Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.566
Filtrar
1.
Angew Chem Int Ed Engl ; : e202409788, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954428

RESUMO

The condensation of amino acids into peptides plays a crucial role in protein synthesis and is thus essential for understanding the origins of life. However, the spontaneous formation of peptides from amino acids in bulk aqueous media is energetically unfavorable, posing a challenge for elucidating plausible abiotic mechanisms. In this study, we investigate the formation of amide bonds between amino acids within highly supersaturated aerosol droplets containing dicyandiamide (DCD), a cyanide derivative potentially present on primordial Earth. Metastable states, i.e. supersaturation, within individual micron-sized droplets are studied using both an optical trap and a linear quadrupole electrodynamic balance. When irradiated with intense visible light, amide bond formation is observed to occur and can be monitored using vibrational bands in Raman spectra. The reaction rate is found to be strongly influenced by droplet size and kinetic modelling suggests that it is driven by the photochemical product of a DCD self-reaction. Our results highlight the potential of atmospheric aerosol particles as reaction environments for peptide synthesis and have potential implications for the prebiotic chemistry of early Earth.

2.
Int J Pediatr Otorhinolaryngol ; 183: 112030, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38991363

RESUMO

OBJECTIVES: To assess the extent of staff exposure to aerosol generation in common pediatric otorhinolaryngological procedures (tonsillotomies, adenoidectomies, and tympanostomies) and determine the surgical phases responsible for most aerosol generation in these procedures. METHODS: Aerosol generation was measured during 35 pediatric otolaryngological procedures using an Optical Particle Sizer that measures aerosol concentrations for particle sizes between 0.3 and 10.0 µm. The different phases of and instruments used in each procedure were logged. Operating room background aerosol levels and coughing were used as references. RESULTS: Total aerosol concentrations were significantly higher during tonsillotomies and adenoidectomies when compared to tympanostomies (p = 0.011 and p = 0.042) and to empty room background aerosol concentrations (p = 0.0057 and p < 0.001). Aerosol concentration during tonsillotomies did not differ from coughing, which is considered as standard for high-risk aerosol procedures. During tympanostomies, aerosol concentrations were even lower than during perioperative concentrations. No statistically significant difference in aerosol generation comparing suction, electrocautery, cold instruments, and paracentesis was found. CONCLUSION: According to the results of this study, tympanostomies are low-risk aerosol-generating procedures. On the other hand, pediatric tonsillotomies produced aerosols comparable to coughing, pointing to them being significantly aerosol-producing procedures and viral transmission is theoretically possible intraoperatively.

3.
J Environ Manage ; 365: 121644, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963970

RESUMO

The Earth's atmosphere contains ultrafine particles known as aerosols, which can be either liquid or solid particles suspended in gas. These aerosols originate from both natural sources and human activities, termed primary and secondary sources respectively. They have significant impacts on the environment, particularly when they transform into ultrafine particles or aerosol nanoparticles, due to their extremely fine atomic structure. With this context in mind, this review aims to elucidate the fundamentals of atmospheric-derived aerosol nanoparticles, covering their various sources, impacts, and methods for control and management. Natural sources such as marine, volcanic, dust, and bioaerosols are discussed, along with anthropogenic sources like the combustion of fossil fuels, biomass, and industrial waste. Aerosol nanoparticles can have several detrimental effects on ecosystems, prompting the exploration and analysis of eco-friendly, sustainable technologies for their removal or mitigation.Despite the adverse effects highlighted in the review, attention is also given to the generation of aerosol-derived atmospheric nanoparticles from biomass sources. This finding provides valuable scientific evidence and background for researchers in fields such as epidemiology, aerobiology, and toxicology, particularly concerning atmospheric nanoparticles.


Assuntos
Aerossóis , Atmosfera , Ecossistema , Nanopartículas , Aerossóis/análise , Nanopartículas/química , Atmosfera/química , Poluentes Atmosféricos/análise , Humanos , Monitoramento Ambiental , Material Particulado/análise
4.
Front Chem ; 12: 1416982, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947958

RESUMO

Non-plasma technologies are being extensively investigated for their potential to mitigate microbial growth through the production of various reactive species. Predominantly, studies utilise atmospheric non-thermal plasma to produce plasma-activated liquids. The advancement of plasma-liquid applications has led to the investigation of plasma-activated aerosols (PAAs). This study aimed to produce a rapid-prototyped plasma-activated aerosol setup and perform chemical and anti-bacterial characterisation on the resultant activated aerosols. The setup was produced using stereolithography 3D printing, and air was used as the carrier gas. The novel design of the device allowed for the direct production of PAAs without the prior generation of plasma-activated water and subsequent aerosolisation. The generated PAAs were assessed for nitrite, hydrogen peroxide and ozone content using colourimetric assays. Anti-bacterial efficacy was tested against three human pathogenic strains: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Salmonella enterica. It was observed that nitrite and ozone contact concentration increased with exposure time, yet no hydrogen peroxide was detected. The generated PAAs showed significant zones of no growth for all bacterial strains. These devices, therefore, show potential to be used as anti-bacterial disinfection technologies.

5.
J Hazard Mater ; 476: 135120, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38976960

RESUMO

The decommissioning of nuclear reactors is a global concern, in part because of the generation of radioactive aerosols that can lead to internal radiation exposure. At present, radioactive aerosols generated during nuclear decommissioning have not been actively studied, and data collected from the actual decommissioning are limited. This paper presents a study of radioactive aerosols generated during the pre-decommission phase of an experimental shielding reactor. Among all the on-site operations, cutting resulted in the highest levels of radioactivity. Plasma arc cutting, in particular, had a maximum gross α and ß radioactivity over 0.10 and 0.14 Bq/m3, respectively. Assumed AMAD (activity median aerodynamic diameter) values are employed to assess the impact of particle size on the internal exposure dose resulting from the inhalation of 137Cs aerosols based on the Human Respiratory Tract Model of International Commission on Radiological Protection. When cutting stainless steel by plasma arc, the internal exposure dose caused by 137Cs aerosols with an AMAD of 0.1 µm is estimated to be nearly four times as that of aerosols with an AMAD of 10 µm. Results show that the internal exposure dose is highly dependent on the AMAD, implying the importance of measuring size-related parameters of radioactive aerosols in the future nuclear decommissioning. This study has revealed some characteristics of radioactive aerosols released in decommissioning operations, which can serve as a valuable reference for controlling and removing aerosols during the decommissioning of nuclear facilities.

6.
Infect Dis (Lond) ; : 1-9, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975876

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an airborne pathogen, but detection of infectious SARS-CoV-2 in air and in particular the introduction of the virus into the environment by different human expiratory manoeuvres is not well studied. OBJECTIVES: The aim of this study was to investigate the presence of SARS-CoV-2 in cough from coronavirus disease of 2019 (COVID-19) in-patients and to study contamination of the virus in the patient's environment. METHODS: Detection of SARS-CoV-2 in cough was analyzed by PCR, culture and imaging. Detection in cough was compared to presence of the virus in air and on surfaces from patient rooms. RESULTS: Twenty-five patients in 21 rooms were included in the study. SARS-CoV-2 RNA was found in cough aerosols from 16 out of 22 patients that produced voluntary cough. As demonstrated by plaque-forming unit assays, active virus was isolated from 11 of these 16 patients. Using mainly molecular detection, the virus was also found in air, on high-contact surfaces, and no-touch surfaces from the room of the COVID-19 patients. CONCLUSIONS: These results show that infectious SARS-CoV-2 circulating in air can originate from patient cough and should be considered against the risk of acquiring COVID-19 through inhalation.

7.
Sci Rep ; 14(1): 15752, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977818

RESUMO

Governmental policies, regulations, and responses to the pandemic can benefit from a better understanding of people's resulting behaviours before, during, and after COVID-19. To avoid the inelasticity and subjectivity of survey datasets, several studies have already used some objective variables like air pollutants to estimate the potential impacts of COVID-19 on the urban transportation system. However, the usage of reactant gases and a narrow time scale might weaken the results somehow. Here, both the objective passenger volume of public transport and the concentration of private traffic emitted black carbon (BC) from 2018 to 2023 were collected/calculated to decipher the potential relationship between public and private traffic during the COVID-19 period. Our results indicated that the commuting patterns of citizens show significant (p < 0.01) different patterns before, during, and after the pandemic. To be specific, public transportation showed a significant (p < 0.01) positive correlation with private transportation before the pandemic. This public transportation was significantly (p < 0.01) affected by the outbreaks of COVID-19, showing a significant (p < 0.01) negative correlation with private transportation. Such impacts of the virus and governmental policy would affect the long-term behaviour of individuals and even affect public transportation usage after the pandemic. Our results also indicated that such behaviour was mainly linked to the governmental restriction policy and would soon be neglected after the cancellation of the restriction policy in China.


Assuntos
COVID-19 , Quarentena , Meios de Transporte , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , SARS-CoV-2 , Cidades , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Poluição do Ar/legislação & jurisprudência , Poluentes Atmosféricos/análise , China/epidemiologia , Emissões de Veículos/análise , Emissões de Veículos/prevenção & controle , Emissões de Veículos/legislação & jurisprudência
8.
Environ Sci Technol ; 58(28): 12368-12378, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38963641

RESUMO

Air pollution, especially particulate matter (PM), is a significant environmental pollution worldwide. Studying the chemical, environmental, and life-related cellular physical characteristics of size-fractionated PMs is important because of their different degrees of harmful effects on human respiratory tracts and organ systems, causing severe diseases. This study evaluates the chemical components of size-fractionated PMs down to PM0.1 collected during a biomass-burning episode, including elemental/organic carbon and trace elements. Single particle sizes and distributions of PM0.1, PM0.5-0.1, PM1.0-0.5, and PM2.5-1.0 were analyzed by scanning electron microscopy and Zeta sizer. Two commonly used cell lines, e.g., HeLa and Cos7 cells, and two respiratory-related cell lines including lung cancer/normal cells were utilized for cell cytotoxicity experiments, revealing the key effects of particle sizes and concentrations. A high-speed scanning ion conductance microscope explored particle-stimulated subcellular physical characteristics for all cell lines in dynamics, including surface roughness (SR) and elastic modulus (E). The statistical results of SR showed distinct features among different particle sizes and cell types while a E reduction was universally found. This work provides a comprehensive understanding of the chemical, environmental, and cellular physical characteristics of size-fractionated PMs and sheds light on the necessity of controlling small-sized PM exposures.


Assuntos
Tamanho da Partícula , Material Particulado , Humanos , Animais , Chlorocebus aethiops , Células HeLa , Poluentes Atmosféricos , Células COS
9.
Br Poult Sci ; : 1-8, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995230

RESUMO

1. Preventing disease is important in poultry production systems, but this has mainly been studied in chickens. The aim of this study is to explore the impact of microbial aerosols in intensive goose house environments.2. To evaluate the environmental quality of geese housing, fine particulate matter (PM2.5) was collected using an ambient air particulate matter sampler. High-throughput sequencing was used to analyse bacterial diversity and relative abundance. Results showed that the number of general and operational taxonomic units (OTUs) were 1,578 and 19 112 in all PM2.5 samples. Firmicutes, Bacteroidota, Proteobacteria, Acidobacterota were the four most abundant phyla in PM2.5.3. Compared with bacterial phyla in the PM2.5 from chicken houses, those in the genus Acidobacterota were increased in goose housing. There are various genera of bacteria present in PM2.5, and their composition was similar across different samples. No significant change was observed in the diversity of microbiota in the PM2.5, although multiple pathogenic bacteria were detected.4. A prediction function showed that a variety of bacterial phyla correlated positively with the human diseases.5. In summary, the microbial aerosols in the goose shed pose significant risks to the health of the geese. Regular monitoring of the composition of microbial aerosols is important for the healthy growth of geese and disease prevention and control.

10.
Antibiotics (Basel) ; 13(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38927224

RESUMO

The airborne transmission of bacterial pathogens poses a significant challenge to public health, especially with the emergence of antibiotic-resistant strains. This study investigated environmental factors influencing the survival of airborne bacteria, focusing on the effects of different carbon dioxide (CO2) and dust concentrations. The experiments were conducted in an atmospheric simulation chamber using the non-resistant wild-type E. coli K12 (JM109) and a multi-resistant variant (JM109-pEC958). Different CO2 (100 ppm, 800 ppm, 3000 ppm) and dust concentrations (250 µg m-3, 500 µg m-3, 2000 µg m-3) were tested to encompass a wide range of CO2 and dust levels. The results revealed that JM109-pEC958 exhibited greater resilience to high CO2 and dust concentrations compared to its non-resistant counterpart. At 3000 ppm CO2, the survival rate of JM109 was significantly reduced, while the survival rate of JM109-pEC958 remained unaffected. At the dust concentration of 250 µg m-3, JM109 exhibited significantly reduced survival, whereas JM109-pEC958 did not. When the dust concentration was increased to 500 and 2000 µg m-3, even the JM109-pEC958 experienced substantially reduced survival rates, which were still significantly higher than those of its non-resistant counterpart at these concentrations. These findings suggest that multi-resistant E. coli strains possess mechanisms enabling them to endure extreme environmental conditions better than non-resistant strains, potentially involving regulatory genes or efflux pumps. The study underscores the importance of understanding bacterial adaptation strategies to develop effective mitigation approaches against antibiotic-resistant bacteria in atmospheric environments. Overall, this study provides valuable insights into the interplay between environmental stressors and bacterial survival, serving as a foundational step towards elucidating the adaptation mechanisms of multi-resistant bacteria and informing strategies for combating antibiotic resistance in the atmosphere.

11.
BMC Public Health ; 24(1): 1495, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835007

RESUMO

BACKGROUND: Chronic kidney disease (CKD) carries a high public health burden yet little is known about the relationship between metalworking fluid (MWF) aerosols, occupational noise and CKD. We aimed to explore the relationship between occupational MWF aerosols, occupational noise and CKD. METHODS: A total of 2,738 machinists were sampled from three machining companies in Wuxi, China, in 2022. We used the National Institute for Occupational Safety and Health (NIOSH) method 5524 to collect individual samples for MWF aerosols exposure, and the Chinese national standard (GBZ/T 189.8-2007) method to test individual occupational noise exposure. The diagnostic criteria for CKD were urinary albumin/creatinine ratio (UACR) of ≥ 30 mg/g and reduced renal function (eGFR < 60 mL.min- 1. 1.73 m- 2) lasting longer than 3 months. Smooth curve fitting was conducted to analyze the associations of MWF aerosols and occupational noise with CKD. A segmented regression model was used to analyze the threshold effects. RESULTS: Workers exposed to MWF aerosols (odds ratio [OR] = 2.03, 95% confidence interval [CI]: 1.21-3.41) and occupational noise (OR = 1.77, 95%CI: 1.06-2.96) had higher prevalence of CKD than nonexposed workers. A nonlinear and positive association was found between increasing MWF aerosols and occupational noise dose and the risk of CKD. When daily cumulative exposure dose of MWF aerosols exceeded 8.03 mg/m3, the OR was 1.24 (95%CI: 1.03-1.58), and when occupational noise exceeded 87.22 dB(A), the OR was 1.16 (95%CI: 1.04-1.20). In the interactive analysis between MWF aerosols and occupational noise, the workers exposed to both MWF aerosols (cumulative exposure ≥ 8.03 mg/m3-day) and occupational noise (LEX,8 h ≥ 87.22 dB(A)) had an increased prevalence of CKD (OR = 2.71, 95%CI: 1.48-4.96). MWF aerosols and occupational noise had a positive interaction in prevalence of CKD. CONCLUSIONS: Occupational MWF aerosols and noise were positively and nonlinearly associated with CKD, and cumulative MWF aerosols and noise exposure showed a positive interaction with CKD. These findings emphasize the importance of assessing kidney function of workers exposed to MWF aerosols and occupational noise. Prospective and longitudinal cohort studies are necessary to elucidate the causality of these associations.


Assuntos
Aerossóis , Metalurgia , Ruído Ocupacional , Exposição Ocupacional , Insuficiência Renal Crônica , Humanos , China/epidemiologia , Estudos Transversais , Aerossóis/análise , Aerossóis/efeitos adversos , Ruído Ocupacional/efeitos adversos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Masculino , Adulto , Insuficiência Renal Crônica/epidemiologia , Pessoa de Meia-Idade , Feminino , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/efeitos adversos
12.
Laryngoscope Investig Otolaryngol ; 9(3): e1287, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835334

RESUMO

Objectives: The objectives were to determine the surgical modality with the lowest aerosol and droplets generated by commonly used modalities in oropharyngeal and laryngeal surgery. Methods: A simulation of oropharyngeal and laryngeal surgery was set up using fresh sheep heads. Four common surgical modalities were utilized: cold steel, electrocautery, coblation, and microdebrider. The resultant aerosol generated was evaluated using two measurement modalities at two key positions in the theater. (1) DustTrak Pro Aerosol Monitor was used to measure the concentration of particles. (2) Fluorescein dye coated on the oropharynx and larynx, and the resultant scatter on paper. Results: Electrocautery and coblation produced statistically significant increases in the concentration of aerosols (p < .001). Microdebrider and cold steel instrumentation produced the least aerosols. No measurable fluorescein droplets were noted for all four modalities. Conclusion: Electrocautery and coblation produced higher concentrations of aerosols. Mitigation factors should be considered with instruments with increased aerosolization. These modalities show low droplet-related infection risk.

13.
Sci Total Environ ; 942: 173780, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38844230

RESUMO

Arctic regions are extremely sensitive to global warming. Aerosols are one of the most important short-lived climate-forcing agents affecting the Arctic climate. The present study examines the summertime chemical characteristics and potential sources of various organic and inorganic aerosols at a Norwegian Arctic site, Ny-Ålesund (79°N). The results show that organic matter (OM) accounts for 60 % of the total PM10 mass, followed by sulfate (SO42-). Water-soluble organic carbon (WSOC) contributes 62 % of OC. Photochemical processes involving diverse anthropogenic and biogenic precursor compounds are identified as the major sources of WSOC, while water-insoluble organic carbon (WIOC) aerosols are predominantly linked to primary marine emissions. Despite being a remote pristine site, the aerosols show a sign of chemical aging, evidenced by a significant chloride depletion, which was about 82 % on average during the study period. Nitrogen-containing aerosols are likely stemming from migratory seabird colonies and local dust sources around the sampling site. While biogenic, crustal, and sea salt-derived SO42- account for 37%, 8%, and 5% respectively, the remaining 50% is attributed to anthropogenic SO42-. Through chemical tracers, Pearson correlation coefficient matrix, and Hierarchical Cluster Analysis (HCA), the present study identifies soil biota (terrestrial biogenic) and marine emissions, along with their photochemical oxidation processes, as potential sources of Arctic aerosols during summer, while biomass burning and combustion-related sources have a minor contribution. The chemical closure of hygroscopicity highlights that while organics predominantly control aerosol hygroscopicity in the Arctic summer, specific inorganic components like (NH4)2SO4 can significantly increase it on certain days, affecting aerosol-cloud interactions and climate processes over the Arctic during summer. The present study highlights the high abundance of organics and their vital role in the Arctic climate during summer when natural aerosols are conquered.

14.
J Hazard Mater ; 474: 134673, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850948

RESUMO

A novel methodology was presented for determining the representative effective density of aerosols of a given size distribution, using a lab-made two-stage low-pressure impactor and an aerosol electrometer. Electrical currents upstream (Imeasured, up) and downstream (Imeasured, down) of the 2nd stage of the impactor were measured using a corona charger and the aerosol electrometer. In addition, the electrical currents upstream (Icalculated, up) and downstream (Icalculated, down) of the 2nd stage of the impactor were calculated using the aerosol charging theory. Then, the difference between the ratio of Imeasured,down to Imeasured,up and the ratio of Icalculated,down to Icalculated,up was iterated with varying the presumed effective density until the difference was smaller than 0.001. The methodology was validated using poly-disperse sodium chloride (NaCl) particles. The effective densities of ambient aerosols were then obtained from indoor and outdoor environments and compared with those calculated from a relation between mobility (scanning mobility particle sizer (SMPS) measurement) and aerodynamic (electrical low-pressure impactor (ELPI) measurement) diameters. Compared to the effective densities obtained with SMPS and ELPI measurements, the effective densities obtained using the methodology introduced in this paper differed within 10 % deviation, depending on measurement location. After an averaged effective density for given size distribution is obtained at a measurement location, the number-based size distribution can be easily converted to mass-based size distribution using the representative effective density.

15.
Environ Sci Technol ; 58(25): 11118-11127, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38864774

RESUMO

Intermediate volatility organic compounds (IVOCs) are important precursors to secondary organic aerosols (SOAs), but they are often neglected in studies concerning SOA formation. This study addresses the significant issue of IVOCs emissions in the Qinghai-Tibetan plateau (QTP), where solid fuels are extensively used under incomplete combustion conditions for residential heating and cooking. Our field measurement data revealed an emission factor of the total IVOCs (EFIVOCs) ranging from 1.56 ± 0.03 to 9.97 ± 3.22 g/kg from various combustion scenarios in QTP. The markedly higher EFIVOCs in QTP than in plain regions can be attributed to oxygen-deficient conditions. IVOCs were dominated by gaseous phase emissions, and the primary contributors of gaseous and particulate phase IVOCs are the unresolved complex mixture and alkanes, respectively. Total IVOCs emissions during the heating and nonheating seasons in QTP were estimated to be 31.7 ± 13.8 and 6.87 ± 0.45 Gg, respectively. The estimated SOA production resulting from combined emissions of IVOCs and VOCs is nearly five times higher than that derived from VOCs alone. Results from this study emphasized the pivotal role of IVOCs emissions in air pollution and provided a foundation for compiling emission inventories related to solid fuel combustion and developing pollution prevention strategies.


Assuntos
Aerossóis , Poluentes Atmosféricos , Carvão Mineral , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , China , Animais , Tibet , Monitoramento Ambiental
16.
Environ Monit Assess ; 196(7): 653, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913102

RESUMO

Accurately locating deposited particles on the impaction plate of an inertial impactor is crucial for mineralogical and geochemical analysis. Since traditional methods relying on filter analysis are costly and time-consuming, this study delves into the numerical examination of the impact of nozzle-converging length (NCL) on the collection efficiency and depositional arrangements of various fine aerosol particles. Three distinct nozzle-converging lengths (NCL = 3, 7, and 13 mm) were simulated and rigorously compared for their performance in particle collection within an eight-nozzle inertial impactor PM 2.5 . Comprehensive analysis reveals that varying NCL does not significantly impact the collection efficiency of any investigated particle, with variations within 12% across all sizes in this study. Moreover, while NCL adjustments influence the settling ratio of primary depositions, these effects remain under 35% for all different-sized and shaped particles studied in this article. Furthermore, after examining 120 cases and averaging the collection efficiency for particles of a constant aerodynamic diameter, our findings indicate that the efficiency variations across the three distinct geometries remain under 5%. Consequently, we conclude that the head design of this impactor is independent from NCL. Notably, shorter NCLs result in denser particle accumulation near the nozzle outlet on the impaction plate, with this effect more pronounced for coarser particles. In summary, this research provides valuable insights into the role of nozzle-converging length in aerosol particle collection efficiency and deposition patterns, offering crucial guidance for particle classification and sampling methodologies eliminating the need for filter analysis.


Assuntos
Aerossóis , Poluentes Atmosféricos , Monitoramento Ambiental , Tamanho da Partícula , Aerossóis/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Material Particulado/análise , Desenho de Equipamento
17.
Environ Sci Technol ; 58(25): 10956-10968, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38868859

RESUMO

Marine dimethyl sulfide (DMS) emissions are the dominant source of natural sulfur in the atmosphere. DMS oxidizes to produce low-volatility acids that potentially nucleate to form particles that may grow into climatically important cloud condensation nuclei (CCN). In this work, we utilize the chemistry transport model ADCHEM to demonstrate that DMS emissions are likely to contribute to the majority of CCN during the biological active period (May-August) at three different forest stations in the Nordic countries. DMS increases CCN concentrations by forming nucleation and Aitken mode particles over the ocean and land, which eventually grow into the accumulation mode by condensation of low-volatility organic compounds from continental vegetation. Our findings provide a new understanding of the exchange of marine precursors between the ocean and land, highlighting their influence as one of the dominant sources of CCN particles over the boreal forest.


Assuntos
Atmosfera , Atmosfera/química
18.
Environ Pollut ; 358: 124472, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945190

RESUMO

In recent years, there has been a growing concern about air pollution and its impact on the air quality and human health, especially for fine particulate matter (PM2.5) and its associated secondary aerosols in urban areas. This study conducted a year-long field campaign to collect PM2.5 samples day and night in an urban area of central Taiwan. Higher PM2.5 mass concentrations were observed in winter (27.7 ± 9.7 µg/m3), followed by autumn (22.5 ± 8.3 µg/m3), spring (19.2 ± 6.4 µg/m3), and summer (11.0 ± 3.1 µg/m3). The dominant formation mechanism of secondary inorganic aerosols was heterogeneous reactions of NO3- at night and homogeneous reactions of SO42- during the day. Additionally, significant correlations were observed between aerosol liquid water content (ALWC) and NO3- during nighttime, indicating the importance of aqueous-phase NO3- formation. The role of aerosol acidity was explored and a unique alkaline condition was found in spring and summer, which showed lower PM2.5 concentrations than the neutralized condition. Under the neutralized condition, higher PM2.5 concentrations were commonly found when combining the ammonium-rich regime with molar ratios of [NO3-]/[SO42-] exceeding 1.6, suggesting the importance of reducing both NH3 and NOx. Furthermore, the results showed that reducing NH3 should be prioritized under high temperature conditions, while reducing NOx became important under low temperature conditions. Clustering of backward trajectories showed that long-range transport could enhance the formation of secondary aerosols, but local emissions emerged as the main factor driving high PM2.5 concentrations. This study provides insights for policymakers to improve air quality, suggesting that different mitigation strategies should be formulated based on meteorological variables and that using clean energy for vehicles and electricity generation is important to alleviate air pollution.

19.
Chemosphere ; 362: 142614, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878978

RESUMO

Several studies have demonstrated that air-bubbling and foam fractionation techniques can efficiently remove long-chain PFAS from contaminated water. However, removing short-chain PFAS is challenging due to its lower surface activity and inability to form self-assembly structures at the air-water interface. In this study, we tested various additives, including salts, surfactants, and polymers, to improve short-chain PFAS (e.g., perfluorobutanesulfonic acid (PFBS) and perfluorobutanoic acid (PFBA)) removal in non-foaming solutions using a bench-scale system. We found that in the presence of cetyltrimethylammonium chloride (CTAC) and salt, air-bubbling can significantly remove 0.5 µg L-1 of PFBS and PFBA in deionized water by >99% (15 min) and 81% (60 min), respectively. The decline of surface tension and the formation of thin foam-like layers during bubbling, controlled by the concentration of CTAC, significantly improved the removal of short-chain PFAS. Adding anionic and neutral surfactants showed no removal of short-chain PFAS during bubbling, suggesting the importance of the electrostatic interactions between short-chain PFAS and the cationic CTAC. We observed a 1:1 M ratio between CTAC and PFBS removed from the solution, suggesting the formation of ion pairs in the solution and enhancing the surface activity of the overall neutral (PFAS-CTAC) complex. A mass balance of the system revealed that the primary mechanism by which PFAS was removed from non-foaming waters was through aerosol generation (70-100%). Using the optimized condition, PFAS mixtures (short- and long-chain PFAS, including five recently regulated PFAS by USPEA, 2 nM each) in deionized water and natural groundwater were successfully removed to below detection (>99% removal; <2 ng L-1), except for PFBA (25-73% removal). These results provide an improved understanding of the mechanism by which PFAS is removed during foam fractionation and highlight the need for capturing aerosols enriched with PFAS to prevent secondary contamination.

20.
Pathogens ; 13(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38787222

RESUMO

Syndemics, the adverse interaction of two or more coterminous diseases or other negative health conditions, have probably existed since human settlement, plant and animal domestication, urbanization, and the growth of social inequality beginning about 10-12,000 years ago. These dramatic changes in human social evolution significantly increased opportunities for the spread of zoonotic infectious diseases in denser human communities with increased sanitation challenges. In light of a growing body of research that indicates that anthropogenic air pollution causes numerous threats to health and is taking a far greater toll on human life and wellbeing than had been reported, this paper proposes the possibility that air pollution is now the primary driver of infectious disease syndemics. In support of this assertion, this paper reviews the growth and health impacts of air pollution, the relationship of air pollution to the development and spread of infectious diseases, and reported cases of air pollution-driven infectious disease syndemics, and presents public health recommendations for leveraging the biosocial insight of syndemic theory in responding to infectious disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA