Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
1.
Bioorg Chem ; 153: 107901, 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39447347

RESUMO

Herein, we investigated the stereochemical effects of 4'-methyl substitution on A3 adenosine receptor (A3AR) ligands by synthesizing and evaluating a series of truncated 4'-thioadenosine derivatives featuring 4'-α-methyl, 4'-ß-methyl, and 4',4'-dimethyl substitutions. We successfully synthesized these derivatives, using the stereoselective addition of an organometallic reagent, KSAc-mediated sulfur cyclization, and Vorbrüggen condensation. Binding assays demonstrated that the 4'-ß-methyl substitution conferred the highest affinity for A3AR, with compound 1 h exhibiting a Ki = 3.5 nM, followed by the 4',4'-dimethyl and 4'-α-methyl substitutions. Notably, despite the absence of the 5'-OH group, compound 1 h unexpectedly displayed partial agonism. Computational docking studies indicated that compound 1 h, the ß-methyl derivative, adopted a South conformation and maintained strong interactions within the receptor, including a critical interaction with Thr94, a residue known to be notable for agonistic effects. Conversely, compound 2 h, the α-methyl derivative, also adopted a South conformation but resulted in a flattened structure that hindered interactions with Thr94 and Asn250. The dimethyl derivative 3 h exhibited steric clashes with Thr94, contributing to a reduction in binding affinity. However, the docking results for 3 h indicated a North conformation, suggesting that the change in sugar conformation due to the additional 4'-methyl group altered the angle between the α-methyl group and the sugar plane, enabling binding despite the increased steric bulk. These findings suggest that not only do the substituents and their stereochemistry influence receptor-ligand interactions, but the conformation and the resulting spatial orientation of the substituents also play a crucial role in modulating receptor-ligand interaction. This stereochemical insight offers a valuable framework for the design of new, selective, and potent A3AR ligands, potentially facilitating the development of novel therapeutics for A3AR-related diseases such as glaucoma, inflammation, and cancer.

2.
Life Sci ; 357: 123071, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39307180

RESUMO

Psoriasis is an inflammatory skin disease, that can manifest as different phenotypes, however its most common form is psoriasis vulgaris (plaque psoriasis), characterized by abnormal keratinocyte proliferation, leading to characteristic histopathological signs of acanthosis, hyperkeratosis and parakeratosis. For many years, there has been a debate regarding whether keratinocyte dysfunction leads to immune system dysregulation in psoriasis or vice versa. It is now understood that epidermal hyperplasia results from immune system activation. Besides epidermal hyperplasia, psoriatic skin shows leukocyte infiltration, evident angiogenesis in the papillary dermis, characterized by tortuous, dilated capillaries, as well as oedema. There is substantial early evidence that adenosine is a key mediator of the immune response; it derives from ATP hydrolysis and accumulates into tissue in response to systemic and local stress conditions, hypoxia, metabolic stress, inflammation. Adenosine controls several cell functions by signalling through its 4 receptor subtypes, A1, A2A, A2B and A3. Evidence suggests that adenosine may play a role in psoriasis pathogenesis by controlling several immune cell functions, keratinocyte proliferation, neo-angiogenesis. Expression of adenosine receptor varies in psoriatic skin, and this can significantly impact on tissue homeostasis. Indeed, an altered adenosine receptor profile may contribute to the dysregulation observed in psoriasis, affecting immune responses and inflammatory pathways. Here, we discuss the role of adenosine in regulating the functions of the main cell populations implied in the pathogenesis of psoriasis. Furthermore, we give evidence for adenosine signalling pathway as target for therapeutic intervention in psoriasis.


Assuntos
Adenosina , Psoríase , Transdução de Sinais , Psoríase/metabolismo , Psoríase/patologia , Humanos , Adenosina/metabolismo , Animais , Receptores Purinérgicos P1/metabolismo , Queratinócitos/metabolismo
3.
Front Cell Dev Biol ; 12: 1429736, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188525

RESUMO

Extracellular ATP and its derivates mediate a signaling pathway that might be pharmacologically targeted to treat inflammatory conditions. Extracellular adenosine, the product of ATP hydrolysis by ectonucleotidase enzymes, plays a key role in halting inflammation while promoting immune tolerance. The rate-limiting ectoenzyme ENTPD1/CD39 and the ecto-5'-nucleotidase/CD73 are the prototype members of the ectonucleotidase family, being responsible for ATP degradation into immunosuppressive adenosine. The biological effects of adenosine are mediated via adenosine receptors, a family of G protein-coupled receptors largely expressed on immune cells where they modulate innate and adaptive immune responses. Inflammatory bowel disease (IBD) is a serious inflammatory condition of the gastrointestinal tract, associated with substantial morbidity and often refractory to currently available medications. IBD is linked to altered interactions between the gut microbiota and the immune system in genetically predisposed individuals. A wealth of studies conducted in patients and animal models highlighted the role of various adenosine receptors in the modulation of chronic inflammatory diseases like IBD. In this review, we will discuss the most recent findings on adenosine-mediated immune responses in different cell types, with a focus on IBD and its most common manifestations, Crohn's disease and ulcerative colitis.

4.
Biochem Pharmacol ; 229: 116462, 2024 11.
Artigo em Inglês | MEDLINE | ID: mdl-39102990

RESUMO

Citrulline is a non-proteinogenic amino acid that forms as by-product in nitric oxide (NO) synthesis from arginine and may act in concert with NO as an independent signaling molecule that involves in the mechanism of vascular smooth muscle vasodilation. In this study we examined the effects of citrulline on pulmonary artery smooth muscles. Experimental design comprised outward potassium currents measurements in enzymatically isolated rat pulmonary artery smooth muscle (PASMc) cells using whole-cell patch clamp technique, isometric contractile force recordings on rat pulmonary artery rings and method of molecular docking simulation. Citrulline in a concentration 10-9-10-5 M relaxed phenylephrine (PHE)-preactivated SM of rat pulmonary artery in a dose-dependent manner (EC50 0,67 µM). This citrulline-induced relaxation was dependent on an intact endothelium. Bath application of citrulline (10-8-10-5 M) on isolated PASMc induced a significant increase in the amplitude of outward potassium current (Ik). The adenosine antagonist caffeine (10-6 M) effectively blocked both the citrulline-induced relaxation response and Ik increment. Molecular docking modeling suggests that caffeine blocking the potent activity of citrulline results from competitive interactions at the A2 adenosine receptor binding site. In summary, our data suggest that citrulline, released with NO at low concentrations, can effectively interact with adenosine receptors in smooth muscle cells, causing their relaxation, indicating surprising interaction between NO and adenosine pathways.


Assuntos
Citrulina , Simulação de Acoplamento Molecular , Animais , Citrulina/farmacologia , Citrulina/metabolismo , Ratos , Masculino , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Ratos Wistar , Receptores Purinérgicos P1/metabolismo , Relação Dose-Resposta a Droga
5.
Bioorg Med Chem ; 112: 117881, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39178585

RESUMO

A series of 2,6,9-trisubstituted purine derivatives were designed and synthesized with diverse chemical moieties. Through a comprehensive biological evaluation, we identified 4-(6-(methylamino)-2-(phenylethynyl)-9H-purin-9-yl)phenol (6a) as a promising A2AAR antagonist with potent antifibrotic properties. Compound 6a demonstrated significant efficacy in inhibiting CRE promoter activity and in reducing the expression of fibrogenic marker proteins and downstream effectors of A2AAR activation, surpassing the A2AAR antagonist ZM241385 and initial screening hits, 9-benzyl-N-methyl-2-(phenylethynyl)-9H-purin-6-amine (5a) and 9-((benzyloxy)methyl)-N-methyl-2-(phenylethynyl)-9H-purin-6-amine (5j). Further validation revealed that compound 6a effectively inhibited fibrogenic marker proteins induced by A2AAR overexpression or TGF-ß1 treatment in hepatic stellate cells, alongside reducing PKA and CREB phosphorylation. These findings suggest that compound 6a exerts its antifibrotic action by modulating the cAMP/PKA/CREB pathway through A2AAR inhibition. Overall, our study provides valuable insights for the development of novel therapeutics that target hepatic fibrosis through A2AAR antagonism.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Antifibróticos , Desenho de Fármacos , Purinas , Humanos , Antifibróticos/farmacologia , Antifibróticos/síntese química , Antifibróticos/química , Purinas/farmacologia , Purinas/química , Purinas/síntese química , Relação Estrutura-Atividade , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/química , Estrutura Molecular , Receptor A2A de Adenosina/metabolismo , Relação Dose-Resposta a Droga , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Animais
6.
Molecules ; 29(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124905

RESUMO

Cancer, a complex array of diseases, involves the unbridled proliferation and dissemination of aberrant cells in the body, forming tumors that can infiltrate neighboring tissues and metastasize to distant sites. With over 200 types, each cancer has unique attributes, risks, and treatment avenues. Therapeutic options encompass surgery, chemotherapy, radiation therapy, hormone therapy, immunotherapy, targeted therapy, or a blend of these methods. Yet, these treatments face challenges like late-stage diagnoses, tumor diversity, severe side effects, drug resistance, targeted drug delivery hurdles, and cost barriers. Despite these hurdles, advancements in cancer research, encompassing biology, genetics, and treatment, have enhanced early detection methods, treatment options, and survival rates. Adenosine receptors (ARs), including A1, A2A, A2B, and A3 subtypes, exhibit diverse roles in cancer progression, sometimes promoting or inhibiting tumor growth depending on the receptor subtype, cancer type, and tumor microenvironment. Research on AR ligands has revealed promising anticancer effects in lab studies and animal models, hinting at their potential as cancer therapeutics. Understanding the intricate signaling pathways and interactions of adenosine receptors in cancer is pivotal for crafting targeted therapies that optimize benefits while mitigating drawbacks. This review delves into each adenosine receptor subtype's distinct roles and signaling pathways in cancer, shedding light on their potential as targets for improving cancer treatment outcomes.


Assuntos
Neoplasias , Receptores Purinérgicos P1 , Transdução de Sinais , Humanos , Neoplasias/metabolismo , Neoplasias/terapia , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Receptores Purinérgicos P1/metabolismo , Animais , Microambiente Tumoral , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Terapia de Alvo Molecular
7.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39201591

RESUMO

Caffeine is the most popular and widely consumed behaviourally active substance in the world. This review describes the influence of caffeine on the cardiovascular system, with a special focus on blood platelets. For many years, caffeine was thought to have a negative effect on the cardiovascular system mainly due to increasing blood pressure. However, more recent data suggest that habitual caffeine consumption may reduce the risk of cardiovascular disease and hypertension. This could be a significant finding as cardiovascular disease is the leading cause of death worldwide. Caffeine is known to inhibit A1 adenosine receptors, through which it is believed to modulate inter alia coronary blood flow, total peripheral resistance, diuresis, and heart rate. It has been shown that coffee possesses antiplatelet activity, but depending on the dose and the term of its use, caffeine may stimulate or inhibit platelet reactivity. Also, chronic exposure to caffeine may sensitize or upregulate the adenosine receptors in platelets causing increased cAMP accumulation and anti-aggregatory effects and decrease calcium levels elicited by AR agonists. The search for new, selective, and safe AR agonists is one of the new strategies for improving antiplatelet therapy involving targeting multiple pathways of platelet activation. Therefore, this review examines the AR-dependent impact of caffeine on blood platelets in the presence of adenosine receptor agonists.


Assuntos
Plaquetas , Cafeína , Receptores Purinérgicos P1 , Humanos , Cafeína/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Receptores Purinérgicos P1/metabolismo , Animais , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Ativação Plaquetária/efeitos dos fármacos
8.
Drug Chem Toxicol ; : 1-10, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39165027

RESUMO

Recent studies suggest that immunological and inflammatory responses in cardiovascular disorders, such as hypertension, myocardial infarction, ischemia injury, heart failure, arrhythmias, and atherosclerosis, may be affected by changes in the adenosine system. Pharmacological modulation of adenosine occurs through its receptor subtypes. In numerous preclinical studies, the activation of adenosine receptor 2A (A2AR) or the blockade of adenosine receptor 2B (A2BR) has shown promising results against cardiovascular diseases. This in silico study aimed to identify potential natural compounds that can activate A2AR or block A2BR without causing toxicity. Natural compounds were screened using COlleCtion of Open Natural ProdUcTs (COCONUT) or Natural Product Activity and Species Source Database (NPASS) databases to find agonists for A2AR or an antagonists/inverse agonists for A2BR. These compounds were then pre-filtered based on their toxicity profiles. The remaining compounds were subjected to molecular docking against A2AR and A2BR followed by molecular dynamics simulations were conducted. Finally, selected compounds' ADMET properties were determined using ADMETlab 2.0 web tool. Ultimately, one novel natural compound with potential agonistic activity (COCONUT IDs: CNP0450901) for A2AR and one antagonist/inverse agonist (rauwolscine) for A2BR were identified.

9.
Prog Brain Res ; 289: 57-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39168582

RESUMO

Multiple Sclerosis (MS) is a long-term autoimmune disorder affecting the central nervous system, marked by inflammation, demyelination, and neurodegeneration. While the exact cause of MS remains unknown, recent research indicates that environmental factors, particularly diet, may influence the disease's risk and progression. As a result, the potential neuroprotective effects of coffee, one of the most popular beverages worldwide, have garnered significant attention due to its rich content of bioactive compounds. This chapter explores the impact of coffee consumption on patients with Multiple Sclerosis, highlighting how coffee compounds like caffeine, polyphenols, and diterpenes can reduce inflammation and oxidative stress while enhancing neural function. It highlights caffeine's effect in regulating adenosine receptors, specifically A1R and A2AR, which play important roles in neuroinflammation and neuroprotection in MS. The dual role of microglial cells, which promote inflammation while also aiding neuroprotection, is also highlighted concerning caffeine's effects. Furthermore, the potential of A2AR as a therapeutic target in MS and the non-A2AR-dependent neuroprotective benefits of coffee. In this chapter we suggest that the consumption of coffee has no harmful effect on an MS patient and to a larger extent on public health, and informs future research directions and clinical practice, ultimately improving outcomes for individuals living with MS.


Assuntos
Cafeína , Café , Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Cafeína/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais
10.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000068

RESUMO

Observed and recorded in various forms since ancient times, 'syncope' is often popularly called 'fainting', such that the two terms are used synonymously. Syncope/fainting can be caused by a variety of conditions, including but not limited to head injuries, vertigo, and oxygen deficiency. Here, we draw on a large body of literature on syncope, including the role of a recently discovered set of specialized mammalian neurons. Although the etiology of syncope still remains a mystery, we have attempted to provide a comprehensive account of what is known and what still needs to be performed. Much of our understanding of syncope is owing to studies in the laboratory mouse, whereas evidence from human patients remains scarce. Interestingly, the cardioinhibitory Bezold-Jarisch reflex, recognized in the early 1900s, has an intriguing similarity to-and forms the basis of-syncope. In this review, we have integrated this minimal model into the modern view of the brain-neuron-heart signaling loop of syncope, to which several signaling events contribute. Molecular signaling is our major focus here, presented in terms of a normal heart, and thus, syncope due to abnormal or weak heart activity is not discussed in detail. In addition, we have offered possible directions for clinical intervention based on this model. Overall, this article is expected to generate interest in chronic vertigo and syncope/fainting, an enigmatic condition that affects most humans at some point in life; it is also hoped that this may lead to a mechanism-based clinical intervention in the future.


Assuntos
Encéfalo , Coração , Síncope , Humanos , Síncope/fisiopatologia , Animais , Coração/fisiopatologia , Encéfalo/fisiopatologia , Encéfalo/metabolismo , Neurônios/metabolismo , Transdução de Sinais
11.
Nutrients ; 16(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892725

RESUMO

Xanthohumol (Xn) is an antioxidant flavonoid mainly extracted from hops (Humulus lupulus), one of the main ingredients of beer. As with other bioactive compounds, their therapeutic potential against different diseases has been tested, one of which is Alzheimer's disease (AD). Adenosine is a neuromodulatory nucleoside that acts through four different G protein-coupled receptors: A1 and A3, which inhibit the adenylyl cyclases (AC) pathway, and A2A and A2B, which stimulate this activity, causing either a decrease or an increase, respectively, in the release of excitatory neurotransmitters such as glutamate. This adenosinergic pathway, which is altered in AD, could be involved in the excitotoxicity process. Therefore, the aim of this work is to describe the effect of Xn on the adenosinergic pathway using cell lines. For this purpose, two different cellular models, rat glioma C6 and human neuroblastoma SH-SY5Y, were exposed to a non-cytotoxic 10 µM Xn concentration. Adenosine A1 and A2A, receptor levels, and activities related to the adenosine pathway, such as adenylate cyclase, protein kinase A, and 5'-nucleotidase, were analyzed. The adenosine A1 receptor was significantly increased after Xn exposure, while no changes in A2A receptor membrane levels or AC activity were reported. Regarding 5'-nucleotidases, modulation of their activity by Xn was noted since CD73, the extracellular membrane attached to 5'-nucleotidase, was significantly decreased in the C6 cell line. In conclusion, here we describe a novel pathway in which the bioactive flavonoid Xn could have potentially beneficial effects on AD as it increases membrane A1 receptors while modulating enzymes related to the adenosine pathway in cell cultures.


Assuntos
Adenosina , Flavonoides , Glioma , Humulus , Neuroblastoma , Propiofenonas , Receptor A1 de Adenosina , Humanos , Flavonoides/farmacologia , Ratos , Propiofenonas/farmacologia , Animais , Adenosina/metabolismo , Adenosina/farmacologia , Linhagem Celular Tumoral , Humulus/química , Neuroblastoma/metabolismo , Neuroblastoma/tratamento farmacológico , Glioma/metabolismo , Glioma/tratamento farmacológico , Receptor A1 de Adenosina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Receptor A2A de Adenosina/metabolismo
12.
Biomed Pharmacother ; 177: 116996, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897158

RESUMO

Metabolic syndromes (e.g., obesity) are characterized by insulin resistance, chronic inflammation, impaired glucose metabolism, and dyslipidemia. Recently, patients with metabolic syndromes have experienced not only metabolic problems but also neuropathological issues, including cognitive impairment. Several studies have reported blood-brain barrier (BBB) disruption and insulin resistance in the brain of patients with obesity and diabetes. Adenosine, a purine nucleoside, is known to regulate various cellular responses (e.g., the neuroinflammatory response) by binding with adenosine receptors in the central nervous system (CNS). Adenosine has four known receptors: A1R, A2AR, A2BR, and A3R. These receptors play distinct roles in various physiological and pathological processes in the brain, including endothelial cell homeostasis, insulin sensitivity, microglial activation, lipid metabolism, immune cell infiltration, and synaptic plasticity. Here, we review the recent findings on the role of adenosine receptor-mediated signaling in neuropathological issues related to metabolic imbalance. We highlight the importance of adenosine signaling in the development of therapeutic solutions for neuropathological issues in patients with metabolic syndromes.


Assuntos
Adenosina , Síndrome Metabólica , Receptores Purinérgicos P1 , Humanos , Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Animais , Síndrome Metabólica/metabolismo , Transdução de Sinais , Doenças do Sistema Nervoso/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Barreira Hematoencefálica/metabolismo , Resistência à Insulina/fisiologia
13.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891997

RESUMO

Inflammatory skin diseases highlight inflammation as a central driver of skin pathologies, involving a multiplicity of mediators and cell types, including immune and non-immune cells. Adenosine, a ubiquitous endogenous immune modulator, generated from adenosine triphosphate (ATP), acts via four G protein-coupled receptors (A1, A2A, A2B, and A3). Given the widespread expression of those receptors and their regulatory effects on multiple immune signaling pathways, targeting adenosine receptors emerges as a compelling strategy for anti-inflammatory intervention. Animal models of psoriasis, contact hypersensitivity (CHS), and other dermatitis have elucidated the involvement of adenosine receptors in the pathogenesis of these conditions. Targeting adenosine receptors is effective in attenuating inflammation and remodeling the epidermal structure, potentially showing synergistic effects with fewer adverse effects when combined with conventional therapies. What is noteworthy are the promising outcomes observed with A2A agonists in animal models and ongoing clinical trials investigating A3 agonists, underscoring a potential therapeutic approach for the management of inflammatory skin disorders.


Assuntos
Adenosina , Receptores Purinérgicos P1 , Humanos , Animais , Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Dermatopatias/tratamento farmacológico , Dermatopatias/metabolismo , Dermatite/metabolismo , Dermatite/tratamento farmacológico , Dermatite/patologia , Dermatite/etiologia , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Transdução de Sinais , Anti-Inflamatórios/uso terapêutico
14.
Chem Biodivers ; 21(7): e202400050, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719741

RESUMO

Caffeine and purine derivatives represent interesting chemical moieties, which show various biological activities. Caffeine is an alkaloid that belongs to the family of methylxanthine alkaloids and it is present in food, beverages, and drugs. Coffee, tea, and some other beverages are a major source of caffeine in the human diet. Caffeine can be extracted from tea or coffee using hot water with dichloromethane or chloroform and the leftover is known as decaffeinated coffee or tea. Caffeine and its derivatives were synthesized via different procedures on small and large scales. It competitively antagonizes the adenosine receptors (ARs), which are G protein-coupled receptors largely distributed in the human body, including the heart, vessels, brain, and kidneys. Recently, many reports showed the effect of caffeine derivatives in the treatment of many diseases such as Alzheimer's, asthma, parkinsonism, and cancer. Also, it is used as an antioxidant, anti-inflammatory, analgesic, and hypocholesterolemic agent. The present review article discusses the synthesis, reactivity, and biological and pharmacological properties of caffeine and its derivatives. The biosynthesis and biotransformation of caffeine in coffee and tea leaves and the human body were summarized in the review.


Assuntos
Cafeína , Purinas , Animais , Humanos , Cafeína/química , Cafeína/metabolismo , Cafeína/farmacologia , Café/química , Café/metabolismo , Purinas/química , Purinas/biossíntese , Purinas/farmacologia , Purinas/metabolismo
15.
Cells ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38786068

RESUMO

Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We found that A2BAR antagonism preserves the arrangement of podocytes on the glomerular filtration barrier, reduces diabetes-induced focal adhesion kinase (FAK) activation, and attenuates podocyte foot processes effacement. In spreading assays using human podocytes in vitro, adenosine enhanced the rate of cell body expansion on laminin-coated glass and promoted peripheral pY397-FAK subcellular distribution, while selective A2BAR antagonism impeded these effects and attenuated the migratory capability of podocytes. Increased phosphorylation of the Myosin2A light chain accompanied the effects of adenosine. Furthermore, when the A2BAR was stimulated, the cells expanded more broadly and more staining of pS19 myosin was detected which co-localized with actin cables, suggesting increased contractility potential in cells planted onto a matrix with a stiffness similar to of the glomerular basement membrane. We conclude that A2BAR is involved in adhesion dynamics and contractile actin bundle formation, leading to podocyte foot processes effacement. The antagonism of this receptor may be an alternative to the intervention of glomerular barrier deterioration and proteinuria in the diabetic kidney disease.


Assuntos
Adesão Celular , Diabetes Mellitus Experimental , Proteína-Tirosina Quinases de Adesão Focal , Podócitos , Proteinúria , Receptor A2B de Adenosina , Animais , Humanos , Masculino , Ratos , Adenosina/metabolismo , Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/tratamento farmacológico , Proteína-Tirosina Quinases de Adesão Focal/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Cadeias Leves de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/patologia , Proteinúria/metabolismo , Receptor A2B de Adenosina/efeitos dos fármacos , Receptor A2B de Adenosina/metabolismo
16.
Acta Pharm Sin B ; 14(5): 1951-1964, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799637

RESUMO

Adenosine (Ado) is significantly elevated in the tumor microenvironment (TME) compared to normal tissues. It binds to adenosine receptors (AdoRs), suppressing tumor antigen presentation and immune cell activation, thereby inhibiting tumor adaptive immunity. Ado downregulates major histocompatibility complex II (MHC II) and co-stimulatory factors on dendritic cells (DCs) and macrophages, inhibiting antigen presentation. It suppresses anti-tumor cytokine secretion and T cell activation by disrupting T cell receptor (TCR) binding and signal transduction. Ado also inhibits chemokine secretion and KCa3.1 channel activity, impeding effector T cell trafficking and infiltration into the tumor site. Furthermore, Ado diminishes T cell cytotoxicity against tumor cells by promoting immune-suppressive cytokine secretion, upregulating immune checkpoint proteins, and enhancing immune-suppressive cell activity. Reducing Ado production in the TME can significantly enhance anti-tumor immune responses and improve the efficacy of other immunotherapies. Preclinical and clinical development of inhibitors targeting Ado generation or AdoRs is underway. Therefore, this article will summarize and analyze the inhibitory effects and molecular mechanisms of Ado on tumor adaptive immunity, as well as provide an overview of the latest advancements in targeting Ado pathways in anti-tumor immune responses.

17.
Pharm Biol ; 62(1): 456-471, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38773737

RESUMO

CONTEXT: The mechanisms of Traditional Chinese Medicine (TCM) Guizhi-Gancao Decoction (GGD) remain unknown. OBJECTIVE: This study explores the mechanisms of GGD against cardiac hypertrophy. MATERIALS AND METHODS: Network pharmacology analysis was carried out to identify the potential targets of GGD. In vivo experiments, C57BL/6J mice were divided into Con, phenylephrine (PE, 10 mg/kg/d), 2-chloroadenosine (CADO, the stable analogue of adenosine, 2 mg/kg/d), GGD (5.4 g/kg/d) and GGD (5.4 g/kg/d) + CGS15943 (a nonselective adenosine receptor antagonist, 4 mg/kg/d). In vitro experiments, primary neonatal rat cardiomyocytes (NRCM) were divided into Con, PE (100 µM), CADO (5 µM), GGD (10-5 g/mL) and GGD (10-5 g/mL) + CGS15943 (5 µM). Ultrasound, H&E and Masson staining, hypertrophic genes expression and cell surface area were conducted to verify the GGD efficacy. Adenosine receptors (ADORs) expression were tested via real-time polymerase chain reaction (PCR), western blotting and immunofluorescence analysis. RESULTS: Network pharmacology identified ADORs among those of the core targets of GGD. In vitro experiments demonstrated that GGD attenuated PE-induced increased surface area (with an EC50 of 5.484 × 10-6 g/mL). In vivo data shown that GGD attenuated PE-induced ventricular wall thickening. In vitro and in vivo data indicated that GGD alleviated PE-induced hypertrophic gene expression (e.g., ANP, BNP and MYH7/MYH6), A1AR over-expression and A2aAR down-expression. Moreover, CADO exerts effects similar to GGD, whereas CGS15943 eliminated most effects of GGD. DISCUSSION AND CONCLUSIONS: Our findings suggest the mechanism by which GGD inhibits cardiac hypertrophy, highlighting regulation of ADORs as a potential therapeutic strategy for HF.


Assuntos
Cardiomegalia , Medicamentos de Ervas Chinesas , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Farmacologia em Rede , Fenilefrina , Animais , Medicamentos de Ervas Chinesas/farmacologia , Fenilefrina/farmacologia , Cardiomegalia/tratamento farmacológico , Cardiomegalia/induzido quimicamente , Camundongos , Masculino , Ratos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Ratos Sprague-Dawley , Células Cultivadas , Modelos Animais de Doenças , Medicina Tradicional Chinesa/métodos
18.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612476

RESUMO

The review introduces the stages of formation and experimental confirmation of the hypothesis regarding the mutual potentiation of neuroprotective effects of hypoxia and hypercapnia during their combined influence (hypercapnic hypoxia). The main focus is on the mechanisms and signaling pathways involved in the formation of ischemic tolerance in the brain during intermittent hypercapnic hypoxia. Importantly, the combined effect of hypoxia and hypercapnia exerts a more pronounced neuroprotective effect compared to their separate application. Some signaling systems are associated with the predominance of the hypoxic stimulus (HIF-1α, A1 receptors), while others (NF-κB, antioxidant activity, inhibition of apoptosis, maintenance of selective blood-brain barrier permeability) are mainly modulated by hypercapnia. Most of the molecular and cellular mechanisms involved in the formation of brain tolerance to ischemia are due to the contribution of both excess carbon dioxide and oxygen deficiency (ATP-dependent potassium channels, chaperones, endoplasmic reticulum stress, mitochondrial metabolism reprogramming). Overall, experimental studies indicate the dominance of hypercapnia in the neuroprotective effect of its combined action with hypoxia. Recent clinical studies have demonstrated the effectiveness of hypercapnic-hypoxic training in the treatment of childhood cerebral palsy and diabetic polyneuropathy in children. Combining hypercapnic hypoxia with pharmacological modulators of neuro/cardio/cytoprotection signaling pathways is likely to be promising for translating experimental research into clinical medicine.


Assuntos
Neuroproteção , Fármacos Neuroprotetores , Criança , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Hipercapnia , Dióxido de Carbono , Hipóxia
19.
Glia ; 72(6): 1096-1116, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38482984

RESUMO

The medial prefrontal cortex (mPFC) is involved in cognitive functions such as working memory. Astrocytic cannabinoid type 1 receptor (CB1R) induces cytosolic calcium (Ca2+) concentration changes with an impact on neuronal function. mPFC astrocytes also express adenosine A1 and A2A receptors (A1R, A2AR), being unknown the crosstalk between CB1R and adenosine receptors in these cells. We show here that a further level of regulation of astrocyte Ca2+ signaling occurs through CB1R-A2AR or CB1R-A1R heteromers that ultimately impact mPFC synaptic plasticity. CB1R-mediated Ca2+ transients increased and decreased when A1R and A2AR were activated, respectively, unveiling adenosine receptors as modulators of astrocytic CB1R. CB1R activation leads to an enhancement of long-term potentiation (LTP) in the mPFC, under the control of A1R but not of A2AR. Notably, in IP3R2KO mice, that do not show astrocytic Ca2+ level elevations, CB1R activation decreases LTP, which is not modified by A1R or A2AR. The present work suggests that CB1R has a homeostatic role on mPFC LTP, under the control of A1R, probably due to physical crosstalk between these receptors in astrocytes that ultimately alters CB1R Ca2+ signaling.


Assuntos
Astrócitos , Canabinoides , Camundongos , Animais , Receptores de Canabinoides , Receptor A2A de Adenosina , Plasticidade Neuronal , Receptor CB1 de Canabinoide/genética
20.
Brain Res ; 1833: 148866, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494098

RESUMO

Caffeine has been extensively studied in the context of CNS pathologies as many researchers have shown that consuming it reduces pro-inflammatory biomarkers, potentially delaying the progression of neurodegenerative pathologies. Several lines of evidence suggest that adenosine receptors, especially A1 and A2A receptors, are the main targets of its neuroprotective action. We found that caffeine pretreatment 15 min before LPS administration reduced the expression of Il1b in the hippocampus and striatum. The harmful modulation of caffeine-induced inflammatory response involved the downregulation of the expression of A2A receptors, especially in the hippocampus. Caffeine treatment alone promoted the downregulation of the adenosinergic receptor Adora2A; however, this promotion effect was reversed by LPS. Although administering caffeine increased the expression of the enzymes DNA methyltransferases 1 and 3A and decreased the expression of the demethylase enzyme Tet1, this effect was reversed by LPS in the hippocampus of mice that were administered Caffeine + LPS, relative to the basal condition; no significant differences were observed in the methylation status of the promoter regions of adenosine receptors. Finally, the bioinformatics analysis of the expanded network demonstrated the following results: the Adora2B gene connects the extended networks of the adenosine receptors Adora1 and Adora2A; the Mapk3 and Esr1 genes connect the extended Adora1 network; the Mapk4 and Arrb2 genes connect the extended Adora2A network with the extended network of the proinflammatory cytokine Il1ß. These results indicated that the anti-inflammatory effects of acute caffeine administration in the hippocampus may be mediated by a complex network of interdependencies between the Adora2B and Adora2A genes.


Assuntos
Cafeína , Regulação para Baixo , Hipocampo , Lipopolissacarídeos , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Receptor A2A de Adenosina , Animais , Lipopolissacarídeos/farmacologia , Receptor A2A de Adenosina/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Cafeína/farmacologia , Masculino , Regulação para Baixo/efeitos dos fármacos , Camundongos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/induzido quimicamente , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Interleucina-1beta/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA