Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Med Sci (Basel) ; 12(3)2024 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-39051379

RESUMO

Human Immunodeficiency Virus (HIV) remains a significant global health challenge with approximately 38 million people currently having the virus worldwide. Despite advances in treatment development, the virus persists in the human population and still leads to new infections. The virus has a powerful ability to mutate and hide from the human immune system in reservoirs of the body. Current standard treatment with antiretroviral therapy effectively controls viral replication but requires lifelong adherence and does not eradicate the virus. This review explores the potential of Advanced Therapy Medicinal Products as novel therapeutic approaches to HIV, including cell therapy, immunisation strategies and gene therapy. Cell therapy, particularly chimeric antigen receptor T cell therapy, shows promise in preclinical studies for targeting and eliminating HIV-infected cells. Immunisation therapies, such as broadly neutralising antibodies are being investigated to control viral replication and reduce reservoirs. Despite setbacks in recent trials, vaccines remain a promising avenue for HIV therapy development. Gene therapy using technologies like CRISPR/Cas9 aims to modify cells to resist HIV infection or eliminate infected cells. Challenges such as off-target effects, delivery efficiency and ethical considerations persist in gene therapy for HIV. Future directions require further research to assess the safety and efficacy of emerging therapies in clinical trials. Combined approaches may be necessary to achieve complete elimination of the HIV reservoir. Overall, advanced therapies offer new hope for advancing HIV treatment and moving closer to a cure.


Assuntos
Terapia Genética , Infecções por HIV , Humanos , Terapia Baseada em Transplante de Células e Tecidos , Replicação Viral , HIV
2.
Viruses ; 16(3)2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543808

RESUMO

Bacteriophage therapy is a promising approach to treating bacterial infections. Research and development of bacteriophage therapy is intensifying due to the increase in antibiotic resistance and the faltering development of new antibiotics. Bacteriophage therapy uses bacteriophages (phages), i.e., prokaryotic viruses, to specifically target and kill pathogenic bacteria. The legal handling of this type of therapy raises several questions. These include whether phage therapeutics belong to a specially regulated class of medicinal products, and which legal framework should be followed with regard to the various technical ways in which phage therapeutics can be manufactured and administered. The article shows to which class of medicinal products phage therapeutics from wild type phages and from genetically modified (designer) phages do or do not belong. Furthermore, the article explains which legal framework is relevant for the manufacture and administration of phage therapeutics, which are manufactured in advance in a uniform, patient-independent manner, and for tailor-made patient-specific phage therapeutics. For the systematically coherent, successful translation of phage therapy, the article considers pharmaceutical law and related legal areas, such as genetic engineering law. Finally, the article shows how the planned legislative revisions of Directive 2001/83/EC and Regulation (EC) No 726/2004 may affect the legal future of phage therapy.


Assuntos
Infecções Bacterianas , Bacteriófagos , Terapia por Fagos , Humanos , Bacteriófagos/fisiologia , Bactérias , Infecções Bacterianas/terapia , Antibacterianos , Preparações Farmacêuticas
3.
Sci Rep ; 14(1): 5933, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467674

RESUMO

Plastic components are essential in the pharmaceutical industry, encompassing container closure systems, laboratory handling equipment, and single-use systems. As part of their material qualification process, studies on interactions between plastic contact materials and process solutions or drug products are conducted. The assessment of single-use systems includes their potential impact on patient safety, product quality, and process performance. This is particularly crucial in cell and gene therapy applications since interactions with the plastic contact material may result in an adverse effect on the isolated therapeutic human cells. We utilized the cell painting assay (CPA), a non-targeted method, for profiling the morphological characteristics of U2OS human osteosarcoma cells in contact with chemicals related to plastic contact materials. Specifically, we conducted a comprehensive analysis of 45 common plastic extractables, and two extracts from single-use systems. Results of the CPA are compared with a standard cytotoxicity assay, an osteogenesis differentiation assay, and in silico toxicity predictions. The findings of this feasibility study demonstrate that the device extracts and most of the tested compounds do not evoke any measurable biological changes on the cells (induction ≤ 5%) among the 579 cell features measured at concentrations ≤ 50 µM. CPA can serve as an important assay to reveal unique information not accessible through quantitative structure-activity relationship analysis and vice versa. The results highlight the need for a combination of in vitro and in silico methods in a comprehensive assessment of single-use equipment utilized in advanced therapy medicinal products manufacturing.


Assuntos
Produtos Biológicos , Embalagem de Medicamentos , Humanos , Indústria Farmacêutica , Segurança do Paciente , Projetos de Pesquisa , Contaminação de Medicamentos/prevenção & controle , Preparações Farmacêuticas
4.
Front Immunol ; 14: 1280826, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077331

RESUMO

To accelerate the development of Advanced Therapy Medicinal Products (ATMPs) for patients suffering from life-threatening cancer with limited therapeutic options, regulatory approaches need to be constantly reviewed, evaluated and adjusted, as necessary. This includes utilizing science and risk-based approaches to mitigate and balance potential risks associated with early clinical research and a more flexible manufacturing paradigm. In this paper, T2EVOLVE an Innovative Medicine Initiative (IMI) consortium explores opportunities to expedite the development of CAR and TCR engineered T cell therapies in the EU by leveraging tools within the existing EU regulatory framework to facilitate an iterative and adaptive learning approach across different product versions with similar design elements or based on the same platform technology. As understanding of the linkage between product quality attributes, manufacturing processes, clinical efficacy and safety evolves through development and post licensure, opportunities are emerging to streamline regulatory submissions, optimize clinical studies and extrapolate data across product versions reducing the need to perform duplicative studies. It is worth noting that this paper is focusing on CAR- and TCR-engineered T cell therapies but the concepts may be applied more broadly to engineered cell therapy products (e.g., CAR NK cell therapy products).


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia Adotiva , Humanos , Imunoterapia Adotiva/efeitos adversos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T
5.
Methods Mol Biol ; 2668: 69-98, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37140791

RESUMO

The development of an extracellular vesicles (EV)-based therapeutic product requires the implementation of reproducible and scalable, purification protocols for clinical-grade EV. Commonly used isolation methods including ultracentrifugation, density gradient centrifugation, size exclusion chromatography, and polymer-based precipitation, faced limitations such as yield efficiency, EV purity, and sample volume. We developed a GMP-compatible method for the scalable production, concentration, and isolation of EV through a strategy involving, tangential flow filtration (TFF). We applied this purification method for the isolation of EV from conditioned medium (CM) of cardiac stromal cells, namely cardiac progenitor cells (CPC) which has been shown to possess potential therapeutical application in heart failure. Conditioned medium collection and EV isolation using TFF demonstrated consistent particle recovery (~1013 particle/mL) enrichment of small/medium-EV subfraction (range size 120-140 nm). EV preparations achieved a 97% reduction of major protein-complex contaminant and showed unaltered biological activity. The protocol describes methods to assess EV identity and purity as well as procedures to perform downstream applications including functional potency assay and quality control tests. The large-scale manufacturing of GMP-grade EV represents a versatile protocol that can be easily applied to different cell sources for wide range of therapeutic areas.


Assuntos
Vesículas Extracelulares , Meios de Cultivo Condicionados/análise , Vesículas Extracelulares/química , Filtração , Ultracentrifugação
6.
Front Med (Lausanne) ; 9: 1012497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325384

RESUMO

Many RNA-based drugs, both vaccines and non-vaccines, are under development or even approved. They include coding mRNAs and non-coding (nc) RNAs among them antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), micro-RNAs (miRNAs), small activating RNAs (saRNAs), RNA aptamers and RNA guides. According to the European Union (EU) legislation, these products can be currently categorized into different regulatory statuses, depending, for vaccines, on their target (infectious disease or not) and, for other drugs, on how they are obtained (chemically or biologically). This classification is fundamental to the type of marketing authorization (MA), and therefore to the controls to be performed, from preclinical stages through clinical trials to pharmacovigilance, to meet the safety requirements for patients. However, the current rules raise several problems, in particular the risk, because technology is evolving, to have similar RNA drugs being covered by very different legal statuses and the lack of international harmonization. The objectives of this study are (i) to review how RNA medicinal products are currently legally categorized in the EU and especially whether they fall under the status of gene therapy medicinal products (GTMP), a regulatory status belonging to advanced therapy medicinal products (ATMP), (ii) to discuss the issues generated by this classification, with a focus on the heterogeneity of statuses of these products, the differences with the American and ICH definitions and the potential impact on the safety requirements.

7.
Front Med (Lausanne) ; 8: 713047, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926483

RESUMO

Since 2007, a new class of biologic products for human use called "advanced therapy medicinal products (ATMP)" have been legally integrated in the European Medical Agency. They consist of recombinant nucleic acid, engineered cells, cells, or tissues. In the United States, ATMP fall under the regulatory framework of biological products and the term "cell and gene therapy product" is used in the legislative and regulatory documents. Potential clinical applications are broad, particularly, in the field of cancer, inherited genetic disease, and regenerative medicine. Indeed, the benefit conferred by CD19 chimeric antigen receptor T cells led to the first engineered cell therapy products to be approved by the Food and Drug Administration (FDA) in 2017. Gene therapy products to treat orphan diseases are also extensively developed with many clinical trials ongoing in the world. Nevertheless, the use of these therapeutic products is complex and requires careful considerations in the terms of regulatory and hospital setting requirements, such as storage, handling, administration, and disposal which justify the implementation of a secured medication circuit. Through this systematic review of the literature, the authors wanted to compile data on the assessment of environmental exposure related to the use of ATMP in healthcare setting to secure their medication circuit. A literature search was conducted on PubMed and Web of Science, and 32 publications dealing with environmental exposure assessment and ATMP were selected. In addition, marketed ATMPs were identified and data regarding the environmental concerns were extracted from product information sections from European Public Assessment Reports (EPAR). The environmental contamination assessments were mainly addressed in the reviews rather than in original articles related to the use of ATMP. Most of the product information sections from EPAR suggested precautions rather than requirements when dealing with environmental consideration following ATMP handling. Nevertheless, these precautions usually remain elusive especially concerning waste disposal and the detection of biological material on the work surfaces, and mainly relate to the genetically modified organisms (GMO) over non-GMO cellular products. Pharmaceutical oversight and adherence to the good preparation practices and good clinical practices are essential to ensure the safe use in term of environmental concern of these new therapeutic products in healthcare setting.

8.
Mol Ther Methods Clin Dev ; 22: 388-400, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34514030

RESUMO

T cell engineering strategies offer cures to patients and have entered clinical practice with chimeric antibody-based receptors; αßT cell receptor (αßTCR)-based strategies are, however, lagging behind. To allow a more rapid and successful translation to successful concepts also using αßTCRs for engineering, incorporating a method for the purification of genetically modified T cells, as well as engineered T cell deletion after transfer into patients, could be beneficial. This would allow increased efficacy, reduced potential side effects, and improved safety of newly to-be-tested lead structures. By characterizing the antigen-binding interface of a good manufacturing process (GMP)-grade anti-αßTCR antibody, usually used for depletion of αßT cells from stem cell transplantation products, we developed a strategy that allows for the purification of untouched αßTCR-engineered immune cells by changing 2 amino acids only in the TCRß chain constant domain of introduced TCR chains. Alternatively, we engineered an antibody that targets an extended mutated interface of 9 amino acids in the TCRß chain constant domain and provides the opportunity to further develop depletion strategies of engineered immune cells.

9.
Biologicals ; 64: 49-57, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31980348

RESUMO

Advanced therapy medicinal products (ATMP) are required to maintain their quality and safety throughout the production cycle, and they must be free of microbial contaminations. Among them, mycoplasma contaminations are difficult to detect and undesirable in ATMP, especially for immunosuppressed patients. Mycoplasma detection tests suggested by European Pharmacopoeia are the "culture method" and "indicator cell culture method" which, despite their effectiveness, are time consuming and laborious. Alternative methods are accepted, provided they are adequate and their results are comparable with those of the standard methods. To validate a novel in-house method, we performed and optimized, a real time PCR protocol, using a commercial kit and an automatic extraction system, in which we tested different volumes of matrix, maximizing the detection sensitivity. The results were compared with those obtained with the gold standard methods. From a volume of 10 ml, we were able to recognize all the mycoplasmas specified by the European Pharmacopoeia, defined as genomic copies per colony forming unit ratio (GC/CFU). Our strategy allows to achieve faster and reproducible results when compared with conventional methods and meets the sensitivity and robustness criteria required for an alternative approach to mycoplasmas detection for in-process and product-release testing of ATMP.


Assuntos
DNA Bacteriano/genética , Contaminação de Medicamentos , Infecções por Mycoplasma/genética , Mycoplasma/genética , Reação em Cadeia da Polimerase , Humanos , Limite de Detecção , Kit de Reagentes para Diagnóstico
10.
Front Bioeng Biotechnol ; 8: 606606, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425872

RESUMO

Medical products comprising human cells, genes, and tissues have been developed for clinical applications worldwide, and their developmental environment has been established. These products can be imported and exported, but marketing authorization regulations are complicated among regions. This investigation was conducted to identify the characteristics of medical products comprising human cells, genes, and tissues. We used website data, books from survey companies, and reports from public agencies to conduct two investigations. We used website data to conduct a general information survey of 143 cell-therapy and gene-therapy products sold in 24 countries and public assessment reports to individually survey non-clinical and clinical developments of 18 cell-therapy and gene-therapy products developed in Japan and the European Union (EU). The first survey revealed that the numbers of products used in orthopedic surgery and dermatology have increased since 2000, and the numbers of hematological products have increased since 2011. The second investigation revealed that fewer orphaned products were developed in Japan than in the EU. The most appropriate dose was 1.2 × 108 cells per injection per adult. Clinical trials to determine the most appropriate dose were conducted in the EU but not in Japan. No non-clinical immunogenicity tests for autogenous products were conducted in Japan or the EU. Pharmacokinetics tests were not individually performed for sheet-form products. Both in vivo and in vitro pharmacological tests were more likely to be conducted in the EU, while only one or the other was conducted in Japan. Furthermore, in Japan, carcinogenicity tests were performed based on non-clinical technical guidance, while in the EU, these tests were determined according to each product's features. Fewer clinical trials were performed, and fewer subjects per product were used in Japan than in the EU. Many aspects of the clinical and non-clinical development of medical products comprising human cells, genes, and tissues differ between Japan and the EU. Analyzing these differences will enable the safe and rapid distribution of these products to clinical sites.

11.
Biomed Mater Eng ; 28(s1): S3-S7, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28372273

RESUMO

The regulation for the use of stem cells has evolved during the past decade with the aim of ensuring a high standard of quality and safety for human derived products throughout Europe to comply with the provision of the Lisbon treaty. To this end, new regulations have been issued and the regulatory status of stem cells has been revised. Indeed, stem cells used for therapeutic purposes can now be classified as a cell preparation, or as advanced therapy medicinal products depending on the clinical indication and on the procedure of cell preparation. Furthermore, exemptions to the European regulation are applicable for stem cells prepared and used within the hospital. The aim of this review is to give the non-specialized reader a broad overview of this particular regulatory landscape.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Legislação Médica , Transplante de Células-Tronco/legislação & jurisprudência , Células-Tronco , Engenharia Tecidual , Terapia Baseada em Transplante de Células e Tecidos/normas , Ensaios Clínicos como Assunto , Europa (Continente) , União Europeia , Humanos , Legislação Médica/normas , Controle de Qualidade , Transplante de Células-Tronco/normas , Células-Tronco/classificação , Células-Tronco/citologia , Engenharia Tecidual/normas
12.
Methods Mol Biol ; 1499: 203-222, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27987152

RESUMO

A variety of different mRNA-based drugs are currently in development. This became possible, since major breakthroughs in RNA research during the last decades allowed impressive improvements of translation, stability and delivery of mRNA. This article focuses on antigen-encoding RNA-based vaccines that are either directed against tumors or pathogens. mRNA-encoded vaccines are developed both for preventive or therapeutic purposes. Most mRNA-based vaccines are directly administered to patients. Alternatively, primary autologous cells from cancer patients are modified ex vivo by the use of mRNA and then are adoptively transferred to patients. In the EU no regulatory guidelines presently exist that specifically address mRNA-based vaccines. The existing regulatory framework, however, clearly defines that mRNA-based vaccines in most cases have to be centrally approved. Interestingly, depending on whether RNA-based vaccines are directed against tumors or infectious disease, they are formally considered gene therapy products or not, respectively. Besides an overview on the current clinical use of mRNA vaccines in various therapeutic areas a detailed discussion of the current regulatory situation is provided and regulatory perspectives are discussed.


Assuntos
Vacinas Anticâncer/imunologia , RNA Mensageiro/imunologia , Animais , Antígenos/imunologia , Europa (Continente) , Terapia Genética/métodos , Humanos , Neoplasias/imunologia , Neoplasias/terapia
13.
Methods Mol Biol ; 1416: 339-56, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27236682

RESUMO

The present chapter focuses on the validation of the following analytical methods for the control of mesenchymal stromal cells (MSC) for cell therapy clinical trials: Microbiological control for cellular product Endotoxin assay Mycoplasma assay Cell count and viability Immunophenotype Clonogenic potential (CFU-F assay) In our lab, these methods are in use for product release, process control or control of the biological starting materials. They are described in detail in the accompanying Chapter 19.For each method, validation goals and strategy are presented, and a detailed experimental scheme is proposed.


Assuntos
Endotoxinas/análise , Células-Tronco Mesenquimais/citologia , Controle de Qualidade , Bactérias/isolamento & purificação , Contagem de Células , Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Células Cultivadas , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/microbiologia , Técnicas Microbiológicas , Mycoplasma/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA