Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(8): 159543, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39097081

RESUMO

Fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous bioactive lipids known for their anti-inflammatory and anti-diabetic properties. Despite their therapeutic potential, little is known about the sex-specific variations in FAHFA metabolism. This study investigated the role of sex and Androgen Dependent TFPI Regulating Protein (ADTRP), a FAHFA hydrolase. Additionally, tissue-specific differences in FAHFA levels, focusing on the perigonadal white adipose tissue (pgWAT), subcutaneous white adipose tissue (scWAT), brown adipose tissue (BAT), plasma, and liver, were evaluated using metabolomics and lipidomics. We found that female mice exhibited higher FAHFA levels in pgWAT, scWAT, and BAT compared to males. FAHFA levels were inversely related to testosterone and Adtrp mRNA, which showed significantly lower expression in females compared with males in pgWAT and scWAT. However, no significant differences between the sexes were observed in plasma and liver FAHFA levels. Adtrp deletion had minimal impact on both sexes' metabolome and lipidome of pgWAT. However, we discovered higher endogenous levels of triacylglycerol estolides containing FAHFAs, a FAHFA metabolic reservoir, in the pgWAT of female mice. These findings suggest that sex-dependent differences in FAHFA levels occur primarily in specific WAT depots and may modulate local insulin sensitivity in adipocytes, and the role of ADTRP is limited to adipose depots. However, further investigations are warranted to fully comprehend the underlying mechanisms and implications of sex-dependent regulation of human FAHFA metabolism.

2.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014093

RESUMO

Fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous bioactive lipids known for their anti-inflammatory and anti-diabetic properties. Despite their therapeutic potential, little is known about the sex-specific variations in FAHFA metabolism. This study investigated the role of Androgen Dependent TFPI Regulating Protein (ADTRP), a FAHFA hydrolase. Additionally, tissue-specific differences in FAHFA levels, focusing on the perigonadal white adipose tissue (pgWAT), subcutaneous white adipose tissue (scWAT), brown adipose tissue (BAT), plasma, and liver, were evaluated using metabolomics and lipidomics. We found that female mice exhibited higher FAHFA levels in pgWAT, scWAT, and BAT compared to males. FAHFA levels were inversely related to Adtrp mRNA, which showed significantly lower expression in females compared with males in pgWAT and scWAT. However, no significant differences between the sexes were observed in plasma and liver FAHFA levels. Adtrp deletion had minimal impact on both sexes' metabolome and lipidome of pgWAT. However, we discovered higher endogenous levels of triacylglycerol estolides containing FAHFAs, a FAHFA metabolic reservoir, in the pgWAT of female mice. These findings suggest that sex-dependent differences in FAHFA levels occur primarily in specific WAT depots and may modulate local insulin sensitivity in adipocytes. However, further investigations are warranted to fully comprehend the underlying mechanisms and implications of sex effects on FAHFA metabolism in humans.

3.
Cell Mol Life Sci ; 79(8): 407, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804197

RESUMO

Brown and beige adipose tissues dissipate chemical energy in the form of heat to maintain your body temperature in cold conditions. The impaired function of these tissues results in various metabolic diseases in humans and mice. By bioinformatical analyses, we identified a functional thermogenic regulator of adipose tissue, Androgen-dependent tissue factor pathway inhibitor [TFPI]-regulating protein (Adtrp), which was significantly overexpressed in and functionally activated the mature brown/beige adipocytes. Hereby, we knocked out Adtrp in mice which led to multiple abnormalities in thermogenesis, metabolism, and maturation of brown/beige adipocytes causing excess lipid accumulation in brown adipose tissue (BAT) and cold intolerance. The capability of thermogenesis in brown/beige adipose tissues could be recovered in Adtrp KO mice upon direct ß3-adrenergic receptor (ß3-AR) stimulation by CL316,243 treatment. Our mechanistic studies revealed that Adtrp by binding to S100 calcium-binding protein b (S100b) indirectly mediated the secretion of S100b, which in turn promoted the ß3-AR mediated thermogenesis via sympathetic innervation. These results may provide a novel insight into Adtrp in metabolism via regulating the differentiation and thermogenesis of adipose tissues in mice.


Assuntos
Tecido Adiposo Branco , Proteínas de Membrana/metabolismo , Termogênese , Adipócitos Marrons/metabolismo , Tecido Adiposo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Temperatura Baixa , Lipoproteínas , Camundongos , Subunidade beta da Proteína Ligante de Cálcio S100/genética
4.
J Mol Med (Berl) ; 100(2): 185-196, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34797389

RESUMO

The first genome-wide association study on coronary artery disease (CAD) in the Han Chinese population identified C6orf105 as a susceptibility gene. The C6orf105 gene was later found to encode for a protein that regulates tissue factor pathway inhibitor (TFPI) expression in endothelial cells in an androgen-dependent manner, and the novel protein was thus termed androgen-dependent TFPI-regulating protein (ADTRP). Since the identification of ADTRP, there have been several studies associating genetic variants on the ADTRP gene with CAD risk, as well as research providing mechanistic insights on this novel protein and its functional role. ADTRP is a membrane protein, whose expression is upregulated by androgen, GATA-binding protein 2, oxidized low-density lipoprotein, peroxisome proliferator-activated receptors, and low-density lipoprotein receptors. ADTRP regulates multiple downstream targets involved in coagulation, inflammation, endothelial function, and vascular integrity. In addition, ADTRP functions as a fatty acid esters of hydroxy fatty acid (FAHFA)-specific hydrolase that is involved in energy metabolism. Current evidence suggests that ADTRP may play a role in the pathogenesis of atherosclerosis, CAD, obesity, and metabolic disorders. This review summarizes the current literature on ADTRP, with a focus on the peripheral actions of ADTRP, including expression, genetic variations, signaling pathways, and function. The evidence linking ADTRP and cardiometabolic diseases will also be discussed.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus , Proteínas de Membrana , Obesidade , Animais , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Variação Genética , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Obesidade/genética , Obesidade/metabolismo
5.
Genes (Basel) ; 12(8)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34440364

RESUMO

Androgen-inducible genes (AIGs), which can be regulated by androgen level, constitute a group of genes characterized by the presence of the AIG/FAR-17a domain in its protein sequence. Previous studies on AIGs demonstrated that one member of the gene family, AIG1, is involved in many biological processes in cancer cell lines and that ADTRP is associated with cardiovascular diseases. It has been shown that the numbers of AIG paralogs in humans, mice, and zebrafish are 2, 2, and 3, respectively, indicating possible gene duplication events during vertebrate evolution. Therefore, classifying subgroups of AIGs and identifying the homologs of each AIG member are important to characterize this novel gene family further. In this study, vertebrate AIGs were phylogenetically grouped into three major clades, ADTRP, AIG1, and AIG-L, with AIG-L also evident in an outgroup consisting of invertebrsate species. In this case, AIG-L, as the ancestral AIG, gave rise to ADTRP and AIG1 after two rounds of whole-genome duplications during vertebrate evolution. Then, the AIG family, which was exposed to purifying forces during evolution, lost or gained some of its members in some species. For example, in eutherians, Neognathae, and Percomorphaceae, AIG-L was lost; in contrast, Salmonidae and Cyprinidae acquired additional AIG copies. In conclusion, this study provides a comprehensive molecular phylogenetic analysis of vertebrate AIGs, which can be employed for future functional characterization of AIGs.


Assuntos
Androgênios/fisiologia , Regulação da Expressão Gênica , Vertebrados/genética , Animais , Evolução Molecular , Peixes/genética , Humanos , Proteínas de Membrana/genética , Filogenia , Sintenia
6.
Am J Physiol Cell Physiol ; 321(4): C585-C595, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34288722

RESUMO

The peroxisome proliferator-activated receptors (PPARs) are a group of transcription factors belonging to the nuclear receptor superfamily. Since most target genes of PPARs are implicated in lipid and glucose metabolism, regulation by PPARs could be used as a screening tool to identify novel genes involved in lipid or glucose metabolism. Here, we identify Adtrp, a serine hydrolase enzyme that was reported to catalyze the hydrolysis of fatty acid esters of hydroxy fatty acids (FAHFAs), as a novel PPAR-regulated gene. Adtrp was significantly upregulated by PPARα activation in mouse primary hepatocytes, liver slices, and whole liver. In addition, Adtrp was upregulated by PPARγ activation in 3L3-L1 adipocytes and in white adipose tissue. ChIP-SEQ identified a strong PPAR-binding site in the immediate upstream promoter of the Adtrp gene. Adenoviral-mediated hepatic overexpression of Adtrp in diet-induced obese mice caused a modest increase in plasma nonesterified fatty acids but did not influence diet-induced obesity, liver triglyceride levels, liver lipidomic profiles, liver transcriptomic profiles, plasma cholesterol, triglyceride, glycerol, and glucose levels. Moreover, hepatic Adtrp overexpression did not lead to significant changes in FAHFA levels in plasma or liver and did not influence glucose and insulin tolerance. Finally, hepatic overexpression of Adtrp did not influence liver triglycerides and levels of plasma metabolites after a 24-h fast. Taken together, our data suggest that despite being a PPAR-regulated gene, hepatic Adtrp does not seem to play a major role in lipid and glucose metabolism and does not regulate FAHFA levels.


Assuntos
Esterases/biossíntese , Glucose/metabolismo , Hepatócitos/enzimologia , Metabolismo dos Lipídeos , Lipídeos/sangue , Proteínas de Membrana/biossíntese , Células 3T3-L1 , Adipócitos/enzimologia , Animais , Modelos Animais de Doenças , Indução Enzimática , Esterases/genética , Jejum/metabolismo , Feminino , Lipidômica , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Obesidade/enzimologia , Obesidade/genética , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/metabolismo
7.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923232

RESUMO

The novel protein ADTRP, identified and described by us in 2011, is androgen-inducible and regulates the expression and activity of Tissue Factor Pathway Inhibitor, the major inhibitor of the Tissue Factor-dependent pathway of coagulation on endothelial cells. Single-nucleotide polymorphisms in ADTRP associate with coronary artery disease and myocardial infarction, and deep vein thrombosis/venous thromboembolism. Some athero-protective effects of androgen could exert through up-regulation of ADTRP expression. We discovered a critical role of ADTRP in vascular development and vessel integrity and function, manifested through Wnt signaling-dependent regulation of matrix metalloproteinase-9. ADTRP also hydrolyses fatty acid esters of hydroxy-fatty acids, which have anti-diabetic and anti-inflammatory effects and can control metabolic disorders. Here we summarize and analyze the knowledge on ADTRP and try to decipher its functions in health and disease.


Assuntos
Coagulação Sanguínea , Doença da Artéria Coronariana/patologia , Proteínas de Membrana/metabolismo , Infarto do Miocárdio/patologia , Trombose/patologia , Doença da Artéria Coronariana/metabolismo , Humanos , Infarto do Miocárdio/metabolismo , Trombose/metabolismo
8.
Mol Genet Genomics ; 296(4): 799-808, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33856550

RESUMO

Myocardial infarction (MI) is a frequent outcome of coronary artery disease (CAD) and the key factor contributing to worldwide disability and death. Genetic factors contribute to the pathogenesis of CAD/MI, and SNP rs6903956 in the ADTRP gene was first found associated with CAD/MI in the Chinese Han population, which was successfully replicated in other cohorts. However, whether rs6903956 is a functional SNP and its risk mechanism to CAD/MI remains unknown. The ADTRP gene-encoded androgen-dependent TFPI regulating protein regulates vascular endothelial cell function, endothelial-monocyte adhesion, and thrombosis. The allele A of rs6903956, in particular, is associated with lower ADTRP mRNA levels in lymphocytes. In the current study, we found that SNP rs6903956 exhibits allelic differences in transcriptional activity by interacting with GATA2. Also, the A allele conferred a greater risk of CAD and MI, lowered transcriptional activity, and GATA2 binding ability as compared to the G allele. Our findings provide details on how rs6903956 regulates the expression of ADTRP and may provide novel insights into CAD pathology and susceptibility.


Assuntos
Doença da Artéria Coronariana/genética , Fator de Transcrição GATA2/genética , Proteínas de Membrana/genética , Alelos , Células Cultivadas , Doença da Artéria Coronariana/epidemiologia , Epistasia Genética , Fator de Transcrição GATA2/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas de Membrana/metabolismo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Risco
9.
Biochim Biophys Acta Mol Basis Dis ; 1867(7): 166130, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33746034

RESUMO

A high level of low-density lipoprotein cholesterol (LDL) is one of the most important risk factors for coronary artery disease (CAD), the leading cause of death worldwide. However, a low concentration of LDL may be protective. Genome-wide association studies revealed that variation in ADTRP gene increased the risk of CAD. In this study, we found that a low concentration of oxidized-LDL induced the expression of ADTRP. Further analyses showed that knockdown of the expression of LDL receptor genes LDLR, CD36, or LOX-1 significantly downregulated ADTRP expression, whereas overexpression of LDLR/CD36/LOX-1 markedly increased ADTRP expression through the NF-κB pathway. Like ADTRP, LDLR, CD36 and LOX-1 were all involved in endothelial cell (EC) functions relevant to the initiation of atherosclerosis. Downregulation of LDLR/CD36/LOX-1 promoted monocyte adhesion to ECs and transendothelial migration of monocytes by increasing expression of ICAM-1, VCAM-1, E-selectin and P-selectin, decreased EC proliferation and migration, and increased EC apoptosis, thereby promoting the initiation of atherosclerosis. Opposite effects were observed with the overexpression of ADTRP and LDLR/CD36/LOX-1 in ECs. Interestingly, through the NF-κB and AKT pathways, overexpression of ADTRP significantly upregulated the expression of LDLR, CD36, and LOX-1, and knockdown of ADTRP expression significantly downregulated the expression of LDLR, CD36, and LOX-1. These data suggest that ADTRP and LDL receptors LDLR/CD36/LOX-1 positively regulate each other, and form a positive regulatory loop that regulates endothelial cell functions, thereby providing a potential protective mechanism against atherosclerosis. Our findings provide a new molecular mechanism by which deregulation of ADTRP and LDLR/CD36/LOX-1 promote the development of atherosclerosis and CAD.


Assuntos
Aterosclerose/patologia , Antígenos CD36/metabolismo , Células Endoteliais/patologia , Retroalimentação Fisiológica , Proteínas de Membrana/metabolismo , Receptores de LDL/metabolismo , Receptores Depuradores Classe E/metabolismo , Aterosclerose/metabolismo , Antígenos CD36/genética , Adesão Celular , Doença da Artéria Coronariana , Células Endoteliais/metabolismo , Humanos , Proteínas de Membrana/genética , Monócitos/metabolismo , Monócitos/patologia , Receptores de LDL/genética , Receptores Depuradores Classe E/genética , Migração Transendotelial e Transepitelial
10.
Gene ; 753: 144805, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32445923

RESUMO

Genomic variants in both ADTRP and TFPI genes are associated with risk of coronary artery disease (CAD). ADTRP regulates TFPI expression and endothelial cell functions involved in the initiation of atherosclerotic CAD. ADTRP also specifies primitive myelopoiesis and definitive hematopoiesis by upregulating TFPI expression. However, the underlying molecular mechanism is unknown. Here we show that transcription factor POU1F1 is the key by which ADTRP regulates TFPI expression. Luciferase reporter assays, chromatin-immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA) in combination with analysis of large and small deletions of the TFPI promoter/regulatory region were used to identify the molecular mechanism by which ADTRP regulates TFPI expression. Genetic association was assessed using case-control association analysis and phenome-wide association analysis (PhenGWA). ADTRP regulates TFPI expression at the transcription level in a dose-dependent manner. The ADTRP-response element was localized to a 50 bp region between -806 bp and -756 bp upstream of TFPI transcription start site, which contains a binding site for POU1F1. Deletion of POU1F1-binding site or knockdown of POU1F1 expression abolished ADTRP-mediated transcription of TFPI. ChIP and EMSA demonstrated that POU1F1 binds to the ADTRP response element. Genetic analysis identified significant association between POU1F1 variants and risk of CAD. PhenGWA identified other phenotypic traits associated with the ADTRP-POU1F1-TFPI axis such as lymphocyte count (ADTRP), waist circumference (TFPI), and standing height (POU1F1). These data identify POU1F1 as a transcription factor that regulates TFPI transcription in response to ADTRP, and link POU1F1 variants to risk of CAD for the first time.


Assuntos
Doença da Artéria Coronariana/metabolismo , Lipoproteínas/biossíntese , Proteínas de Membrana/metabolismo , Fator de Transcrição Pit-1/metabolismo , Aterosclerose/genética , Estudos de Casos e Controles , Linhagem Celular , Imunoprecipitação da Cromatina/métodos , Doença da Artéria Coronariana/genética , Bases de Dados Genéticas , Células Endoteliais/metabolismo , Genes Homeobox , Células HeLa , Humanos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Regiões Promotoras Genéticas , Elementos de Resposta , Sítio de Iniciação de Transcrição , Transcrição Gênica
11.
J Biol Chem ; 295(18): 5891-5905, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32152231

RESUMO

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a newly discovered class of signaling lipids with anti-inflammatory and anti-diabetic properties. However, the endogenous regulation of FAHFAs remains a pressing but unanswered question. Here, using MS-based FAHFA hydrolysis assays, LC-MS-based lipidomics analyses, and activity-based protein profiling, we found that androgen-induced gene 1 (AIG1) and androgen-dependent TFPI-regulating protein (ADTRP), two threonine hydrolases, control FAHFA levels in vivo in both genetic and pharmacologic mouse models. Tissues from mice lacking ADTRP (Adtrp-KO), or both AIG1 and ADTRP (DKO) had higher concentrations of FAHFAs particularly isomers with the ester bond at the 9th carbon due to decreased FAHFA hydrolysis activity. The levels of other lipid classes were unaltered indicating that AIG1 and ADTRP specifically hydrolyze FAHFAs. Complementing these genetic studies, we also identified a dual AIG1/ADTRP inhibitor, ABD-110207, which is active in vivo Acute treatment of WT mice with ABD-110207 resulted in elevated FAHFA levels, further supporting the notion that AIG1 and ADTRP activity control endogenous FAHFA levels. However, loss of AIG1/ADTRP did not mimic the changes associated with pharmacologically administered FAHFAs on extent of upregulation of FAHFA levels, glucose tolerance, or insulin sensitivity in mice, indicating that therapeutic strategies should weigh more on FAHFA administration. Together, these findings identify AIG1 and ADTRP as the first endogenous FAHFA hydrolases identified and provide critical genetic and chemical tools for further characterization of these enzymes and endogenous FAHFAs to unravel their physiological functions and roles in health and disease.


Assuntos
Esterases/metabolismo , Ésteres/química , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Proteínas de Membrana/metabolismo , Animais , Esterases/deficiência , Esterases/genética , Técnicas de Inativação de Genes , Hidrólise , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos
12.
Biochim Biophys Acta Mol Basis Dis ; 1863(9): 2319-2332, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28645652

RESUMO

Low androgen levels are associated with an increased risk of coronary artery disease (CAD), thrombosis and myocardial infarction (MI), suggesting that androgen has a protective role. However, little is known about the underlying molecular mechanism. Our genome-wide association study identified the ADTRP gene encoding the androgen-dependent TFPI regulating protein as a susceptibility gene for CAD and MI. The expression level of ADTRP was regulated by androgen, but the molecular mechanism is unknown. In this study, we identified the molecular mechanism by which androgen regulates ADTRP expression and tested the hypothesis that androgen plays a protective role in cardiovascular disease by activating ADTRP expression. Luciferase assays with an ADTRP promoter luciferase reporter revealed that androgen regulated ADTRP transcription in a dose- and time-dependent manner, and the effect was abolished by three different androgen inhibitors, including pyrvinium pamoate, bicalutamide, and cyproterone acetate. Chromatin-immunoprecipitation showed that the androgen receptor bound to a half androgen response element (ARE, TGTTCT) located at +324bp from the ADTRP transcription start site. The ARE is required for concentration-dependent transcriptional activation of ADTRP. HL-60 monocyte adhesion to EAhy926 endothelial cells (ECs) and transmigration across the EC layer, the two processes critical to development of CAD and MI, were inhibited by androgen, but the effect was rescued by ADTRP siRNA and exacerbated by overexpression of ADTRP and its downstream genes PIK3R3 and MIA3. These data suggest that one molecular mechanism by which androgen confers protection against CAD is stimulation of ADTRP expression.


Assuntos
Androgênios/farmacologia , Aterosclerose/metabolismo , Doença da Artéria Coronariana/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana/biossíntese , Elementos de Resposta , Transcrição Gênica/efeitos dos fármacos , Aterosclerose/genética , Aterosclerose/patologia , Técnicas de Cocultura , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Células Endoteliais/metabolismo , Estudo de Associação Genômica Ampla , Células HL-60 , Células HeLa , Humanos , Proteínas de Membrana/genética , Monócitos/metabolismo , Monócitos/patologia , Migração Transendotelial e Transepitelial/efeitos dos fármacos
13.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1640-1653, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28341552

RESUMO

Coronary artery disease (CAD) is the leading cause of death worldwide. GWAS have identified >50 genomic loci for CAD, including ADTRP and MIA3/TANGO1. However, it is important to determine whether the GWAS genes form a molecular network. In this study, we have uncovered a novel molecular network between ADTRP and MIA3/TANGO1 for the pathogenesis of CAD. We showed that knockdown of ADTRP expression markedly down-regulated expression of MIA3/TANGO1. Mechanistically, ADTRP positively regulates expression of PIK3R3 encoding the regulatory subunit 3 of PI3K, which leads to activation of AKT, resulting in up-regulation of MIA3/TANGO1. Both ADTRP and MIA3/TANGO1 are involved in endothelial cell (EC) functions relevant to atherosclerosis. Knockdown of ADTRP expression by siRNA promoted oxidized-LDL-mediated monocyte adhesion to ECs and transendothelial migration of monocytes, inhibited EC proliferation and migration, and increased apoptosis, which was reversed by expression of constitutively active AKT1 and MIA3/TANGO1 overexpression, while the over-expression of ADTRP in ECs blunted these processes. Knockdown of MIA3/TANGO1 expression also promoted monocyte adhesion to ECs and transendothelial migration of monocytes, and vice versa for overexpression of MIA3/TANGO1. We found that ADTRP negatively regulates the levels of collagen VII and ApoB in HepG2 and endothelial cells, which are downstream regulatory targets of MIA3/TANGOI. In conclusion, we have uncovered a novel molecular signaling pathway for the pathogenesis of CAD, which involves a novel gene-gene regulatory network. We show that ADTRP positively regulates PIK3R3 expression, which leads to activation of AKT and up-regulation of MIA3/TANGO1, thereby regulating endothelial cell functions directly relevant to atherosclerosis.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/biossíntese , Aterosclerose/metabolismo , Doença da Artéria Coronariana/metabolismo , Redes Reguladoras de Genes , Predisposição Genética para Doença , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Aterosclerose/genética , Aterosclerose/patologia , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Proteínas de Membrana/genética , Fosfatidilinositol 3-Quinases/biossíntese , Fosfatidilinositol 3-Quinases/genética
14.
Physiol Genomics ; 48(8): 554-64, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27235449

RESUMO

The ADTRP gene encodes the androgen-dependent TFPI-regulating protein and is a susceptibility gene for contrary artery disease (CAD). We performed global gene expression profiling for ADTRP knock-down using microarrays in human HepG2 cells. Follow-up real-time RT-PCR analysis demonstrated that ADTRP knock-down regulates a diverse set of genes, including upregulation of seven histone genes, downregulation of multiple cell cycle genes (CCND1, CDK4, and CDKN1A), and upregulation of apoptosis genes (CASP7 and PDCD2) in HepG2 cells and endothelial cells. Consistently, ADTRP increases the number of S phase cells during cell cycle, promotes cell proliferation, and inhibits apoptosis. Our study provides novel insights into the function of ADTRP and biological pathways involving ADTRP, which may be involved in the pathogenesis of CAD.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Regulação da Expressão Gênica/genética , Proteínas de Membrana/genética , Fase S/genética , Linhagem Celular , Linhagem Celular Tumoral , Vasos Coronários/patologia , Regulação para Baixo/genética , Genes cdc/genética , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Transdução de Sinais , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA