RESUMO
Physisorption-based separation processes represents a promising alternative to the conventional thermally driven methods, such as cryogenic separation. However, a significant challenge lies in balancing the trade-off between adsorption capacity and selectivity of adsorbents. In this study, we introduce a novel fluorinated-anion pillared metal-organic frameworks (APMOFs) featuring a dual-pore architecture, constructed using a pyridine-oxazole bifunctional ligand. The inherent low symmetry of the ligand leads to significant distortion of the fluorinated-anion pillars, resulting in a distinctive type of APMOFs characterized by dual-pore architecture. On pore structure with constrict pore width is enriched with a high density of anion fluorinated pillars, offering numerous active sites advantageous for enhancing separation selectivity. Concurrently, the other pore structure exhibits larger dimensions, facilitating increased gas molecule accommodation and thereby augmenting adsorption capacity. Gas sorption studies reveal a substantial C2H2 adsorption capacity and a high C2H2/CO2 separation selectivity. Breakthrough experiments confirm its exceptional separation performance, while theoretical investigations elucidate a sequential adsorption process within these APMOFs, underscoring the efficacy of this strategy in overcoming trade-off limits in adsorbents.
RESUMO
Constructing green and sustainable advanced oxidation processes (AOPs) for the degradation of organic contaminants is of great importance but still remains big challenge. In this work, an effective AOP (MnFe2O4-activated periodate, MnFe2O4/PI) was established and investigated for the oxidation of organic contaminants. To avoid the severe aggregation of MnFe2O4 nanoparticles, a hybrid MnFe2O4-biochar catalyst (MnFe2O4-BC) was further synthesized by anchoring MnFe2O4 nanoparticles on chemically inert biochar substrate. Intriguingly, MnFe2O4-BC/PI exhibited different selectivity towards organic contaminants compared with MnFe2O4/PI, revealing that biochar not only served as the substrate, but also directly participated into the oxidation process. Electron-transfer mechanism was comprehensively elucidated to be responsible for the abatement of pollutants in both MnFe2O4/PI and MnFe2O4-BC/PI. The surface oxygen vacancies (OVs) of MnFe2O4 were identified as the active sites for the formation of high potential complexes MnFe2O4-PI*, which could directly and indirectly degrade the organic pollutants. For the hybrid MnFe2O4-BC catalyst, biochar played multiple roles: (i) substrate, (ii) provided massive adsorption sites, (iii) electron-transfer mediator. The differences in selectivity of MnFe2O4/PI and MnFe2O4-BC/PI were determined by the adsorption affinity between biochar substrate and organics. Overall, the findings of this study expand the knowledge on the selectivity of PI-triggered AOPs.
Assuntos
Carvão Vegetal , Compostos Férricos , Compostos de Manganês , Oxirredução , Carvão Vegetal/química , Compostos de Manganês/química , Compostos Férricos/química , Catálise , Transporte de Elétrons , Poluentes Químicos da Água/químicaRESUMO
The ammonia nitrogen in arable land soil is susceptible to environmental and anthropogenic influences, leading to nutrient loss. This study utilized indoor soil column leaching experiments, combined with adsorption mathematical models, traditional characterization methods, and molecular dynamics simulation methods, to analyze the effects of biochar on changes in ammonium ions in different soil layers and leachate of arable land soil. The study found that applying biochar at a ratio of 10 % to arable land soil could effectively increase the ammonium ion content in the 0-10 cm soil layer by 1.57-2.36 times and reduce loss by 44.83-72.27 %. The adsorption and fixation process of biochar is controlled by electrostatic attraction and ion exchange processes. Interactions between molecules, electrostatic forces, and system internal energy also have certain effects on the process. Near the structure of C6H12O6, there are low-energy adsorption sites for ammonium ions, which can provide the energy required for electrostatic attraction. Structures such as C5H10O5, C-S-H, C-SO3, and C4H7NO4 respectively play roles in physical adsorption or chemical adsorption through displacement reactions, electron exchange, and other forms. The adsorption free energy is -394,590.84 kcal/mol, indicating stable adsorption and a process that tends to interact with the biochar surface. This study addresses issues such as the easy loss of ammonia nitrogen in arable land soil and the unclear adsorption mechanism of biochar on ammonium ions, providing a theoretical basis for the field of environmental science.
RESUMO
Purifying C2H6/C3H8 from a ternary natural gas mixture through adsorption separation is an important but challenging process in the petrochemical industry. To address this challenge, the industry is exploring effective strategies for designing high-performance adsorbents. In this study, we present two metal-organic frameworks (MOFs), DMOF-TF and DMOF-(CF3)2, which have fluorinated pores obtained by substituting linker ligands in the host material. This pore engineering strategy not only provides suitable pore confinement but also enhances the adsorption capacities for C2H6/C3H8 by providing additional binding sites. Theoretical calculations and transient breakthrough experiments show that the introduction of F atoms not only improves the efficiency of natural gas separation but also provides multiple adsorption sites for C2H6/C3H8-framework interactions.
RESUMO
Porous materials with d3 electronic configuration open metal sites have been proved to be effective adsorbents for N2 capture and N2 /O2 separation. However, the reported materials remain challenging to address the trade-off between adsorption capacity and selectivity. Herein, we report a robust MOF, MIL-102Cr, that features two binding sites, can synergistically afford strong interactions for N2 capture. The synergistic adsorption site exhibits a benchmark Qst of 45.0â kJ mol-1 for N2 among the Cr-based MOFs, a record-high volumetric N2 uptake (31.38â cm3 cm-3 ), and highest N2 /O2 selectivity (13.11) at 298â K and 1.0â bar. Breakthrough experiments reveal that MIL-102Cr can efficiently capture N2 from a 79/21â N2 /O2 mixture, providing a record 99.99 % pure O2 productivity of 0.75â mmol g-1 . In situ infrared spectroscopy and computational modelling studies revealed that a synergistic adsorption effect by open Cr(III) and fluorine sites was accountable for the strong interactions between the MOF and N2 .
RESUMO
Heteroatom doping, involving the introduction of atoms with distinct electronegativity into carbon materials, has emerged as an effective approach to optimize their charge distribution. In this study, we designed a strategy to synthesize in-situ Mn, N co-doped carbon nanospheres (Mn-NC) through the polycondensation of 2,6-diaminopyridine and formaldehyde in synchronization with Mn2+ chelation to form Mn-polytriazine precursor, followed by calcination to form carbonaceous solid. Then Mn-NC was fabricated into a capacitive deionization (CDI) electrode for the selective removal of uranium ions (U (VI)), which is commonly found in radioactive water. Interestingly, Mn-NC exhibited good selectivity for UO22+ capture with a demonstrated adsorption capacity of approximately 194 mg/g @1.8 V. The systematic analysis of the adsorption mechanism of UO22+ revealed that N dopants within Mn-NC can coordinate with the U (VI) ions, thereby facilitating the removal process. Our study presents a straightforward and convenient strategy for removing UO22+ ions by harnessing the coordination effect, eliminating the requirement for pore size control.
RESUMO
This study addresses a fundamental question in surface science: the adsorption of halogens on metal surfaces. Using synchrotron radiation-based high-resolution X-ray photoelectron spectroscopy (XPS), temperature-programmed XPS, low-energy electron diffraction (LEED) and density functional theory (DFT) calculations, we investigated the adsorption and thermal stability of bromine on Rh(111) in detail. The adsorption of elemental bromine on Rh(111) at 170â K was followed inâ situ by XPS in the Br 3d region, revealing two individual, coverage-dependent species, which we assign to fcc hollow- and bridge-bound atomic bromine. In addition, we find a significant shift in binding energy upon increasing coverage due to adsorbate-adsorbate interactions. Subsequent heating shows a high thermal stability of bromine on Rh(111) up to above 1000â K, indicating strong covalent bonding. To complement the XPS data, LEED was used to study the long-range order of bromine on Rh(111): we observe a (â3×â3)R30° structure for low coverages (≤0.33â ML) and a star-shaped compression structure for higher coverages (0.33-0.43â ML). Combining LEED and DFT calculations, we were able to visualize bromine adsorption on Rh(111) in real space for varying coverages.
RESUMO
Phosphorus (P) removal from wastewater is critical for ecosystem operation and resource recovery. To facilitate the recycling of the used absorbents through balancing their adsorption and desorption performance on P, in this work, a novel porous magnetic La(OH)3-loaded MAPTAC/chitosan (CTS)/polyethyleneimine (PEI) ternary composite hydrogel (p-MTCH-La(OH)3) with enhanced bifunctional adsorption sites was synthesized by simultaneous dissolution of pre-embedded CaCO3 and CTS powder, followed by grafting PEI and loading La. Hierarchical porous channels promoted good dispersion of La(OH)3, bringing an excellent P adsorption capacity of 107.23 ± 4.96 mg P/g at neutral condition. PEI grafted with CTS increased the surface charge and enhanced the electrostatic attraction, which facilitated the desorption of P. The porous structure and abundant active sites also facilitated rapid adsorption with an adsorption rate constant of 0.1 g mg-1 h-1. p-MTCH-La(OH)3 maintained effective P adsorption despite co-existence with competing substances and after 5 cycles. Further mechanistic analysis indicated that La-P inner sphere complexation and LaPO4 crystalline transformation were the main pathways for P removal. However, electrostatic interactions contributed 17.5%-46.7% of the adsorption amount during the first 30 min of rapid adsorption, enabling 92.8% of the adsorbed P at this stage to be desorbed by alkaline solution. Based on the variations of adsorption and desorption capacity with adsorption time, a rapid unsaturated adsorption of 1-2 h was proposed to facilitate the recycling of the adsorbent. This study proposed a method to promote P adsorption and desorption by enhancing bifunctional adsorption sites, and proved that p-MTCH-La(OH)3 is a promising phosphate adsorbent.
Assuntos
Fósforo , Poluentes Químicos da Água , Hidrogéis , Lantânio/química , Porosidade , Ecossistema , Fosfatos/química , Adsorção , Cátions , Cinética , Poluentes Químicos da Água/químicaRESUMO
In this study, the selective adsorption of aromatic compounds on mesoporous MIL-53(Al) was investigated, and followed the order: Biphenyl (Biph) > Triclosan (TCS) > Bisphenol A (BPA) > Pyrogallol (Pyro) > Catechol (Cate) > Phenol (Phen), and exhibited high selectivity toward TCS in binary compounds. In addition to hydrophobicity and hydrogen bonding, π-π interaction/stacking predominated, and more evidently with double benzene rings. TCS-containing halogens could increase π interaction on the benzene rings via forming Cl-π stacking with MIL-53(Al). Moreover, site energy distribution confirmed that complementary adsorption mainly occurred in the Phen/TCS system, as evidenced by ΔQpri (the decreased solid-phase TCS concentration of the primary adsorbate) < Qsec (the solid-phase concentrations of the competitor (Phen)). In contrast, competitive sorption occurred in the BPA/TCS and Biph/TCS systems within 30 min due to ΔQpri = Qsec, followed by substitution adsorption in the BPA/TCS system, but not for the Biph/TCS system, likely attributed to the magnitude of energy gaps (Eg) and bond energy of TCS (1.80 eV, 362 kJ/mol) fallen between BPA (1.74 eV, 332 kJ/mol) and Biph (1.99 eV, 518 kJ/mol) according to the density-functional theory of Gaussian models. Biph with a more stable electronic homeostasis than TCS lead to the occurrence of substitution adsorption in the TCS/BPA system, but not in the TCS/Biph system. This study provides insight into the mechanisms of different aromatic compounds on MIL-53(Al).
Assuntos
Benzeno , Triclosan , Adsorção , Fenóis/química , Fenol , Triclosan/química , Compostos BenzidrílicosRESUMO
Porous polymer gels (PPGs) are characterized by inherent porosity, a predictable structure, and tunable functionality, which makes them promising for the heavy metal ion trap in environmental remediation. However, their real-world application is obstructed by the balance between performance and economy in material preparation. Development of an efficient and cost-effective approach to produce PPGs with task-specific functionality remains a significant challenge. Here, a two-step strategy to fabricate amine-enriched PPGs, NUT-21-TETA (NUT means Nanjing Tech University, TETA indicates triethylenetetramine), is reported for the first time. The NUT-21-TETA was synthesized through a simple nucleophilic substitution using two readily available and low-cost monomers, mesitylene and α, α'-dichloro-p-xylene, followed by the successful post-synthetic amine functionalization. The obtained NUT-21-TETA demonstrates an extremely high Pb2+ capacity from aqueous solution. The maximum Pb2+ capacity, qm, assessed by the Langmuir model was as high as 1211 mg/g, which is much higher than most benchmark adsorbents including ZIF-8 (1120 mg/g), FGO (842 mg/g), 732-CR resin (397 mg/g), Zeolite 13X (541 mg/g), and AC (58 mg/g). The NUT-21-TETA can be regenerated easily and recycled five times without a noticeable decrease of adsorption capacity. The excellent Pb2+ uptake and perfect reusability, in combination with a low synthesis cost, gives the NUT-21-TETA a strong potential for heavy metal ion removal.
RESUMO
In this study, the effects of various types of key adsorption sites on biochar were investigated on its adsorption capacity for sulfamethoxazole (SMX). The biochar obtained by carbonization of corncob at 800 °C (named CC800) was applied to the adsorption of SMX in aqueous environment. The adsorption of SMX by CC800 exhibited a "Three-stage downward adsorption ladder" characteristic in the whole pH range, which was attributed to the different mechanisms corresponding to different adsorption sites of CC800. The organic solvent method and heat treatment method restored the adsorption sites of CC800 after saturated adsorption. And the results revealed that the pore structure and aromatic structure under acidic conditions, and surface functional groups and pore structure under alkaline conditions were confirmed to be key SMX adsorption sites. The adsorption energies of each adsorption mechanism were calculated by density functional theory (DFT), and their order was (-)CAHB (-COO-) > π+-π EDA interaction > (-)CAHB (-O-) > pore filling mechanism > π-π EDA interaction. Based on the above studies, the adsorption performance of biochar to SMX can be improved by targeted modification of its micropore structure, surface functional groups, and aromatic structures.
Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Sulfametoxazol/química , Adsorção , Poluentes Químicos da Água/análise , Carvão Vegetal/químicaRESUMO
Efficient CH4/N2 separation from unconventional natural gas is vital for both energy recycling and climate change control. Figuring out the reason for the disparity between ligands in the framework and CH4 is the crucial problem for developing adsorbents in PSA progress. In this study, a series of eco-friendly Al-based MOFs, including Al-CDC, Al-BDC, CAU-10, and MIL-160, were synthesized to investigate the influence of ligands on CH4 separation through experimental and theoretical analyses. The hydrothermal stability and water affinity of synthetic MOFs were explored through experimental characterization. The active adsorption sites and adsorption mechanisms were investigated via quantum calculation. The results manifested that the interactions between CH4 and MOFs materials were affected by the synergetic effects of pore structure and ligand polarities, and the disparities of ligands within MOFs determined the separation efficiency of CH4. Especially, the CH4 separation performance of Al-CDC with high sorbent selection (68.56), moderate isosteric adsorption heat for CH4 (26.3 kJ/mol), and low water affinity (0.1 g/g at 40% RH) was superior to most porous adsorbents, which was attributed to its nanosheet structure, proper polarity, reduced local steric hindrance, and extra functional groups. The analysis of active adsorption sites indicated that hydrophilic carboxyl groups and hydrophobic aromatic ring were the dominant CH4 adsorption sites for liner ligands and bent ligands, respectively. The methylene groups with saturated C-H bonds enhanced the wdV interaction between ligands and CH4, resulting in the highest binding energy of CH4 for Al-CDC. The results provided valuable guidance for the design and optimization of high-performance adsorbents for CH4 separation from unconventional natural gas.
Assuntos
Estruturas Metalorgânicas , Ligantes , Gás Natural , Metano , ÁguaRESUMO
Engineered systems designed to remove CO2 from the atmosphere need better adsorbents. Here, we report on zeolite-based adsorbents for the capture of low-concentration CO2. Synthetic zeolites with the mordenite (MOR)-type framework topology physisorb CO2 from low concentrations with fast kinetics, low heat of adsorption, and high capacity. The MOR-type zeolites can have a CO2 capacity of up to 1.15 and 1.05 mmol/g for adsorption from 400 ppm CO2 at 30 °C, measured by volumetric and gravimetric methods, respectively. A structure-performance study demonstrates that Na+ cations in the O33 site located in the side-pocket of the MOR-type framework, that is accessed through a ring of eight tetrahedral atoms (either Si4+ or Al3+: eight-membered ring [8MR]), is the primary site for the CO2 uptake at low concentrations. The presence of N2 and O2 shows negligible impact on CO2 adsorption in MOR-type zeolites, and the capacity increases to â¼2.0 mmol/g at subambient temperatures. By using a series of zeolites with variable topologies, we found the size of the confining pore space to be important for the adsorption of trace CO2. The results obtained here show that the MOR-type zeolites have a number of desirable features for the capture of CO2 at low concentrations.
Assuntos
Zeolitas , Adsorção , Silicatos de Alumínio , Dióxido de CarbonoRESUMO
Solid waste oil shale semi-coke (SC) is considered as a potential material for the preparation of adsorbents due to its rich organic and inorganic components. However, the dense structure and the complex form of the components present make it unsatisfactory for adsorption. In this study, using Alkali corrosion under hydrothermal condition, SC was prepared as an adsorbent material PSSC with excellent adsorption performance for both anionic and cationic dyes. The related characterization analysis showed that most of the organic matter and silicates of SC reacted with inorganic matter to form silicon carbide. The specific surface area of PSSC increased significantly (from 7.47 m2/g to 1353.99 m2/g) leading to the maximum adsorption of PSSC on Methylene blue (MB) and Congo red (CR) reached at 974.66 mg/g and 562.41 mg/g, respectively, which far exceeded the adsorption of SC on both dyes. Finally, the adsorption mechanisms were revealed from the structural and energetic perspectives. The results showed that the modification process increased the type and number of adsorption sites, and that these adsorption sites exhibited different capturing abilities for the two dyes with the change of contact temperature.
Assuntos
Coque , Poluentes Químicos da Água , Adsorção , Corantes/química , Vermelho Congo , Cinética , Azul de Metileno/química , Poluentes Químicos da Água/químicaRESUMO
Significant breakthroughs have been made in the development of surface-enhanced Raman scattering (SERS) substrates constructed by depositing plasmonic Ag onto nanostructured platforms. AlOOH is widely fabricated using hydrothermal, microwave, and microemulsion methods. Among these, the high catalytic activity of AlOOH prepared by the microemulsion method is derived from its high specific surface area, more active surface OH groups, and multi-active adsorption sites. And nanomaterials with such excellent properties have not yet been fabricated on a SERS-based platform to improve the Raman-enhanced properties of Ag achieving high-sensitivity detection of probe molecules especially with affinity for OH groups. The precious metal Ag has long been known to serve as traps to capture electrons and holes generated by plasmon resonance, reducing electron-hole recombination and exhibiting high activity in photocatalytic processes. In this work, to demonstrate the SERS substrate activity of the AlOOH@Ag complex, it has been successfully applied to identify congo red (CR) molecules with high sensitivity, methyl blue (MB) and methyl orange (MO), enabling trace-level detection with enhanced performance much stronger than Ag substrate.
Assuntos
Nanopartículas Metálicas , Prata , Hidróxido de Alumínio , Óxido de Alumínio , Nanopartículas Metálicas/química , Prata/química , Análise Espectral Raman/métodosRESUMO
A key matter in heavy metal removal technology is to develop the adsorbents with efficient adsorption sites. In this study, an oxygen-rich covalent organic framework (JUC-505) was functionalized by carboxyl (-COOH) groups to form synergetic effects aiming for the removal of Cd(II) and Pb(II) ions. JUC-505-COOH shows a high Cd(II) uptake of 504 mgâ g-1 surpassing most of the reported porous adsorbents. Meanwhile, the kinetics study shows a rapid adsorption process at a high initial concentration (100 mgâ L-1), and the equilibrium can be reached within 5 min. We investigated the adsorption mechanism in-depth by density functional theory calculations, proving the synergistic effects of surface complexation and hydrogen-bond, which are from the post-modified -COOH groups and the in-situ oxygen atoms of JUC-505, respectively. Moreover, under the interference of common ions in natural water, the removal efficiency of Cd(II) is almost insusceptible, which sheds lights on the potential for the application in the natural water purification. In addition, the Pb(II) uptake (559 mgâ g-1) and the adsorption kinetics also surpass most of the reported porous adsorbents.
RESUMO
The utilization of mechanical energy to control water pollutants under dark conditions is currently a point of study focus. Herein, biochar -zinc oxide (BC-ZnO) composites with various structures were synthesized by co-pyrolysis of cotton and ZnO at different temperature and used for tribo-catalytic reaction. The introduction of BC can improve charge transmission and separation efficiency. Ultraviolet photoelectron spectra (UPS) and density functional theory (DFT) calculation prove the addition of BC can reduce work function of ZnO, and enhance its electron-donating ability. Specially, suitable adsorption amount is the key factor to improve the tribo-catalytic performance. When the pyrolysis temperature is 600 °C, BC-ZnO has the best degradation efficiency, which can degrade 90% Rhodamine B (RhB) in 75 min, while ZnO can degrade only 38%. On this basis, using bovine serum albumin (BSA) as a model, the effect of tribo-catalytic reaction on controlling proteins in water was studied by fluorescence excitation-emission matrix spectroscopy (3D EEM) and infrared microscope, and the transformation of proteins was further analyzed. This study provides a new strategy to improve the tribo-catalytic performance of ZnO, and explores its application prospects of biological wastewater control.
Assuntos
Poluentes Químicos da Água , Óxido de Zinco , Adsorção , Catálise , Carvão VegetalRESUMO
Fractals are intriguing structures that repeat themselves at various length scales. Interestingly, fractals can also be fabricated artificially in labs under controlled growth environments and be explored for various applications. Such fractals have a repeating unit that spans in length from nano- to millimeter range. Fractals thus can be regarded as connectors that structurally bridge the gap between the nano- and the macroscopic worlds and have a hybrid structure of pores and repeating units. This article presents a comprehensive review on inorganic fabricated fractals (fab-fracs) synthesized in labs and employed as gas sensors across materials, morphologies, and gas analytes. The focus is to investigate the morphology-driven gas response of these fab-fracs and identify key parameters of fractal geometry in influencing gas response. Fab-fracs with roughened microstructure, pore-network connectivity, and fractal dimension (D) less than 2 are projected to be possessing better gas sensing capabilities. Fab-fracs with these salient features will help in designing the commercial gas sensors with better performance.
RESUMO
In the process of municipal solid waste (MSW) pyrolysis, kaolinite possesses an outstanding trapping effect on semi-volatile metal vapors (Pb, Cd) through physical and chemical adsorption. In this paper, the microscopic mechanism of PbCl2 and CdCl2 adsorption on the surface of Al rings and Si rings of kaolinite was investigated by combining Monte Carlo method with density functional theory (DFT). The calculations indicate that the continuously enriched pore structure in the process of dehydroxylation indirectly influences the adsorption of PbCl2/CdCl2 by kaolinite. Under the non-bond interaction and electron transfer induction, PbCl2 molecules are more conveniently adsorbed on the Al-(001) surface than CdCl2, while the adsorption sites of CdCl2 molecules are more widely distributed on the Si-(001) surface. Moreover, the transform in the Al-coordination and the exposed active oxygen atoms significantly affect the adsorption activity of kaolinite (the capability to gain and lose electrons). Considering the energy barrier and electrophilic nucleophilic sensitivity, it is more feasible for PbCl2/CdCl2 to be adsorbed near IV/V-coordinated Al and active O under Van der Waals action. Subsequently, IV/V-coordinated Al will act as an electron acceptor, and the active oxygen atoms after dehydrogenation will serve as an electron donor. Under the induction of the energy difference of frontier orbitals, the electrons transfer will encourage the formation of more stable adsorption states. The results shed new light on strengthening the adsorption activity of kaolinite to PbCl2/CdCl2 in the process of MSW pyrolysis.
Assuntos
Caulim , Resíduos Sólidos , Adsorção , Modelos Teóricos , PiróliseRESUMO
In this study, the adsorption capacity of the low-cost zeolite clinoptilolite was investigated for capturing carbon dioxide (CO2) emitted from industrial processes at moderate temperature. The CO2 adsorption capacity of clinoptilolite (a commercial natural zeolite) and ion-exchanged (with Na+ and Ca2+) clinoptilolite were tested under both dynamic (using a fixed-bed reactor operating with 10% vol. CO2 in N2) and equilibrium conditions (measuring single component adsorption isotherms). The dynamic CO2 adsorption capacity of bare clinoptilolite and ion-exchanged clinoptilolite were evaluated in the temperature range from 293 K to 338 K and the obtained breakthrough curves were compared with those of the commercial zeolite 13X (Z13X). Although the adsorption capacity of Z13X exceeded those of bare clinoptilolite and ion-exchanged clinoptilolite at 293 K, the clinoptilolite exhibited the highest CO2 uptake at a moderate temperature of 338 K (i.e. 25 % higher than Z13X). This feature appears in agreement with the lower isosteric heat of CO2 adsorption on clinoptilolite compared to the other samples. The surface species affecting the qiso and adsorption capacity were investigated through the FTIR spectroscopy using CO2 as probe molecule. As a whole, it has been observed that CO2 forms linear adducts onto K+ and Mg2+ cations of the bare clinoptilolite, and carbonate-like species onto its basic sites. With the Na-exchanged clinoptilolite, Na+ ions led to a decrease in surface basicity and to the formation of both single (Na+···OCO) and dual (Na+···OCOâ¯Na+) cationic sites available for the formation of linear adducts. As a result of the remarkable adsorption capacity of clinoptilolite at 338 K, this material appears to be a promising adsorbent for the direct CO2 removal from different flue gases sources operating at such temperatures.