Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1308626, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264488

RESUMO

The first step of anaerobic benzoate degradation is the formation of benzoyl-coenzyme A by benzoate-coenzyme A ligase (BCL). The anaerobic route is steered by benzoyl-CoA reductase, which promotes benzoyl-CoA breakdown, which is subsequently oxidized. In certain bacteria at low oxygen conditions, the aerobic metabolism of monoaromatic hydrocarbons occurs through the degradation Box pathway. These pathways have undergone experimental scrutiny in Alphaproteobacteria and Betaproteobacteria and have also been explored bioinformatically in representative Betaproteobacteria. However, there is a gap in our knowledge regarding the distribution of the benzoyl-CoA pathway and the evolutionary forces propelling its adaptation beyond that of representative bacteria. To address these questions, we used bioinformatic procedures to identify the BCLs and the lower pathways that transform benzoyl-CoA. These procedures included the identification of conserved motifs. As a result, we identified two motifs exclusive to BCLs, describing some of the catalytic properties of this enzyme. These motifs helped to discern BCLs from other aryl-CoA ligases effectively. The predicted BCLs and the enzymes of lower pathways were used as genomic markers for identifying aerobic, anaerobic, or hybrid catabolism, which we found widely distributed in Betaproteobacteria. Despite these enhancements, our approach failed to distinguish orthologs from a small cluster of paralogs exhibiting all the specified features to predict an ortholog. Nonetheless, the conducted phylogenetic analysis and the properties identified in the genomic context aided in formulating hypotheses about how this redundancy contributes to refining the catabolic strategy employed by these bacteria to degrade the substrates.

2.
J Hazard Mater ; 329: 38-48, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28122276

RESUMO

Triclocarban (TCC) is an emerging and persistent pollutant once released into environment. In this study, TCC-degrading Ochrobactrum sp. MC22, was isolated and characterized. This is the first report on plant-growth promoting bacterium with versatile capability of TCC degradation under aerobic and anaerobic conditions. The aerobic degradation of TCC occurred completely of which the kinetic analysis revealed a non-self-inhibitive substrate effect, and broad-concentration-range degradation efficiency (ranging from 0.16-30mgL-1). Anaerobic TCC degradation was feasible, but was significantly enhanced up to 40-50% when ferric, or acetate was provided as electron donor, or acceptor, respectively. TCC biodegradation under both conditions was proposed to initially occur through hydrolysis leading to transient accumulation of chloroanilines, which could be completely metabolized and detoxified. With concern on TCC adverse effect to plants, role of MC22 on toxicity mitigation was investigated using two legume plants: Vigna radiata and Glycine max (L.) Merr. Upon TCC exposure, damage of both plant structures, especially root system was observed, but was substantially mitigated by MC22 bioaugmentation. This study not only provides thorough TCC degradation characteristic and kinetics of MC22, but also suggests a potential role of this bacterial strain for a rhizoremediation in crop area with TCC contamination.


Assuntos
Carbanilidas/metabolismo , Glycine max/efeitos dos fármacos , Ochrobactrum/isolamento & purificação , Poluentes do Solo/metabolismo , Vigna/efeitos dos fármacos , Aerobiose , Anaerobiose , Biodegradação Ambiental , Carbanilidas/toxicidade , Testes de Mutagenicidade , Ochrobactrum/metabolismo , Cebolas , Desenvolvimento Vegetal , Poluentes do Solo/toxicidade
3.
Chemosphere ; 93(3): 567-73, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23932145

RESUMO

The enriched mixed culture aerobic and anaerobic bacteria from agricultural soils were used to study the degradation of endosulfan (ES) in aqueous and soil slurry environments. The extent of biodegradation was ∼95% in aqueous and ∼65% in soil slurry during 15 d in aerobic studies and, ∼80% in aqueous and ∼60% in soil slurry during 60 d in anaerobic studies. The pathways of aerobic and anaerobic degradation of ES were modeled using combination of Monod no growth model and first order kinetics. The rate of biodegradation of ß-isomer was faster compared to α-isomer. Conversion of ES to endosulfan sulfate (ESS) and endosulfan diol (ESD) were the rate limiting steps in aerobic medium and, the hydrolysis of ES to ESD was the rate limiting step in anaerobic medium. The mass balance indicated further degradation of endosulfan ether (ESE) and endosulfan lactone (ESL), but no end-products were identified. In the soil slurries, the rates of degradation of sorbed contaminants were slower. As a result, net rate of degradation reduced, increasing the persistence of the compounds. The soil phase degradation rate of ß-isomer was slowed down more compared with α-isomer, which was attributed to its higher partition coefficient on the soil.


Assuntos
Endossulfano/metabolismo , Inseticidas/metabolismo , Poluentes do Solo/metabolismo , Poluentes Químicos da Água/metabolismo , Aerobiose , Anaerobiose , Biodegradação Ambiental , Meio Ambiente , Cromatografia Gasosa-Espectrometria de Massas , Índia , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA