Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 981
Filtrar
1.
J Colloid Interface Sci ; 677(Pt A): 282-293, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39094489

RESUMO

Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) are attractive approaches for solving the global problem of water pollution, due to the generation of highly-active reactive oxygen species (ROS). Therefore, highly-efficient PMS activation is crucial for promoting the catalytic degradation of environmental pollutants. Here, bimetallic CoGeO2(OH)2 nanosheets with abundant surface hydroxyl groups (CGH) were synthesized via a simple hydrothermal route for PMS activation and degradation of various organic contaminants for the first time. The abundant surface hydroxyl groups (≡Co-OH/≡Ge-OH) could promptly initiate PMS to generate highly-active species: singlet oxygen (1O2), sulfate radicals (SO4·-) and hydroxyl radicals (HO•), while the asymmetric electron distribution among Co-O-Ge bonds derived from the higher electronegativity of Ge than Co further enhances the quick electron transfer to promote the redox cycle of Co2+/Co3+ and Ge2+/Ge4+, thereby achieving an outstanding catalytic capability. The optimal catalyst exhibits nearly 100 % catalytic degradation performance of dyes (Methylene blue, Rhodamine B, Methyl orange, Orange II, Methyl green) and antibiotics (Norfloxacin, Bisphenol A, Tetracycline) over a wide pH range of 3-11 and under different coexisting anion conditions (Cl-, HCO3-, NO3-, HA), suggesting the excellent adaptability for practical usage. This study could potentially lead to novel perspectives on the remediation of water areas such as groundwater and deep-water areas.

2.
Environ Sci Technol ; 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39442087

RESUMO

Radical-based advanced oxidation processes (AOPs) are among the most effective technologies employed to destroy organic pollutants. Compared to common inorganic radicals, such as •OH, O2•-, and SO4•-, organic radicals are widespread, and more selective, but are easily overlooked. Furthermore, a systematic understanding of the generation and contributions of organic radicals remains lacking. In this review, we systematically summarize the properties, possible generation pathways, detection methods, and contributions of organic radicals in AOPs. Notably, exploring organic radicals in AOPs is challenging due to (1) limited detection methods for generated organic radicals; (2) controversial organic radical-mediated reaction mechanisms; and (3) rapid transformation of organic radicals as reaction intermediates. In addition to their characteristics and reactivity, we examine potential scenarios of organic radical generation in AOPs, including during the peroxide activation process, in water matrices or with coexisting organic pollutants, and due to the addition of quenching agents. Subsequently, we summarize various methods for organic radical detection as reported previously, such as electron paramagnetic resonance spectroscopy (EPR), 31P nuclear magnetic resonance spectroscopy (31P NMR), liquid/gas chromatography-mass spectroscopy (GC/LC-MS), and fluorescence probes. Finally, we review the contributions of organic radicals to decontamination processes and provide recommendations for future research.

3.
J Colloid Interface Sci ; 679(Pt B): 67-78, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39442207

RESUMO

The development of highly catalytic activity, low-cost and environmentally friendly catalysts is crucial for the use of advanced oxidation processes (AOPs) to treat organic pollutants. In this study, to reduce costs, enhance catalytic activity and avoid secondary pollution form metal ions, pomelo peel was used as raw material, combined with surface crystallization, carbon layer protection and heat treatment technology to effectively construct AOPs catalyst that can efficiently activate peroxymonosulfate (PMS) to degrade harmful organic pollutants. Under the optimal conditions, the Co/BC-PMS system can degrade about 100 % of tetracycline (TC, a spectral antibiotic) within 5 min, and the degradation rate of TC can still reach 100 % even if Co/BC (cobalt anchored on biochar) was reused for 6 times. The Co/BC-PMS system can resist complex environmental conditions, including acidic solution, alkaline solution, coexisting ions, different water quality, and is universal for the degradation of most organic pollutants. The integrated purification column with Co/BC as the core realizes the continuous and complete degradation of organic pollutants and has the ability of practical application. Radical capture and monitoring combined with density-functional-theory calculations confirmed that the Co(111) and amorphous CoO sites in Co/BC are the key to driving PMS to degrade organic pollutants, Co/BC can efficiently adsorb PMS and promote the dissociation of PMS into highly active OH, SO4- and 1O2, and these reactive oxygen species jointly promote the degradation of organic pollutants. This study provides experimental support and theoretical insights for the design of efficient AOPs catalysts, and plays an important role in promoting the development of AOPs.

4.
Water Res ; 268(Pt A): 122655, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39461218

RESUMO

Fenton-like advanced oxidation processes (AOPs) are commonly used to eliminate recalcitrant organic pollutants as they produce highly reactive oxygen species through the reactions between the catalysts and oxidants. Recently, considerable attention has been directed towards shell-structured Fenton-like catalysts that offer high stability, maximum utilization of active sites, and exceptional catalytic performance. In this review, we have introduced the concept of several typical shell-forming architectures (e.g., hollow structure, core-shell structure, yolk-shell structure, particle-in-tube structure, and multi-shelled structure), elucidating their role in promoting Fenton-like reaction catalysis through the nanoconfinement mechanism. In each aspect, the correlation between the shell-induced effects and the Fenton-like catalytic performance is highlighted. Finally, future challenges and opportunities for the development of shell-structured Fenton-like catalysts towards AOPs are presented, offering bright practical application prospects.

5.
J Environ Manage ; 370: 122804, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39388813

RESUMO

Industries such as textiles, polymers, pharmaceuticals, papers, and tanneries are the key contributors to the global economy. These industries utilize various types of synthetic dyes in their processes, leading to discharge of dyes-contaminated wastewater. The wastewater generally contains various types of dyes (such as methyl orange, congo red, malachite green, etc.), which have a detrimental impact on the ecosystem and human health due to their toxic, carcinogenic, and mutagenic nature. As the result, it is crucial to treat the dyes-contaminated wastewater to protect the environment and render it suitable for reuse, mitigating the escalating global demand for clean water. This review provides a comprehensive overview of dyes and their treatment technologies (i.e., physical, chemical, and biological treatment). Among various treatment methods, the biological treatment is widely employed due to its energy efficiency and eco-friendliness. However, biological treatment faces challenges such as slow processing rates and limited effectiveness in handling low-biodegradability pollutants (BOD5/COD <0.2). This review also highlighted recent advancements in treatment technologies and explored the emerging integrated treatment method that aims to achieve higher removal efficiency for a low biodegradability index dye-contaminated wastewater. Additionally, a techno-economic assessment is presented, analyzing the cost-effectiveness of the emerging technologies in real-world applications. Further, the critical research gaps and future outlooks are also discussed. Overall, the review aims to contribute to the ongoing efforts to improve wastewater treatment processes and promote sustainable water management practices.

6.
J Environ Manage ; 370: 122773, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39388818

RESUMO

With Advanced oxidation processes (AOPs) widely promoted, MnCe-based catalysts have received extensive attention under the advantages of high efficiency, stability and economy for refractory organic pollutants present in urban wastewater. Driven by multiple factors such as environmental pollution, technological development, and policy promotion, a systematic review of MnCe-based catalysts is urgently needed in the current research situation. This research provides a critical review of MnCe-based catalysts for removal of organic pollutants in urban wastewater by AOPs. It is found that co-precipitation and sol-gel methods are more appropriate methods for catalyst preparation. Among a host of influence factors, catalyst composition and pH are crucial in the catalytic oxidation processes. The synergistic effect of the free radical pathway and surface catalysis results in better pollutants degradation. It is more valuable to utilize multiple systems for oxidation (e.g., photo-Fenton technology) to improve the catalytic efficiency. This review provides theoretical guidance for MnCe-based catalysts and offers a reference direction for future research in the AOPs of organic pollutants removal from urban wastewater.

7.
Sci Total Environ ; 955: 176762, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39393701

RESUMO

The substitution of Bisphenol A (BPA) with Bisphenol B (BPB) has raised concerns due to BPB's increased environmental presence and its potential hazards. Despite the frequent detection in water environments, effective removal methods for BPB are still limited. This study hypothesizes that electrochemical oxidation (EO) can effectively degrade BPB and its by-products. To test this, EO was applied under various conditions, analyzing the role of anode material, current density, pH, and BPB concentration. The results revealed that BPB degradation followed pseudo-first-order kinetics, with boron-doped diamond (BDD) anode showing a rate constant 27 times higher than iridium oxide electrodes. After 180 min, BDD achieved 81.8 % mineralization of BPB. The remaining organic load was associated to easily biodegradable short-chain carboxylic acids. Additionally, the EO process was evaluated in different matrices, including drinking water, tap water, simulated municipal wastewater, and synthetic urine, to assess the impact of matrix complexity. Electrogenerated oxidants, such as hydroxyl radicals, sulfate radicals, and active chlorine, significantly enhanced BPB degradation rates in real water matrices. Energy consumption varied from 5.32 kWh m-3 in drinking water to 2.28 kWh m-3 in synthetic urine, demonstrating the role of matrix composition in EO efficiency. These findings show that EO is a promising technology for removing BPB and similar chemicals in real-world water matrices.

8.
Chemosphere ; 366: 143514, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39389372

RESUMO

Isoquinoline (IQL), as a typical nitrogen-containing heterocyclic contaminant in coking wastewater, poses a serious threat to the aquatic environment and human health. Due to its chemical stability, traditional sewage treatment technology is not highly efficient in IQL removal. Advanced oxidation processes (AOPs) driven by ultraviolet radiation could be an effective treatment method, but it could generate toxic byproducts. In this work, the removal of IQL initiated by HO•, ClO•, Cl•, and SO4•- in UV/chlorine and UV/persulfate (PDS) process was comprehensively investigated, clarifying the degradation mechanism, reaction kinetics, and ecological toxicity. The findings indicate that the dominant oxidation mechanism of IQL by HO•, ClO•, and Cl• is radical adduct formation (RAF), while single electron transfer (SET) is the main reaction pathway of SO4•- with IQL. At 298 K and 1 atm, the order of rate constants for the reactions of IQL with active radicals is Cl• (6.23 × 1010 M-1 s-1) > SO4•- (8.81 × 109 M-1 s-1) > HO• (1.66 × 109 M-1 s-1) > ClO• (1.62 × 108 M-1 s-1). The acute and chronic toxicity of IQL and its degradation byproducts at three different trophic levels were evaluated using ECOSAR program. The byproducts produced by the oxidative degradation of IQL by HO• and SO4•- are mostly "not harmful", and their toxicity shows a decreasing trend compared to that of IQL. The byproducts derived from the reaction of IQL with Cl• are all "toxic" or "harmful", and the ranking of harm to three types of aquatic organisms is green algae > fish > daphnia. Hence, UV/PDS process could be more secure in pollutant disposal in wastewater. In actual water treatment process, merit attention should be paid to the potential hazards of the byproducts generated by various contaminants.

9.
J Environ Manage ; 370: 122767, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39418705

RESUMO

The electrocoagulation (ECG) and ferrate (Fe(VI))-based processes are increasingly acknowledged as efficient for the simultaneous removal of As and Mn from synthetic and real mine effluents. Prior to design of full-scale applications, more information on the physicochemical, mineralogical, and environmental characterization of the produced sludge is required. The main objective of this study was to characterize and evaluate the leaching potential of problematic elements in As- and Mn-rich sludge produced during ECG or Fe(VI) treatment of circumneutral surrogate mine water. To do so, PHREEQC modelling was carried out on the effluents, before and after ECG or Fe(VI) treatment, to calculate the saturation index of dissolved As, Fe, and Mn species. A physicochemical and mineralogical characterization of the sludge was also performed using powder X-ray diffraction (PXRD) and a scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS). Then, a non-sequential selective extraction procedure (N-SEP) combined with a USGS field leaching test (FLT) were conducted to evaluate the environmental behaviour of the As- and Mn-rich sludge. Geochemical modelling indicated that the Fe(VI) and ECG processes favor the precipitation of Fe-(oxy)hydroxides (lepidocrocite, schwertmannite, ferrihydrite). Chemical characterization showed that the Fe(VI)-sludge contained higher As and Mn concentrations and lower Fe concentrations than the ECG-sludge (3.8% As, 5.3% Mn, and 34% Fe for the Fe(VI)-sludge vs 1.2% As, 0.77% Mn, and 52% Fe for the ECG-sludge). These findings can be explained by the smaller amount of sludge produced during the Fe(VI) treatment and the higher removal efficiency of this method, especially for Mn. The PXRD patterns suggested the formation of poorly crystalline Fe-(oxy)hydroxides (lepidocrocite or ßFeO(OH) in the ECG-sludge vs ferrihydrite in the Fe(VI)-sludge); however, no As- or Mn-bearing minerals were identified. Findings from N-SEP tests showed different speciation of As and Mn in the sludge, with a higher proportion of As bound to poorly crystalline Fe-(oxy)hydroxides in the Fe(VI) sludge than the ECG-sludge (97% and 71%, respectively), and higher proportion of Mn associated with the residuals in the Fe(VI)-sludge than the ECG-sludge (57% and 5.7%, respectively). Finally, FLT results indicated that very low concentrations of As (<0.05 mg/L) and Mn (<0.5 mg/L) were leached from the ECG- and Fe(VI)-sludge, with the Fe(VI) treatment resulting in slightly better As and Mn immobilization in the sludge relative to the ECG process. Nevertheless, both treatment processes were satisfactory in terms of efficient removal of As and Mn and their immobilization in the produced sludge.

10.
J Hazard Mater ; 480: 135994, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357355

RESUMO

The ultraviolet (UV)/chlorine process has been widely applied for water treatment. However, the transformation of microplastic-leached dissolved organic matter (MP-DOM) in advanced treatment of real wastewater remains unclear. Here, we investigated alterations in the photoproperties of MP-DOM leached from biodegradable and conventional microplastics (MPs) and their subsequent effects on the degradation of sulfamethazine (SMT) by the UV/chlorine process. Spectroscopy was used to assess photophysical properties, focusing on changes in light absorption capacity, functional groups, and fluorescence components, while photochemical properties were determined by calculating the apparent quantum yields of reactive intermediates (ΦRIs). For photophysical properties, our findings revealed that the degree of molecular structure modification, functional group changes, and fluorescence characteristics during UV/chlorine treatment are closely linked to the type of MPs. For photochemical properties, the ΦRIs increased with higher chlorine dosages due to the formation of new functionalities. Both singlet oxygen (1O2) and hydroxyl radicals (•OH) formation were strongly correlated with excited triplet state of DOM (3DOM*) in the UV/chlorine treatment. Additionally, we found that the four types of MP-DOM inhibit the degradation of SMT and elucidated the mechanisms behind this inhibition. We also proposed degradation pathways for SMT and assessed the ecotoxicity of the resulting intermediates. This study provides important insights into how the characteristics and transformation of MP-DOM affect contaminant degradation, which is critical for evaluating the practical application of UV-based advanced oxidation processes (UV-AOPs).

11.
Chemosphere ; 366: 143492, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39389377

RESUMO

Aniline, a common pollutant in industrial wastewater, requires an effective treatment method with minimal chemical usage. In this study, a two-stage catalytic oligomerization process has been developed to address this issue by converting soluble aniline into insoluble oligomers for wastewater treatment. In the first stage, aniline is oxidized using hydrogen peroxide (H2O2) and a green catalyst, iron tetraamido macrocyclic ligand (Fe-TAML) to form aniline tetramers or pentamers. In the second stage, these oligoanilines undergo further oxidation with H2O2 alone at a higher temperature, resulting in the formation of N-phenylphenazine or its derivatives. These macrocyclic compounds precipitate from the wastewater due to π- π stacking, allowing easy separation through decantation or gravity filtration. After process optimization, only 3 mg/L of Fe-TAML and 2 g/L of H2O2 are required to treat 1 g/L of aniline, achieving a remarkable 96.8% aniline removal efficiency and a 62.5% precipitate yield. This two-stage oxidation approach shows promise for treating aniline and similar aromatic compounds in real industrial wastewater.

12.
J Environ Manage ; 370: 122942, 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39427621

RESUMO

The pervasive issue of microplastics in aquatic environments presents a formidable challenge to traditional water treatment methodologies, including those utilizing KMnO4. This study pioneers advanced oxidation processes (AOPs) method aimed at improving the degradation of PE microplastics by employing a dual treatment strategy that combines KMnO4 oxidation with UV irradiation. Detailed analysis of the surface modifications and chemical functional groups of the treated PE microplastics revealed the establishment of Mn-O-Mn linkages on their surfaces. Weight reductions of 3.9%, 4.9%, and 7.5% were observed for the KMnO4/UVA, KMnO4/UVB, and KMnO4/UVC treatments over seven days, respectively. The emergence of carboxyl and hydroxyl groups played a crucial role in accelerating the degradation process. Notably, the combined application of UVC rays and KMnO4 resulted in the most effective degradation of PE microplastics observed in our study. The process significantly enhanced the formation of MnO2 particles from KMnO4 oxidation, with concentrations ranging from 0.036 to 0.070 mM for KMnO4/UVA, 0.066-0.097 mM for KMnO4/UVB, and 0.086-0.180 mM for KMnO4/UVC. Furthermore, the influence of varying pH levels, KMnO4 concentrations, and different water sources on the degradation efficacy was investigated. The pivotal role of free radicals and reactive manganese species in promoting the degradation of PE microplastics was identified. A comparative evaluation with treatments solely utilizing KMnO4 or UV light highlighted the enhanced effectiveness of the combined approach, demonstrating its potential as an efficient solution for reducing microplastic contamination in aquatic systems.

13.
Environ Sci Technol ; 58(42): 18456-18473, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39388166

RESUMO

Volatile organic compounds (VOCs) are considered to be the most recalcitrant gaseous pollutants due to their high toxicity, diversity, complexity, and stability. Gas-solid catalytic oxidation methods have been intensively studied for VOC treatment while being greatly hampered by energy consumption, catalyst deactivation, and byproduct formation. Recently, aqueous advanced oxidation processes (AOPs) have attracted increasing interest for the deep oxidation of VOCs at room temperature, owing to the generation of abundant reactive oxygen species (ROS). However, current reviews mainly focus on VOC degradation performance and have not clarified the specific reaction process, degradation products, and paths of VOCs in different AOPs. This study systematically reviews recent advances in the application of aqueous AOPs for gaseous VOC removal. First, the VOC gas-liquid mass transfer and chemical oxidation processes are presented. Second, the latest research progress of VOC removal by various ROS is reviewed to study their degradation performances, pathways, and mechanisms. Finally, the current challenges and future strategies are discussed from the perspectives of synergistic oxidation of VOC mixtures, accurate oxidation, and resource utilization of target VOCs via aqueous AOPs. This perspective provides the latest information and research inspiration for the future industrial application of aqueous AOPs for VOC waste gas treatment.


Assuntos
Oxirredução , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/química , Gases , Água/química , Espécies Reativas de Oxigênio
14.
Chemosphere ; 366: 143532, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39401675

RESUMO

The presence of pharmaceutical pollutants in water bodies represents a significant environmental and public health concern, largely due to their inherent persistence and potential to induce antibiotic resistance. Advanced oxidation processes (AOPs) that employ peroxymonosulfate (PMS) activation have emerged as an effective means of degrading these contaminants. Bismuth oxyiodides (BiOI), which are known for their visible-light photocatalytic properties, demonstrate considerable potential for removal of pharmaceutical pollutants. This study examines the synthesis and performance of BiOI-based composites with barium ferrite (BFO) nanoparticles for enhanced PMS activation under visible light. BiOI and Bi5O7I were synthesized via solvothermal and electrodeposition methods, respectively, and their morphologies and crystalline structures were observed to exhibit distinctive characteristics following annealing. The formation of the composite with BFO resulted in an improvement in the catalytic properties, which in turn enhanced the surface area and availability of active sites. The objective of the photocatalytic studies was to evaluate the degradation and mineralization of tetracycline (TC) under visible light, PMS, and combined conditions. The Bi5O7I(ED)-BFO catalyst was identified as the optimal candidate, achieving up to 99.8% TC degradation and 99.4% mineralization within 90 min at room temperature. The synergistic effect of BFO in BiOI-based composites significantly enhanced performance across all conditions, indicating their potential for efficient remediation of pharmaceutical pollutant. The material's performance was further evaluated in tap water, where the degradation efficiency decreased to 56.4% and mineralization to 38.2%. These results reflect the challenges posed by complex water matrices. However, doubling the PMS concentration to 5 mM led to improved outcomes, with 93.8% degradation and 81.4% mineralization achieved. These findings demonstrate the material's robust potential for treating pharmaceutical pollutants in real-world conditions, advancing sustainable water treatment technologies.

15.
J Hazard Mater ; 480: 135803, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39259995

RESUMO

Bensulfuron methyl (BSM), a typical sulfonylurea herbicide, has been widely used worldwide for weed suppression and crop protection. Nevertheless, the long-term and prolonged usage led to residues in environment, resulting in the reduction of crop yields and even threatening food security. In this study, the nitrogen/magnesium codoped biochar (NMg-BC) was prepared via two-step pyrolysis method to activate periodate (PI) for BSM degradation. The results demonstrated BSM degradation rate was 87.9 % within 10 min by NMg-BC/PI system at 15 â„ƒ. The system exhibited the favorable tolerance to environmental changes (pH, temperature, anions, and humic acids), presenting high removal efficiency of BSM. Radicals (IO3•) and non-radicals (1O2 and electron transfer) pathways contributed to the degradation of BSM, while the latter performed a crucial role in BSM degradation. Theoretical calculations further confirmed doped of N and Mg changed the electron configuration and electrostatic potential (ESP) distribution of biochar, which was beneficial to provide more active sites for PI activation. Hydroponic experiments showed that NMg-BC/PI system could effectively degrade BSM, and its residue had no significant effect on the length and weight of soybean. The study provides a promising approach for the pollutant remediation in cold regions.

16.
J Environ Manage ; 370: 122398, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39244931

RESUMO

Tetracycline (TC), a commonly used antibiotic in wastewater, poses environmental and health risks, thus demanding advanced catalysts for its effective removal. In this work, for the first time, we integrated cobalt ferrite (CoFe2O4) and MXene quantum dots (MQDs) to form magnetic heterojunctions for rapid degradation of TC in the presence of peroxymonosulfate (PMS). Anchoring MQDs on the CoFe2O4 nanoparticles remarkably promoted the overall degradation rate of TC to 98.2% within 20 min via both radical and non-radical pathways. The first-order kinetic constant was 0.170 min-1, 3.5 and 15.5 times higher than that of CoFe2O4 and MQDs alone, respectively. Quenching experiments revealed that the addition of p-benzoquinone (p-BQ) and furfuryl alcohol (FFA) reduced the degradation of TC within 20 min to 56.2% and 28.4%, respectively, indicating that the primary reactive oxygen species for TC degradation in the CoFe2O4/MQDs + PMS system are •O2- and 1O2. CoFe2O4/MQDs also exhibited superparamagnetic property, which enabled their effective recovery by external magnetic field. Their reusability was verified by retaining 81.4% of catalytic efficacy in the consecutive 8th cycle. The CoFe2O4/MQDs + PMS system also exhibited excellent practicability in natural water samples as the degradation rates in both tap water and lake water environments exceeded 90%. Three potential pathways for TC degradation were proposed based on the liquid chromatography-mass spectrometry (LC-MS) characterizations and TC progressively transformed into 13 intermediates. This work may contribute to the ongoing efforts to develop advanced catalysts and strategies for mitigating the environmental impact of antibiotic pollution, offering a pathway toward sustainable and efficient water treatment technologies.

17.
Water Res ; 267: 122504, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39342707

RESUMO

Domestic wastewater is a potential source of water for non-potable reuse that may help address the global water, energy, and resource challenges. Herein, a "self-supplied" process through integrating microbial electrochemical system (MES) with UV/H2O2 was developed and investigated for wastewater treatment. H2O2 was "self-supplied" from MES while the MES catholyte was "self-supplied" from the final effluent of UV/H2O2. It was found that the MES accomplished > 80 % degradation of chemical oxygen demand (COD) through bioanode degradation, and produced 18 - 20 mg L-1 H2O2 via oxygen reduction reaction in the gas diffusion cathode. The MES effluent was further treated by the UV/H2O2 process, which achieved the complete removal of recalcitrant diclofenac and > 6 log inactivation of Escherichia coli. The enhanced treatment performance of UV/H2O2 was demonstrated via a comparison with the control experiments (UV or H2O2 treatment) and benefited from ·OH generation and sulfide removal. When treating the actual wastewater, the proposed system exhibited consistent treatment performance for the organic compounds and recalcitrant contaminants, and the quality of the treated water would meet the non-potable water reuse guidelines. The results of this study encourage the further exploration of emerging contaminant removal, system coordination, and use of renewable energy by the cooperation between MES and UV/H2O2.

18.
Ecotoxicol Environ Saf ; 284: 116990, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39236658

RESUMO

Marine toxins pose a significant safety risk, leading to human intoxications and causing substantial economic losses in seafood-producing regions. The development of rapid, cost-effective, efficient, and reliable approaches for the containment of these substances is therefore crucial in order to mitigate the adverse impact of marine toxins. This research conducted a comprehensive review on the toxicity and influencing factors of marine toxins production. Additionally, depuration technologies, including adsorption, advanced oxidation processes, biodegradation, heating treatment, temporary maintenance and purification, and drug inhibition, were systematically summarized. The study also provided a comparative analysis of the advantages and disadvantages of various depuration technologies and proposed strategies for future development.


Assuntos
Toxinas Marinhas , Toxinas Marinhas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental/métodos , Biodegradação Ambiental , Adsorção , Humanos , Organismos Aquáticos/efeitos dos fármacos
19.
Environ Sci Technol ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276080

RESUMO

High-valent iron (Fe(IV/V/VI)) has been widely applied in water decontamination. However, common Fe(II)-activating oxidants including hydrogen peroxide (H2O2) and persulfate react slowly with Fe(II) and exhibit low selectivity for Fe(IV) production due to the cogeneration of radicals. Herein, we report peroxyacids (POAs; R-C(O)OOH) that can react with Fe(II) more than 3 orders of magnitude faster than H2O2, with high selectivity for Fe(IV) generation. Rapid degradation of bisphenol A (BPA, an endocrine disruptor) was achieved by the combination of Fe(II) with performic acid (PFA), peracetic acid (PAA), or perpropionic acid (PPA) within one second. Experiments with phenyl methyl sulfoxide (PMSO) and tert-butyl alcohol (TBA) revealed Fe(IV) as the major reactive species in all three Fe(II)-POA systems, with a minor contribution of radicals (i.e., •OH and R-C(O)O•). To understand the exceptionally high reactivity of POAs, a detailed computational comparison among the Fenton-like reactions with step-by-step thermodynamic evaluation was conducted. The high reactivity is attributed to the lower energy barriers for O-O bond cleavage, which is determined as the rate-limiting step for the Fenton-like reactions, and the thermodynamically favorable bidentate binding pathway of POA with iron. Overall, this study advances knowledge on POAs as novel Fenton-like reagents and sheds light on computational chemistry for these systems.

20.
Heliyon ; 10(17): e36676, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296046

RESUMO

This study investigates the impact of the Electrical Breakdown in Liquid-phase (EBL) process on alkaloid transformation in Mitragyna speciose (Kratom) leaves, focusing on the conversion of mitragynine (MG) to 7-hydroxy mitragynine (7-OH-MG) by using advanced oxidation processes (AOPs). A novel reactor has been developed to enhance plasma exposure to Kratom leaf powdered solutions during the EBL process. Two distinct electrical voltage characteristics, half-positive and negative half-waves, have been utilized for the EBL, with an output voltage of 4.57 kVpeak at a no-load condition and a frequency of 50 Hz. The experimental findings demonstrate a time-dependent enhancement in the transformation process. The highest yield of 7-OH-MG, reaching 2,485 ± 134 µg/g of dried Kratom leaves weight, has been attained with the EBL processing generated by positive half-wave voltage after 20 min of EBL exposure. Notably, the EBL processing generated by positive half-wave voltage has outperformed the one generated by negative half-wave voltage by a significant factor of 2.01.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA