Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biochem J ; 481(8): 587-599, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38592738

RESUMO

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. When activated by increases in ADP:ATP and/or AMP:ATP ratios (signalling energy deficit), AMPK acts to restore energy balance. Binding of AMP to one or more of three CBS repeats (CBS1, CBS3, CBS4) on the AMPK-γ subunit activates the kinase complex by three complementary mechanisms: (i) promoting α-subunit Thr172 phosphorylation by the upstream kinase LKB1; (ii) protecting against Thr172 dephosphorylation; (iii) allosteric activation. Surprisingly, binding of ADP has been reported to mimic the first two effects, but not the third. We now show that at physiologically relevant concentrations of Mg.ATP2- (above those used in the standard assay) ADP binding does cause allosteric activation. However, ADP causes only a modest activation because (unlike AMP), at concentrations just above those where activation becomes evident, ADP starts to cause competitive inhibition at the catalytic site. Our results cast doubt on the physiological relevance of the effects of ADP and suggest that AMP is the primary activator in vivo. We have also made mutations to hydrophobic residues involved in binding adenine nucleotides at each of the three γ subunit CBS repeats of the human α2ß2γ1 complex and examined their effects on regulation by AMP and ADP. Mutation of the CBS3 site has the largest effects on all three mechanisms of AMP activation, especially at lower ATP concentrations, while mutation of CBS4 reduces the sensitivity to AMP. All three sites appear to be required for allosteric activation by ADP.


Assuntos
Proteínas Quinases Ativadas por AMP , Difosfato de Adenosina , Monofosfato de Adenosina , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Humanos , Regulação Alostérica , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/química , Ligantes , Fosforilação , Trifosfato de Adenosina/metabolismo , Ativação Enzimática , Ligação Proteica
2.
Mol Cell Biochem ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386218

RESUMO

Diabetes mellitus is one of the major causes of ischemic and nonischemic heart failure. While hypertension and coronary artery disease are frequent comorbidities in patients with diabetes, cardiac contractile dysfunction and remodeling occur in diabetic patients even without comorbidities, which is referred to as diabetic cardiomyopathy. Investigations in recent decades have demonstrated that the production of reactive oxygen species (ROS), impaired handling of intracellular Ca2+, and alterations in energy metabolism are involved in the development of diabetic cardiomyopathy. AMP deaminase (AMPD) directly regulates adenine nucleotide metabolism and energy transfer by adenylate kinase and indirectly modulates xanthine oxidoreductase-mediated pathways and AMP-activated protein kinase-mediated signaling. Upregulation of AMPD in diabetic hearts was first reported more than 30 years ago, and subsequent studies showed similar upregulation in the liver and skeletal muscle. Evidence for the roles of AMPD in diabetes-induced fatty liver, sarcopenia, and heart failure has been accumulating. A series of our recent studies showed that AMPD localizes in the mitochondria-associated endoplasmic reticulum membrane as well as the sarcoplasmic reticulum and cytosol and participates in the regulation of mitochondrial Ca2+ and suggested that upregulated AMPD contributes to contractile dysfunction in diabetic cardiomyopathy via increased generation of ROS, adenine nucleotide depletion, and impaired mitochondrial respiration. The detrimental effects of AMPD were manifested at times of increased cardiac workload by pressure loading. In this review, we briefly summarize the expression and functions of AMPD in the heart and discuss the roles of AMPD in diabetic cardiomyopathy, mainly focusing on contractile dysfunction caused by this disorder.

3.
Front Immunol ; 14: 1250762, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799723

RESUMO

Adenine nucleotides (AN) are ubiquitous metabolites that regulate cellular energy metabolism and modulate cell communication and inflammation. To understand how disturbances in AN balance arise and affect cellular function, robust quantification techniques for these metabolites are crucial. However, due to their hydrophilicity, simultaneous quantification of AN across various biological samples has been challenging. Here we present a hydrophilic interaction high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) based method for the quantification of 26 adenosine nucleotides and precursors as well as metabolic products of nicotinamide adenine dinucleotide (NAD) in plasma, liver, and adipose tissue samples as well as cell culture supernatants and cells. Method validation was performed with regard to linearity, accuracy, precision, matrix effects, and carryover. Finally, analysis of cell culture supernatants derived from intestinal organoids and RAW 264.7 cells illustrates that the here described method is a reliable and easy-to-use tool to quantify AN and opens up new avenues to understand the role of AN generation and breakdown for cellular functions.


Assuntos
NAD , Nucleotídeos , NAD/metabolismo , Nucleotídeos/metabolismo , Espectrometria de Massas em Tandem/métodos , Adenosina , Cromatografia Líquida/métodos , Nucleotídeos de Adenina
4.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982634

RESUMO

Adenylate kinase (AK) regulates adenine nucleotide metabolism and catalyzes the ATP + AMP ⇌ 2ADP reaction in a wide range of organisms and bacteria. AKs regulate adenine nucleotide ratios in different intracellular compartments and maintain the homeostasis of the intracellular nucleotide metabolism necessary for growth, differentiation, and motility. To date, nine isozymes have been identified and their functions have been analyzed. Moreover, the dynamics of the intracellular energy metabolism, diseases caused by AK mutations, the relationship with carcinogenesis, and circadian rhythms have recently been reported. This article summarizes the current knowledge regarding the physiological roles of AK isozymes in different diseases. In particular, this review focused on the symptoms caused by mutated AK isozymes in humans and phenotypic changes arising from altered gene expression in animal models. The future analysis of intracellular, extracellular, and intercellular energy metabolism with a focus on AK will aid in a wide range of new therapeutic approaches for various diseases, including cancer, lifestyle-related diseases, and aging.


Assuntos
Nucleotídeos de Adenina , Adenilato Quinase , Animais , Humanos , Nucleotídeos de Adenina/metabolismo , Adenilato Quinase/metabolismo , Nucleotídeos , Adenina , Isoenzimas/genética , Isoenzimas/metabolismo , Monofosfato de Adenosina , Trifosfato de Adenosina/metabolismo
5.
Front Immunol ; 14: 1124774, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742292

RESUMO

On the backdrop of all acute inflammatory processes lies the activation of the resolution response. Recent years have witnessed an emerging interest in defining molecular factors that influence the resolution of inflammation. A keystone feature of the mucosal inflammatory microenvironment is hypoxia. The gastrointestinal tract, particularly the colon, exists in a state of physiological hypoxia and during active inflammation, this hypoxic state is enhanced as a result of infiltrating leukocyte oxygen consumption and the activation of oxygen consuming enzymes. Most evidence suggests that mucosal hypoxia promotes the active resolution of inflammation through a variety of mechanisms, including extracellular acidification, purine biosynthesis/salvage, the generation of specialized pro-resolving lipid mediators (ie. resolvins) and altered chemokine/cytokine expression. It is now appreciated that infiltrating innate immune cells (neutrophils, eosinophils, macrophages) have an important role in molding the tissue microenvironment to program an active resolution response. Structural or functional dysregulation of this inflammatory microenvironment can result in the loss of tissue homeostasis and ultimately progression toward chronicity. In this review, we will discuss how inflammatory hypoxia drives mucosal inflammatory resolution and its impact on other microenvironmental factors that influence resolution.


Assuntos
Inflamação , Mucosite , Humanos , Hipóxia , Mucosa/metabolismo , Neutrófilos
6.
Purinergic Signal ; 19(1): 221-227, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35347568

RESUMO

It is known that thyroid hormones play pivotal roles in a wide variety of pathological and physiological events. Thyroid diseases, mainly including hyperthyroidism, hypothyroidism, and thyroid cancer, are highly prevalent worldwide health problems and frequently associated with severe clinical manifestations. However, etiology of hyperthyroidism, hypothyroidism, and thyroid cancer is not fully understood. Purinergic signaling accounts for a complex network of receptors and extracellular enzymes responsible for the recognition and degradation of extracellular nucleotides and adenosine. It has been established that purinergic signaling modulates pathways in a wide range of physiopathological conditions including hypertension, diabetes, hepatic diseases, psychiatric and neurodegeneration, rheumatic immune diseases, and cancer. More recently, the purinergic system is found to exist in thyroid gland and play an important role in the pathophysiology of thyroid diseases. Therefore, throughout this review, we focus on elaborating the changes in purinergic receptors, extracellular enzymes, and extracellular nucleotides and adenosine in hyperthyroidism, hypothyroidism, and thyroid cancer. Profound understanding of the relationship between the purinergic signaling with thyroid diseases provides a promising research area for insights into the molecular basis of thyroid diseases and also develops new and exciting insights into the treatment of thyroid diseases, especially thyroid cancer.


Assuntos
Hipertireoidismo , Hipotireoidismo , Neoplasias da Glândula Tireoide , Humanos , Nucleotídeos/metabolismo , Adenosina/metabolismo
7.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232801

RESUMO

In this study, we aim to verify whether swim training can improve lactate metabolism, NAD+ and NADH levels, as well as modify the activity of glycolytic and NADH shuttle enzymes and monocarboxylate transporters (MCTs) in skeletal muscle of amyotrophic lateral sclerosis (ALS) mice. ALS mice (SOD1G93A) (n = 7 per group) were analyzed before the onset of ALS, at first disease symptoms (trained and untrained), and the last stage of disease (trained and untrained), and then compared with a wild-type (WT) group of mice. The blood lactate and the skeletal muscle concentration of lactate, NAD+ and NADH, MCT1 and MCT4 protein levels, as well as lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in skeletal muscle were determined by fluorometric, Western blotting, liquid chromatography-MS3 spectrometry, and spectrometric methods. In the untrained terminal ALS group, there were decreased blood lactate levels (p < 0.001) and increased skeletal muscle lactate levels (p < 0.05) as compared with a WT group of mice. The amount of nicotinamide adenine dinucleotides in the ALS groups were also significantly reduced as well as LDH activity and the level of MCT1. Swim training increased lactate levels in the blood (p < 0.05 vs. ALS TERMINAL untrained). In addition, cytosolic MDH activity and the cMDH/LDH 2.1 ratio were significantly higher in trained vs. untrained mice (p < 0.05). The data indicate significant dysfunction of lactate metabolism in ALS mice, associated with a reduction in muscle anaerobic metabolism and NADH transporting enzymes, as well as swim-induced compensation of energy demands in the ALS mice.


Assuntos
Esclerose Lateral Amiotrófica , NAD , Adenina/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Ácido Láctico/metabolismo , Malato Desidrogenase/metabolismo , Camundongos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Músculo Esquelético/metabolismo , NAD/metabolismo , Niacinamida/metabolismo
8.
Cell Immunol ; 380: 104589, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084401

RESUMO

The pulp of human teeth contains a population of self-renewing stem cells that can regulate the functions of immune cells. When applied to patients, these cells can protect tissues from damage by excessive inflammation. We confirm that dental pulp cells effectively inhibit the proliferation and activation of cytotoxic T cells in vitro, and show that they carry high levels of CD73, a key enzyme in the conversion of pro-inflammatory extracellular ATP to immunosuppressive adenosine. Given their accessibility and abundance, as well as their potential for allogeneic administration, dental pulp cells provide a valuable source for immunomodulatory therapy.


Assuntos
Adenosina , Polpa Dentária , 5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Humanos
9.
Artigo em Inglês | MEDLINE | ID: mdl-35797802

RESUMO

ATP and its degradation products are essential metabolic and signaling molecules. Traditionally, they have been quantified via high-performance liquid chromatography (HPLC) with UV-Vis detection while utilizing phosphate buffer mobile phase, but this approach is incompatible with modern mass detection. The goal of this study was to develop an ultra-performance liquid chromatography (UPLC) method free of phosphate buffer, to allow for analysis of adenine nucleotides with UV-Vis and mass spectrometry (MS) simultaneously. The final conditions used an Acquity HSS T3 premier column with a volatile ammonium acetate buffer to successfully separate and quantify ATP-related analytes in a standard mixture and in extracts from non-contracted and contracted mouse hindlimb muscles. Baseline resolution was achieved with all 10 metabolites, and a lower limit of quantification down to 1 pmol per inject was observed for most metabolites using UV-Vis. Therefore, this method allows for the reliable quantification of adenine nucleotides and their degradation products via UV-Vis and their confirmation and/or identification of unknown peaks via MS.


Assuntos
Fosfatos , Espectrometria de Massas em Tandem , Trifosfato de Adenosina , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Camundongos , Espectrometria de Massas em Tandem/métodos
10.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628582

RESUMO

The accumulation of specific metabolic intermediates is known to promote cancer progression. We analyzed the role of 4-pyridone-3-carboxamide-1-ß-D-ribonucleoside (4PYR), a nucleotide metabolite that accumulates in the blood of cancer patients, using the 4T1 murine in vivo breast cancer model, and cultured cancer (4T1) and endothelial cells (ECs) for in vitro studies. In vivo studies demonstrated that 4PYR facilitated lung metastasis without affecting primary tumor growth. In vitro studies demonstrated that 4PYR affected extracellular adenine nucleotide metabolism and the intracellular energy status in ECs, shifting catabolite patterns toward the accumulation of extracellular inosine, and leading to the increased permeability of lung ECs. These changes prevailed over the direct effect of 4PYR on 4T1 cells that reduced their invasive potential through 4PYR-induced modulation of the CD73-adenosine axis. We conclude that 4PYR is an oncometabolite that affects later stages of the metastatic cascade by acting specifically through the regulation of EC permeability and metabolic controls of inflammation.


Assuntos
Neoplasias da Mama , Ribonucleosídeos , Animais , Neoplasias da Mama/metabolismo , Células Endoteliais/metabolismo , Feminino , Humanos , Camundongos , Nucleosídeos/metabolismo , Nucleotídeos/metabolismo , Piridonas , Ribonucleosídeos/farmacologia
11.
Biochim Biophys Acta Bioenerg ; 1863(6): 148559, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413247

RESUMO

Although mitochondria have a central role in energy transduction and reactive oxygen species (ROS) production, the regulatory mechanisms and their involvement in plant stress signaling are not fully established. The phytohormone salicylic acid (SA) is an important regulator of mitochondria-mediated ROS production and defense signaling. The role of SA and adenine nucleotides in the regulation of the mitochondrial succinate dehydrogenase (SDH) complex activity and ROS production was analyzed using WT, RNAi SDH1-1 and disrupted stress response 1 (dsr1) mutants, which show a point mutation in SDH1 subunit and are defective in SA signaling. Our results showed that SA and adenine nucleotides regulate SDH complex activity by distinct patterns, contributing to increased SDH-derived ROS production. As previously demonstrated, SA induces the succinate-quinone reductase activity of SDH complex, acting at or near the ubiquinone binding site. On the other hand, here we demonstrated that adenine nucleotides, such as AMP, ADP and ATP, induce the SDH activity provided by the SDH1 subunit. The regulation of SDH activity by adenine nucleotides is dependent on mitochondrial integrity and is prevented by atractyloside, an inhibitor of adenine nucleotide translocator (ANT), suggesting that the regulatory mechanism occurs on the mitochondrial matrix side of the inner mitochondrial membrane, and not in the intermembrane space, as previously suggested. On the other hand, in the intermembrane space, ADP and ATP limit mitochondrial oxygen consumption by a mechanism that appears to be related to cytochrome bc1 complex inhibition. Altogether, these results indicate that SA signaling and adenine nucleotides regulate the mitochondrial electron transport system and mitochondria-derived ROS production by direct effect in the electron transport system complexes, bringing new insights into mechanisms with direct implications in plant development and responses to different environmental responses, serving as a starting point for future physiological explorations.


Assuntos
Mitocôndrias , Ácido Salicílico , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte de Elétrons , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia
12.
J Biochem ; 170(6): 739-752, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34523682

RESUMO

S-Adenosyl-L-methionine (SAM) was used to probe the functional effects exerted via the cardiac RyR isoform (RyR2) adenine nucleotide binding site. Single channel experiments revealed that SAM applied to the cytoplasmic face of RyR2 had complex voltage dependent effects on channel gating and conductance. At positive transmembrane holding potentials, SAM caused a striking reduction in channel openings and a reduced channel conductance. In contrast, at negative potentials, SAM promoted a clearly resolved subconductance state. At membrane potentials between -75 and -25 mV, the open probability of the subconductance state was independent of voltage. ATP, but not the non-adenosine-based ryanodine receptor (RyR) activator 4-chloro-m-cresol, interfered with the effects of SAM at both negative and positive potentials. This suggests that ATP and SAM interact with a common binding site. Molecular docking showed SAM bound to the adenine nucleotide binding site and formed a hydrogen bond to Glu4886 in the C-terminal end of the S6 alpha helix. In this configuration, SAM may alter the conformation of the RyR2 ion conduction pathway. This work provides novel insightGraphical Abstract into potential functional outcomes of ligand binding to the RyR adenine nucleotide binding site.


Assuntos
Ativação do Canal Iônico , Potenciais da Membrana , Simulação de Acoplamento Molecular , Canal de Liberação de Cálcio do Receptor de Rianodina , S-Adenosilmetionina , Animais , Sítios de Ligação , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Suínos
13.
Cells ; 10(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34831261

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+ mobilizing agent and its inhibition proved to inhibit T-cell activation. However, the impact of the NAADP signaling on CD4+ T-cell differentiation and plasticity and on the inflammation in tissues other than the central nervous system remains unclear. In this study, we used an antagonist of NAADP signaling, trans-Ned 19, to study the role of NAADP in CD4+ T-cell differentiation and effector function. Partial blockade of NAADP signaling in naïve CD4+ T cells in vitro promoted the differentiation of Th17 cells. Interestingly, trans-Ned 19 also promoted the production of IL-10, co-expression of LAG-3 and CD49b and increased the suppressive capacity of Th17 cells. Moreover, using an IL-17A fate mapping mouse model, we showed that NAADP inhibition promotes conversion of Th17 cells into regulatory T cells in vitro and in vivo. In line with the results, we found that inhibiting NAADP ameliorates disease in a mouse model of intestinal inflammation. Thus, these results reveal a novel function of NAADP in controlling the differentiation and plasticity of CD4+ T cells.


Assuntos
Sinalização do Cálcio , Carbolinas/farmacologia , Plasticidade Celular , NADP/análogos & derivados , Piperazinas/farmacologia , Células Th17/citologia , Células Th17/imunologia , Animais , Complexo CD3/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Plasticidade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Inflamação/patologia , Interleucina-10/metabolismo , Intestinos/patologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NADP/antagonistas & inibidores , NADP/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
14.
Klin Lab Diagn ; 66(3): 172-176, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33793117

RESUMO

Adenine nucleotides (ATP, ADP and AMP) play a central role in the regulation of metabolism and energy: they provide the energy balance of the cell, determine its redox state, act as allosteric effectors of a number of enzymes, modulate signaling and transcription factors and activate oxidation or biosynthesis substrates. A large number of methods have been developed to determine the level of ATP, ADP and AMP, but the most universal and effective method for the separation and analysis of complex mixtures is the reversed-phase high-performance liquid chromatography method (RP-HPLC). The aim of this study is to determine the optimal conditions for the qualitative separation and quantitative determination of standard solutions of ATP (1 mmol/l), ADP (0,5 mmol/l) and AMP (0,1 mmol/l) by RP-HPLC. The degree of separation of adenine nucleotides was estimated by the time of peak output in the chromatogram. To achieve the goal, the following tasks were set: assess the effect of the temperature of the analysis on the separation and change of the release time of the analytes in the chromatogram; determine the most optimal composition of the mobile phase for the separation of ATP, ADP and AMP in the chromatogram (the content of the organic solvent in the solution); to identify the effect of pH of the mobile phase on the separation of standard solutions of adenine nucleotides; set the optimal molarity of the mobile phase for the separation of ATP, ADP and AMP in the chromatogram. It was found that the temperature of the analysis does not affect the quality of peak separation, while the composition and pH of the mobile phase have a significant effect on the complete and clear separation of the studied nucleotides in the chromatogram. It was determined that the analysis temperature of 37°C and the mobile phase of 0.05 M KH2PO4 (pH 6.0) are optimal for separating the peaks of adenine nucleotides.


Assuntos
Nucleotídeos de Adenina , Trifosfato de Adenosina , Cromatografia Líquida de Alta Pressão , Indicadores e Reagentes
15.
Cells ; 10(3)2021 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671025

RESUMO

Cytochrome c oxidase (COX), the rate-limiting enzyme of mitochondrial respiration, is regulated by various mechanisms. Its regulation by ATP (adenosine triphosphate) appears of particular importance, since it evolved early during evolution and is still found in cyanobacteria, but not in other bacteria. Therefore the "allosteric ATP inhibition of COX" is described here in more detail. Most regulatory properties of COX are related to "supernumerary" subunits, which are largely absent in bacterial COX. The "allosteric ATP inhibition of COX" was also recently described in intact isolated rat heart mitochondria.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eucariotos/metabolismo , Animais , Ratos
16.
Biochem Pharmacol ; 187: 114361, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33309519

RESUMO

Professor Geoffrey Burnstock proposed the concept of purinergic signaling via P1 and P2 receptors. P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular adenine and uracil nucleotides. Eight mammalian P2Y receptor subtypes have been identified. They are divided into two subgroups (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11) and (P2Y12, P2Y13, and P2Y14). P2Y receptors are found in almost all cells and mediate responses in physiology and pathophysiology including pain and inflammation. The antagonism of platelet P2Y12 receptors by cangrelor, ticagrelor or active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel reduces the ADP-induced platelet aggregation in patients with thrombotic complications of vascular diseases. The nucleotide agonist diquafosol acting at P2Y2 receptors is used for the treatment of the dry eye syndrome. Structural information obtained by crystallography of the human P2Y1 and P2Y12 receptor proteins, site-directed mutagenesis and molecular modeling will facilitate the rational design of novel selective drugs.


Assuntos
Desenho de Fármacos , Agonistas do Receptor Purinérgico P2Y/administração & dosagem , Antagonistas do Receptor Purinérgico P2Y/administração & dosagem , Receptores Purinérgicos P2Y/metabolismo , Animais , Sistemas de Liberação de Medicamentos/métodos , Humanos , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/metabolismo
17.
Metabolism ; 108: 154257, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32370945

RESUMO

BACKGROUND: Protein degradation is an energy-dependent process, requiring ATP at multiple steps. However, reports conflict as to the relationship between intracellular energetics and the rate of proteasome-mediated protein degradation. METHODS: To determine whether the concentration of the adenine nucleotide pool (ATP + ADP + AMP) affects protein degradation in muscle cells, we overexpressed an AMP degrading enzyme, AMP deaminase 3 (AMPD3), via adenovirus in C2C12 myotubes. RESULTS: Overexpression of AMPD3 resulted in a dose- and time-dependent reduction of total adenine nucleotides (ATP, ADP and AMP) without increasing the ADP/ATP or AMP/ATP ratios. In agreement, the reduction of total adenine nucleotide concentration did not result in increased Thr172 phosphorylation of AMP-activated protein kinase (AMPK), a common indicator of intracellular energetic state. Furthermore, LC3 protein accumulation and ULK1 (Ser 555) phosphorylation were not induced. However, overall protein degradation and ubiquitin-dependent proteolysis were slowed by overexpression of AMPD3, despite unchanged content of several proteasome subunit proteins and proteasome activity in vitro under standard conditions. CONCLUSIONS: Altogether, these findings indicate that a physiologically relevant decrease in ATP content, without a concomitant increase in ADP or AMP, is sufficient to decrease the rate of protein degradation and activity of the ubiquitin-proteasome system in muscle cells. This suggests that adenine nucleotide degrading enzymes, such as AMPD3, may be a viable target to control muscle protein degradation and perhaps muscle mass.


Assuntos
AMP Desaminase/metabolismo , Trifosfato de Adenosina/metabolismo , Músculo Esquelético/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fosforilação/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/metabolismo , Proteólise , Ubiquitina/metabolismo
18.
Int J Mol Sci ; 21(7)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32225112

RESUMO

Inflammatory and wound healing responses take place during liver damage, primarily in the parenchymal tissue. It is known that cellular injury elicits an activation of the purinergic signaling, mainly by the P2X7 receptor; however, the role of P2Y receptors in the onset of liver pathology such as fibrosis has not been explored. Hence, we used mice treated with the hepatotoxin CCl4 to implement a reversible model of liver fibrosis to evaluate the expression and function of the P2Y2 receptor (P2Y2R). Fibrotic livers showed an enhanced expression of P2Y2R that eliminated its zonal distribution. Hepatocytes from CCl4-treated mice showed an exacerbated ERK-phosphorylated response to the P2Y2R-specific agonist, UTP. Cell proliferation was also enhanced in the fibrotic livers. Hepatic transcriptional analysis by microarrays, upon CCl4 administration, showed that P2Y2 activation regulated diverse pathways, revealing complex action mechanisms. In conclusion, our data indicate that P2Y2R activation is involved in the onset of the fibrotic damage associated with the reversible phase of the hepatic damage promoted by CCl4.


Assuntos
Hepatócitos/metabolismo , Cirrose Hepática/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Animais , Tetracloreto de Carbono/toxicidade , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Cirrose Hepática/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Cell Rep ; 29(6): 1511-1523.e5, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693892

RESUMO

Impaired mitochondrial respiratory activity contributes to the development of insulin resistance in type 2 diabetes. Metformin, a first-line antidiabetic drug, functions mainly by improving patients' hyperglycemia and insulin resistance. However, its mechanism of action is still not well understood. We show here that pharmacological metformin concentration increases mitochondrial respiration, membrane potential, and ATP levels in hepatocytes and a clinically relevant metformin dose increases liver mitochondrial density and complex 1 activity along with improved hyperglycemia in high-fat- diet (HFD)-fed mice. Metformin, functioning through 5' AMP-activated protein kinase (AMPK), promotes mitochondrial fission to improve mitochondrial respiration and restore the mitochondrial life cycle. Furthermore, HFD-fed-mice with liver-specific knockout of AMPKα1/2 subunits exhibit higher blood glucose levels when treated with metformin. Our results demonstrate that activation of AMPK by metformin improves mitochondrial respiration and hyperglycemia in obesity. We also found that supra-pharmacological metformin concentrations reduce adenine nucleotides, resulting in the halt of mitochondrial respiration. These findings suggest a mechanism for metformin's anti-tumor effects.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hepatócitos/metabolismo , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/genética , Nucleotídeos de Adenina/metabolismo , Animais , Glicemia/metabolismo , Respiração Celular/efeitos dos fármacos , Respiração Celular/genética , Dieta Hiperlipídica , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Técnicas de Inativação de Genes , Hepatócitos/efeitos dos fármacos , Hepatócitos/ultraestrutura , Hiperglicemia/tratamento farmacológico , Hiperglicemia/genética , Hiperglicemia/metabolismo , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/fisiopatologia , Fígado/ultraestrutura , Metformina/análise , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/ultraestrutura , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Quinases/genética
20.
Brain Res Bull ; 151: 12-24, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30922852

RESUMO

P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes divided into two subgroups (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11) and (P2Y12, P2Y13, and P2Y14). The P2Y receptors are expressed in various cell types and play important roles in physiology and pathophysiology including inflammatory responses and neuropathic pain. The antagonism of P2Y12 receptors is used in pharmacotherapy for the prevention and therapy of cardiovascular events. The nucleoside analogue ticagrelor and active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel inhibit platelet P2Y12 receptors and reduce thereby platelet aggregation. The P2Y2 receptor agonist diquafosol is used for the treatment of the dry eye syndrome. The P2Y receptor subtypes differ in their amino acid sequences, their pharmacological profiles and their signaling transduction pathways. Recently, selective receptor ligands have been developed for all subtypes. The published crystal structures of the human P2Y1 and P2Y12 receptors as well as receptor models will facilitate the development of novel drugs for pharmacotherapy.


Assuntos
Receptores Purinérgicos P2Y/metabolismo , Receptores Purinérgicos P2Y/fisiologia , Nucleotídeos de Adenina/metabolismo , Animais , Humanos , Agregação Plaquetária , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Receptores Purinérgicos P2Y/ultraestrutura , Transdução de Sinais , Relação Estrutura-Atividade , Nucleotídeos de Uracila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA