that of LA within the community, whereas it had no significant effects on the intraspecific variations in the four traits within the community. In contrast, N addition significantly increased the intraspecific variation in H and decreased that of LA among the communities. Moreover, the contribution of intraspecific variation was greater than that of the interspecific variation in terms of CWM for all traits, while the opposite contribution was observed in terms of CM, suggesting that the dominant species would have greater resilience while subdominant species would become less resistant to N addition. Further, intraspecific variations of LA and LDMC within the community played an important role in explaining community productivity. Our results highlight the importance of both intraspecific and interspecific variations in mediating functional trait responses to N enrichment, and intraspecific variation within the communities has important implications for community functioning that should be considered to better understand and predict the responses of the alpine grasslands to N enrichment.

5.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000025

RESUMO

3,4-disubstituted maleimides find wide applications in various pharmacologically active compounds. This study presents a highly effective approach for synthesizing derivatives of 3,4-disubstituted maleimides through the direct isomerization of α-succinimide-substituted allenoates, followed by a cascade γ'-addition and aryl imines using PR3 as a catalyst. The resulting series of 3,4-disubstituted maleimides exhibited excellent stereoselectivities, achieving yields of up to 86%. To our knowledge, the phosphine-mediated γ'-addition reaction of allenoates is seldom reported.


Assuntos
Iminas , Maleimidas , Fosfinas , Succinimidas , Maleimidas/química , Maleimidas/síntese química , Fosfinas/química , Catálise , Iminas/química , Succinimidas/química , Estereoisomerismo , Estrutura Molecular , Isomerismo
6.
Neuroimage ; 297: 120714, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950665

RESUMO

Previous neuroimaging studies have reported dual-task interference (DTi) and deterioration of task performance in a cognitive-motor dual task (DT) compared to that in a single task (ST). Greater frontoparietal activity is a neural signature of DTi; nonetheless, the underlying mechanism of cortical network in DTi still remains unclear. This study aimed to investigate the regional brain activity and neural network changes during DTi induced by highly demanding cognitive-motor DT. Thirty-four right-handed healthy young adults performed the spiral-drawing task. They underwent a paced auditory serial addition test (PASAT) simultaneously or independently while their cortical activity was measured using functional near-infrared spectroscopy. Motor performance was determined using the balanced integration score (BIS), a balanced index of drawing speed and precision. The cognitive task of the PASAT was administered with two difficulty levels defined by 1 s (PASAT-1 s) and 2 s (PASAT-2 s) intervals, allowing for the serial addition of numbers. Cognitive performance was determined using the percentage of correct responses. These motor and cognitive performances were significantly reduced during DT, which combined a drawing and a cognitive task at either difficulty level, compared to those in the corresponding ST conditions. The DT conditions were also characterized by significantly increased activity in the right dorsolateral prefrontal cortex (DLPFC) compared to that in the ST conditions. Multivariate Granger causality (GC) analysis of cortical activity in the selected frontoparietal regions of interest further revealed selective top-down causal connectivity from the right DLPFC to the right inferior parietal cortex during DTs. Furthermore, changes in the frontoparietal GC connectivity strength between the PASAT-2 s DT and ST conditions significantly correlated negatively with changes in the percentage of correct responses. Therefore, DTi can occur even in cognitively proficient young adults, and the right DLPFC and frontoparietal network being crucial neural mechanisms underlying DTi. These findings provide new insights into DTi and its underlying neural mechanisms and have implications for the clinical utility of cognitive-motor DTs applied to clinical populations with cognitive decline, such as those with psychiatric and brain disorders.

7.
Front Plant Sci ; 15: 1400309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984159

RESUMO

Background: Grass-legume mixture can effectively improve productivity and stimulate overyielding in artificial grasslands, but may be N-limited in semi-arid regions. This study investigated the effects of N addition on chlorophyll fluorescence and production in the grass-legume mixtures community. Methods: An N addition experiment was conducted in the Bothriochloa ischaemum and Lespedeza davurica mixture community, with seven mixture ratios (B0L10, B2L8, B4L6, B5L5, B6L4, B8L2, and B10L0) according to the sowing abundance of B.ischaemum and L.davurica and four N addition levels, N0, N25, N50, and N75 (0,25,50,75kgNhm-2 a-1), respectively. We analyzed the response of chlorophyll fluorescence parameters of the two species, the rapid light-response curves of chlorophyll fluorescence, as well as aboveground biomass (AGB) and overyielding. Results: Our results showed that the two species showed different photosynthetic strategies, with L.davurica having significantly higher initial fluorescence (Fo), effective photochemical quantum yield of PSII (ΦPSII), and coefficient of photochemical fluorescence quenching (qP) than B. ischaemum, consisting with results of rapid light-response curves. N addition and mixture ratio both had significant effects on chlorophyll fluorescence and AGB (p<0.001). The ΦPSII and qP of L.davurica were significantly lowest in B5L5 and B6L4 under N addition, and the effect of N varied with mixture ratio. The photosynthetic efficiency of B. ischaemum was higher in mixture than in monoculture (B10L0), and ΦPSII was significantly higher in N50 than in N25 and N50 at mixture communities except at B5L5. The community AGB was significantly higher in mixture communities than in two monocultures and highest at B6L4. In the same mixture ratio, the AGB was highest under the N50. The overyielding effects were significantly highest under the N75 and B6L4 treatments, mainly attributed to L.davurica. The partial least squares path models demonstrated that adding N increased soil nutrient content, and complementary utilization by B.ischaemum and L.davurica increased the photosynthetic efficiency. However, as the different photosynthetic strategies of these two species, the effect on AGB was offset, and the mixture ratio's effects were larger than N. Our results proposed the B6L4 and N50 treatments were the optimal combination, with the highest AGB and overyielding, moderate grass-legume ratio, optimal community structure, and forage values.

8.
Sci Rep ; 14(1): 15644, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977732

RESUMO

Aluminum alloys have been widely studied because of their current engineering applications. Due to their high strength and lightweight, cracking can easily initiate on their surface, deteriorating their overall functional and structural properties and causing environmental attacks. The current study highlights the significant influence of incorporating 1 wt% silica nanostructure in aluminum-10 zinc alloys. The characteristics of the composites were examined using Vickers hardness, tensile, and electrochemical testing (OCP, Tafel, and EIS) at various artificial aging temperatures (423, 443, and 463 K). Silica nanorods may achieve ultrafine grains, increase hardness by up to 13.8%, increase σUTS values by up to 79% at 443 K, and improve corrosion rate by up to 89.4%, surpassing Al-10 Zn bulk metallics. We demonstrate that silica nanorods contribute to the creation of a superior nanocomposite that not only limits failure events under loading but also resists corrosion. Our findings suggest that silica nanocomposite can produce unique features for use in a variety of automotive, construction, and aerospace applications. This improvement can be attributed mainly to the large surface area of nano-silica particles, which alters the Al matrix. Microstructural, mechanical, and electrochemical studies revealed that the effects of structure refinement were dependent on nano-silica.

9.
Chem Rec ; : e202400060, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008887

RESUMO

Chalcones are a class of naturally occurring flavonoid compounds associated to a variety of biological and pharmacological properties. Several reviews have been published describing the synthesis and biological properties of a vast array of analogues. However, overviews on the reactivity of chalcones has only been explored in a few accounts. To fill this gap, a systematic survey on the most recent developments in the transition metal-catalyzed transformation of chalcones was performed. The chemistry of copper, palladium, zinc, iron, manganese, nickel, ruthenium, cobalt, rhodium, iridium, silver, indium, gold, titanium, platinum, among others, as versatile catalysts will be highlighted, covering the literature from year 2000 to 2023, in more than 380 publications.

10.
Acta Biomater ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960110

RESUMO

Decellularized extracellular matrix (dECM) hydrogels provide tissue-specific microenvironments which accommodate physiological cellular phenotypes in 3D in vitro cell cultures. However, their formation hinges on collagen fibrillogenesis, a complex process which limits regulation of physicochemical properties. Hence, achieving reproducible results with dECM hydrogels poses as a challenge. Here, we demonstrate that thiolation of solubilized liver dECM enables rapid formation of covalently crosslinked hydrogels via Michael-type addition, allowing for precise control over mechanical properties and superior organotypic biological activity. Investigation of various decellularization methodologies revealed that treatment of liver tissue with Triton X-100 and ammonium hydroxide resulted in near complete DNA removal with significant retention of the native liver proteome. Chemical functionalization of pepsin-solubilized liver dECMs via 1-ethyl-3(3-dimethylamino)propyl carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling of l-Cysteine created thiolated liver dECM (dECM-SH), which rapidly reacted with 4-arm polyethylene glycol (PEG)-maleimide to form optically clear hydrogels under controlled conditions. Importantly, Young's moduli could be precisely tuned between 1 - 7 kPa by varying polymer concentrations, enabling close replication of healthy and fibrotic liver conditions in in vitro cell cultures. Click dECM-SH hydrogels were cytocompatible, supported growth of HepG2 and HepaRG liver cells, and promoted liver-specific functional phenotypes as evidenced by increased metabolic activity, as well CYP1A2 and CYP3A4 activity and excretory function when compared to monolayer culture and collagen-based hydrogels. Our findings demonstrate that click-functionalized dECM hydrogels offer a highly controlled, reproducible alternative to conventional tissue-derived hydrogels for in vitro cell culture applications. STATEMENT OF SIGNIFICANCE: Traditional dECM hydrogels face challenges in reproducibility and mechanical property control due to variable crosslinking processes. We introduce a click hydrogel based on porcine liver decellularized extracellular matrix (dECM) that circumnavigates these challenges. After optimizing liver decellularization for ECM retention, we integrated thiol-functionalized liver dECM with polyethylene-glycol derivatives through Michael-type addition click chemistry, enabling rapid, room-temperature gelation. This offers enhanced control over the hydrogel's mechanical and biochemical properties. The resultant click dECM hydrogels mimic the liver's natural ECM and exhibit greater mechanical tunability and handling ease, facilitating their application in high-throughput and industrial settings. Moreover, these hydrogels significantly improve the function of HepaRG-derived hepatocytes in 3D culture, presenting an advancement for liver tissue cell culture models for drug testing applications.

11.
Sci Total Environ ; 946: 174396, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950634

RESUMO

Salt marsh has an important 'purification' role in coastal ecosystems by removing excess nitrogen that could otherwise harm aquatic life and reduce water quality. Recent studies suggest that salt marsh root exudates might be the 'control centre' for nitrogen transformation, but empirical evidence is lacking. Here we sought to estimate the direction and magnitude of nitrogen purification by salt marsh root exudates and gain a mechanistic understanding of the biogeochemical transformation pathway(s). To achieve this, we used a laboratory incubation to quantify both the root exudates and soil nitrogen purification rates, in addition to the enzyme activities and functional genes under Phragmites australis populations with different nitrogen forms addition (NO3-, NH4+ and urea). We found that NO3- and urea addition significantly stimulate P. australis root exudation of total acids, amino acids, total sugars and total organic carbon, while NH4+ addition only significantly increased total acids, amino acids and total phenol exudation. High total sugars, amino acids and total organic carbon concentrations enlarged nitrogen purification potential by stimulating the nitrogen purifying bacterial activities (including enzyme activities and related genes expression). Potential denitrification rates were not significantly elevated under NH4+ addition in comparison to NO3- and urea addition, which should be ascribed to total phenol self-toxicity and selective inhibition. Further, urea addition stimulated urease and protease activities with providing more NH4+ and NO2- substrates for elevated anaerobic ammonium oxidation rates among the nitrogen addition treatments. Overall, this study revealed that exogenous nitrogen could increase the nitrogen purification-associated bacterial activity through accelerating the root exudate release, which could stimulate the activity of nitrogen transformation, and then improve the nitrogen removal capacity in salt marsh.

12.
Prep Biochem Biotechnol ; : 1-9, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984870

RESUMO

L-proline is widely used in the fields of food, medicine and agriculture, and is also an important raw material for the synthesis of trans-4-hydroxy-L-proline. In this study, enhancing the production of L-proline by metabolic engineering was investigated. Three genes, proB, proA and proC, were introduced into Escherichia coli BL21 by molecular biology technology to increase the metabolic flow of L-proline from glucose. The genes putP and proP related to the proline transfer were knocked out by CRISPR/Cas9 gene editing technology to weaken the feedback inhibition of proB to increase the production of L-proline. The fermentation curves of the engineered strain at different glucose concentrations were determined, and a glucose concentration of 10 g/L was chosen to expand the batch culture to 1 L shake flask. Ultimately, through these efforts, the titer of L-proline reached 832.19 mg/L in intermittent glucose addition fermentation in a 1 L shake flask.

13.
Sci Total Environ ; 947: 174672, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39002582

RESUMO

Tropical forests are sensitive to nitrogen (N) and phosphorus (P) availability, and under nutrient application the variation of soil organic carbon (SOC) preserving mechanism remains to be explored. To reveal the forest-specific SOC preservation via biochemical selection in response to nutrient application, we investigated a monoculture (Acacia plantation) and a multispecies forest both with chronic fertilization in subtropical regions, and measured specific fingerprints of plant- and microbial-derived C compounds. In addition, to quantify the effect of P application on SOC content among tropical forests, we conducted a meta-analysis by compiling 125 paired measurements in field experiments from 62 studies. In our field experiment, microbial community composition and activity mediated forest-specific responses of SOC compounds to P addition. The shift of community composition from fungi towards Gram-positive bacteria in the Acacia plantation by P addition led to the consumption of microbial residual C (MRC) as C source; in comparison, P addition increased plant species with less complex lignin substrates and induced microbial acquisition for N sources, thus stimulated the decomposition of both plant- and microbial-derived C. Same with our field experiment, bulk SOC content had neutral response to P addition among tropical forests in the meta-analysis, although divergences could happen among experimental durations and secondary tree species. Close associations among SOC compounds with biotic origins and mineral associated organic C (MAOC) in the multispecies forest suggested contributions of both plant- and microbial-derive C to SOC stability. Regarding that fungal MRC closely associated with MAOC and consisted of soil N pool which tightly coupled to SOC pool, the reduce of fungal MRC by chronic P addition was detrimental to SOC accumulation and stability in tropical forests.

14.
Glob Chang Biol ; 30(7): e17427, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39021313

RESUMO

Atmospheric nitrogen (N) deposition in forests can affect soil microbial growth and turnover directly through increasing N availability and indirectly through altering plant-derived carbon (C) availability for microbes. This impacts microbial residues (i.e., amino sugars), a major component of soil organic carbon (SOC). Previous studies in forests have so far focused on the impact of understory N addition on microbes and microbial residues, but the effect of N deposition through plant canopy, the major pathway of N deposition in nature, has not been explicitly explored. In this study, we investigated whether and how the quantities (25 and 50 kg N ha-1 year-1) and modes (canopy and understory) of N addition affect soil microbial residues in a temperate broadleaf forest under 10-year N additions. Our results showed that N addition enhanced the concentrations of soil amino sugars and microbial residual C (MRC) but not their relative contributions to SOC, and this effect on amino sugars and MRC was closely related to the quantities and modes of N addition. In the topsoil, high-N addition significantly increased the concentrations of amino sugars and MRC, regardless of the N addition mode. In the subsoil, only canopy N addition positively affected amino sugars and MRC, implying that the indirect pathway via plants plays a more important role. Neither canopy nor understory N addition significantly affected soil microbial biomass (as represented by phospholipid fatty acids), community composition and activity, suggesting that enhanced microbial residues under N deposition likely stem from increased microbial turnover. These findings indicate that understory N addition may underestimate the impact of N deposition on microbial residues and SOC, highlighting that the processes of canopy N uptake and plant-derived C availability to microbes should be taken into consideration when predicting the impact of N deposition on the C sequestration in temperate forests.


Assuntos
Carbono , Florestas , Nitrogênio , Microbiologia do Solo , Solo , Nitrogênio/metabolismo , Carbono/metabolismo , Carbono/análise , Solo/química , Amino Açúcares/metabolismo , Amino Açúcares/análise , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
15.
BMC Plant Biol ; 24(1): 685, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026182

RESUMO

BACKGROUND: Developing novel germplasm by using wheat wild related species is an effective way to rebuild the wheat resource bank. The Psathyrostachys huashanica Keng (P. huashanica, 2n = 2x = 14, NsNs) is regarded as a superior species to improve wheat breeding because of its multi-resistance, early maturation and numerous tiller traits. Introducing genetic components of P. huashanica into the common wheat background is the most important step in achieving the effective use. Therefore, the cytogenetic characterization and influence of the introgressed P. huashanica large segment chromosomes in the wheat background is necessary to be explored. RESULTS: In this study, we characterized a novel derived line, named D88-2a, a progeny of the former characterized wheat-P. huashanica partial amphiploid line H8911 (2n = 7x = 49, AABBDDNs). Cytological identification showed that the chromosomal composition of D88-2a was 2n = 44 = 22II, indicating the addition of exogenous chromosomes. Genomic in situ hybridization demonstrated that the supernumerary chromosomes were a pair of homologues from the P. huashanica and could be stably inherited in the common wheat background. Molecular markers and 15 K SNP array indicated that the additional chromosomes were derived from the sixth homoeologous group (i.e., 6Ns) of P. huashanica. Based on the distribution of the heterozygous single-nucleotide polymorphism sites and fluorescence in situ hybridization karyotype of each chromosome, this pair of additional chromosomes was confirmed as P. huashanica 6Ns large segment chromosomes, which contained the entire short arm and the proximal centromere portion of the long arm. In terms of the agronomic traits, the addition line D88-2a exhibited enhanced stripe rust resistance, improved spike characteristics and increased protein content than its wheat parent line 7182. CONCLUSIONS: The new wheat germplasm D88-2a is a novel cytogenetically stable wheat-P. huashanica 6Ns large segment addition line, and the introgressed large segment alien chromosome has positive impact on plant spikelet number and stripe rust resistance. Thus, this germplasm can be used for genetic improvement of cultivated wheat and the study of functional alien chromosome segment.


Assuntos
Cromossomos de Plantas , Resistência à Doença , Doenças das Plantas , Triticum , Triticum/genética , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Cromossomos de Plantas/genética , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Melhoramento Vegetal , Poaceae/genética , Poaceae/microbiologia , Poaceae/crescimento & desenvolvimento , Basidiomycota/fisiologia
16.
Ecotoxicology ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38949723

RESUMO

In recent years, the presence of Pharmaceutical Active Compounds (PhACs) in ecosystems has become a serious environmental problem due to their capacity to induce harmful effects at extremely low concentrations in both humans and wildlife. Water treatment plants have not been designed to remove these types of compounds efficiently. Thus, the detection of these pollutants is essential to evaluate their negative impacts and is one of the emerging issues in environmental chemistry. The main objective of this study is to determine the bacterial toxicity of two PhACs (both individually and as a mixture) through the quantification of bioluminescence inhibition in the marine bacteria Aliivibrio fischeri, a commonly used method in short-term toxicity tests. In this work, Acetaminophen and Edaravone, two drugs approved by the Food and Drug Administration, have been studied. The acute toxicity of these PhACs has been tested at two exposure times (5 and 15 min) and different concentrations, by estimation of the median effective concentration (EC50) for each individual compound or in combination at different concentrations. Moreover, the EC50 of the binary mixtures Acetaminophen/Edaravone have been forecast using two traditional predictive models, Concentration Addition and Independent Action. The results show that toxicity decreases with exposure time and depends on the concentration tested. Furthermore, a novel semi-empirical Van Laar-based model has been proposed and validated with the experimental data from this study and literature data, obtaining satisfactory estimations of the EC50 for binary mixtures.

17.
Sci Rep ; 14(1): 13141, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849441

RESUMO

Obesity and food addiction are associated with distinct brain signatures related to reward processing, and early life adversity (ELA) also increases alterations in these same reward regions. However, the neural mechanisms underlying the effect of early life adversity on food addiction are unknown. Therefore, the aim of this study was to examine the interactions between ELA, food addiction, and brain morphometry in individuals with obesity. 114 participants with high body mass index (BMI) underwent structural MRIs, and completed several questionnaires (e.g., Yale Food Addiction Scale (YFAS), Brief Resilience Scale (BRS), Early Traumatic Inventory (ETI)). Freesurfer 6 was applied to generate the morphometry of brain regions. A multivariate pattern analysis was used to derive brain morphometry patterns associated with food addiction. General linear modeling and mediation analyses were conducted to examine the effects of ELA and resilience on food addiction in individuals with obesity. Statistical significance was determined at a level of p < 0.05. High levels of ELA showed a strong association between reward control brain signatures and food addiction (p = 0.03). Resilience positively mediated the effect of ELA on food addiction (B = 0.02, p = 0.038). Our findings suggest that food addiction is associated with brain signatures in motivation and reward processing regions indicative of dopaminergic dysregulation and inhibition of cognitive control regions. These mechanistic variabilities along with early life adversity suggest increased vulnerability to develop food addiction and obesity in adulthood, which can buffer by the neuroprotective effects of resilience, highlighting the value of incorporating cognitive appraisal into obesity therapeutic regimens.


Assuntos
Índice de Massa Corporal , Encéfalo , Dependência de Alimentos , Imageamento por Ressonância Magnética , Obesidade , Humanos , Feminino , Masculino , Dependência de Alimentos/psicologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Adulto , Obesidade/psicologia , Obesidade/patologia , Experiências Adversas da Infância/psicologia , Recompensa , Adulto Jovem , Pessoa de Meia-Idade , Inquéritos e Questionários , Resiliência Psicológica
18.
Chemistry ; : e202401591, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844428

RESUMO

The Ni-catalyzed enantioselective addition reaction of aryl halides to aldehydes was studied with cyanobis(oxazoline) as chiral ligands and Mn as reductant. Aryl and heteroaryl bromides reacted with phenyl aldehyde at room temperature to produce dibenzyl alcohols in 16-99% yields with 53-92% ees. Moreover, the coupling of phenyl chloride with a variety of aryl, heteroaryl and alkyl aldehydes was demonstrated in the presence of cyanobis(oxazoline)/Ni(II) at 60 oC in generally high yields with moderate enantioselectivities.

19.
Front Plant Sci ; 15: 1410036, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911979

RESUMO

Human activities have increased nitrogen (N) and phosphorus (P) inputs to the Yellow River Delta and the supply level of N and P affects plant growth as well as ecosystem structure and function directly. However, the root growth, stoichiometry, and antioxidant system of plants in response to N and P additions, especially for herbaceous halophyte in the Yellow River Delta (YRD), remain unknown. A field experiment with N addition (0, 5, 15, and 45 g N m-2 yr-1, respectively) as the main plot, and P addition (0 and 1 g N m-2 yr-1, respectively) as the subplot, was carried out with a split-plot design to investigate the effects on the root morphology, stoichiometry, and antioxidant system of Suaeda salsa. The results showed that N addition significantly increased the above-ground and root biomass as well as shoot-root ratio of S. salsa, which had a significant interaction with P addition. The highest biomass was found in the treatment with 45 g N m-2 yr-1 combined with P addition. N addition significantly increased TN content and decreased C:N ratio of root, while P addition significantly increased TP content and decreased C:P ratio. The main root length (MRL), total root length (TRL), specific root length (SRL), and root tissue density (RTD) of S. salsa root were significantly affected by N addition and P addition, as well as their interaction. The treatments with or without P addition at the 45 g N m-2 yr-1 of N addition significantly increased the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) activities and soluble protein content of roots, decreased malondialdehyde (MDA) content. And there was a significant interaction between the N and P addition on SOD activity. Therefore, N and P additions could improve the growth of S. salsa by altering the root morphology, increasing the root nutrient content, and stimulating antioxidant system.

20.
ACS Catal ; 14(9): 7127-7135, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38911468

RESUMO

We describe a detailed investigation into why bulky ligands-those that enable catalysis at "12e -" Pd0-tend to promote overfunctionalization during Pd-catalyzed cross-couplings of dihalogenated substrates. After one cross-coupling event takes place, PdL initially remains coordinated to the π system of the nascent product. Selectivity for mono- vs. difunctionalization arises from the relative rates of π-decomplexation versus a second oxidative addition. Under the Suzuki coupling conditions in this work, direct dissociation of 12e - PdL from the π-complex cannot outcompete oxidative addition. Instead, Pd must be displaced from the π-complex as 14e - PdL(L') by a second incoming ligand L'. The incoming ligand is another molecule of dichloroarene if the reaction conditions do not include π-coordinating solvents or additives. More overfunctionalization tends to result when increased ligand or substrate sterics raises the energy of the bimolecular transition state for separating 14e - PdL(L') from the mono-cross-coupled product. This work has practical implications for optimizing selectivity in cross-couplings involving multiple halogens. For example, we demonstrate that small coordinating additives like DMSO can largely suppress overfunctionalization and that precatalyst structure can also impact selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA