Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Mol Cell Cardiol ; 197: 11-19, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39395657

RESUMO

Holiday Heart Syndrome (HHS) is caused by excessive binge alcohol consumption, and atrial fibrillation (AF) is the most common arrhythmia among HHS patients. AF is associated with substantial morbidity and mortality, making its prevention and treatment of high clinical interest. This study defines the anti-AF action of Alda-1 (an established cardioprotective agent) and the underlying mechanisms of the action in our well-characterized HHS and cellular models. We found that Alda-1 effectively eliminated binge alcohol-evoked Ca2+ triggered activities (Ca2+ waves, prolonged Ca2+ transient diastolic decay) and arrhythmia inducibility in intact mouse atria. We then demonstrated that alcohol impaired human RyR2 channels (isolated from organ donors' hearts). The functional role of alcohol-caused RyR2 channel dysfunction in Ca2+ triggered arrhythmic activities was evidenced in a unique transgenic mouse model with a loss-of-function mutation (RyR2E4872Q+/-). Alda-1 is known to activate aldehyde dehydrogenase 2 (ALDH2), a key enzyme in alcohol detoxification. However, we found an increased level of ALDH2 and a preserved normal balance of pro- vs anti-apoptotic signaling in binge alcohol exposed hearts and H9c2 differentiated myocytes, which suggests that the link of alcohol-ALDH2-apoptosis is unlikely to be a key factor leading to binge alcohol-evoked arrhythmogenicity. We have previously reported that binge alcohol-activated stress response kinase JNK2 causatively drives Ca2+-triggered atrial arrhythmogenicity. Here, we found that JNK2-specific inhibition in either isolated human RyR2 channels or intact mouse atria abolished alcohol-evoked RyR2 channel dysfunction and Ca2+ triggered arrhythmic activities, suggesting a strong alcohol-JNK2-RyR2 interaction in atrial arrhythmogenicity. Furthermore, we revealed, for the first time, that Alda-1 suppresses JNK2 (but not JNK1) enzyme activity independently of ALDH2, which in turn alleviates binge alcohol-evoked Ca2+ triggered atrial arrhythmogenesis. Our findings provide novel mechanistic insights into the anti-arrhythmic action of Alda-1 and suggest that Alda-1 represents a potential preventative agent for AF management for HHS patients.

2.
Int J Immunopathol Pharmacol ; 37: 3946320231223005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38113877

RESUMO

OBJECTIVE: Evidence suggests that aldehyde dehydrogenase 2 (ALDH2) offers protection against damage caused by oxidative stress in diverse rodent models. Nonetheless, the effect of Alda-1, a compound that activates ALDH2, on acute lung injury (ALI) induced by air embolism (AE) remains unclear. The objective of this study was to explore the protective effects of Alda-1 in ALI induced by AE. METHODS: A rat model of in situ isolated perfused lung was established to investigate AE-induced ALI. Air was infused into the pulmonary artery at 0.25 mL/min for 1 minute. Before inducing AE, different doses (10, 20, or 30 mg/kg) of Alda-1 were given through intraperitoneal injection. Pathological changes in lung tissue were assessed using hematoxylin-eosin staining. We performed Western blot analysis to assess the protein levels of ALDH2,4-hydroxy-trans-2-nonenal (4-HNE), Bcl-2, caspase-3, phosphatidylinositol 3-kinase (PI3K), Akt, IκB-α, and nuclear NF-κB. RESULTS: Notably, AE results were demonstrated as harmful to the lungs, which is evidenced by intensified lung edema and disruption of lung tissue structure. Furthermore, AE caused a decrease in ALDH2 expression, increased accumulation of 4-HNE and MDA, infiltration of neutrophils, increased production of inflammatory cytokines, apoptosis, and upregulation of the PI3K/Akt and NF-κB signaling pathways within the lungs. Administration of a 20 mg/kg dose of Alda-1 alleviated the detrimental effects induced by AE. CONCLUSION: Alda-1 shows promise in mitigating AE-induced ALI, possibly through the upregulation of ALDH2 expression and suppression of the PI3K/Akt and NF-κB signaling pathways. Further research is warranted to validate these findings and to explore their translational potential in human subjects.


Assuntos
Lesão Pulmonar Aguda , Embolia Aérea , Humanos , Ratos , Animais , Aldeído-Desidrogenase Mitocondrial/metabolismo , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , NF-kappa B , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Pulmão/metabolismo
3.
Front Aging Neurosci ; 15: 1223977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693648

RESUMO

Aldehyde dehydrogenase 2 (ALDH2) is an enzyme found in the mitochondrial matrix that plays a central role in alcohol and aldehyde metabolism. A common ALDH2 polymorphism in East Asians descent (called ALDH2*2 or E504K missense variant, SNP ID: rs671), present in approximately 8% of the world's population, has been associated with a variety of diseases. Recent meta-analyses support the relationship between this ALDH2 polymorphism and Alzheimer's disease (AD). And AD-like pathology observed in ALDH2-/- null mice and ALDH2*2 overexpressing transgenic mice indicate that ALDH2 deficiency plays an important role in the pathogenesis of AD. Recently, the worldwide increase in alcohol consumption has drawn attention to the relationship between heavy alcohol consumption and AD. Of potential clinical significance, chronic administration of alcohol in ALDH2*2/*2 knock-in mice exacerbates the pathogenesis of AD-like symptoms. Therefore, ALDH2 polymorphism and alcohol consumption likely play an important role in the onset and progression of AD. Here, we review the data on the relationship between ALDH2 polymorphism, alcohol, and AD, and summarize what is currently known about the role of the common ALDH2 inactivating mutation, ALDH2*2, and alcohol in the onset and progression of AD.

4.
Front Immunol ; 14: 1127610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441072

RESUMO

Objective: Random skin flaps have many applications in plastic and reconstructive surgeries. However, distal flap necrosis restricts wider clinical utility. Mitophagy, a vital form of autophagy for damaged mitochondria, is excessively activated in flap ischemia/reperfusion (I/R) injury, thus inducing cell death. Aldehyde dehydrogenase-2 (ALDH2), an allosteric tetrameric enzyme, plays an important role in regulating mitophagy. We explored whether ALDH2 activated by N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1) could reduce the risk of ischemic random skin flap necrosis, and the possible mechanism of action. Methods: Modified McFarlane flap models were established in 36 male Sprague-Dawley rats assigned randomly to three groups: a low-dose Alda-1 group (10 mg/kg/day), a high-dose Alda-1 group (20 mg/kg/day) and a control group. The percentage surviving skin flap area, neutrophil density and microvessel density (MVD) were evaluated on day 7. Oxidative stress was quantitated by measuring the superoxide dismutase (SOD) and malondialdehyde (MDA) levels. Blood perfusion and skin flap angiogenesis were assessed via laser Doppler flow imaging and lead oxide-gelatin angiography, respectively. The expression levels of inflammatory cytokines (IL-1ß, IL-6, and TNF-α), vascular endothelial growth factor (VEGF), ALDH2, PTEN-induced kinase 1 (PINK1), and E3 ubiquitin ligase (Parkin) were immunohistochemically detected. Indicators of mitophagy such as Beclin-1, p62, and microtubule-associated protein light chain 3 (LC3) were evaluated by immunofluorescence. Results: Alda-1 significantly enhanced the survival area of random skin flaps. The SOD activity increased and the MDA level decreased, suggesting that Alda-1 reduced oxidative stress. ALDH2 was upregulated, and mitophagy-related proteins (PINK1, Parkin, Beclin-1, p62, and LC3) were downregulated, indicating that ALDH2 inhibited mitophagy through the PINK1/Parkin signaling pathway. Treatment with Alda-1 reduced neutrophil infiltration and expressions of inflammatory cytokines. Alda-1 significantly upregulated VEGF expression, increased the MVD, promoted angiogenesis, and enhanced blood perfusion. Conclusion: ALDH2 activation can effectively enhance random skin flap viability via inhibiting PINK1/Parkin-dependent mitophagy. Moreover, enhancement of ALDH2 activity also exerts anti-inflammatory and angiogenic properties.


Assuntos
Traumatismo por Reperfusão , Fator A de Crescimento do Endotélio Vascular , Animais , Masculino , Ratos , Aldeído Desidrogenase/uso terapêutico , Proteína Beclina-1 , Citocinas/uso terapêutico , Isquemia , Necrose , Complicações Pós-Operatórias , Proteínas Quinases/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Superóxido Dismutase , Ubiquitina-Proteína Ligases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Life Sci ; 328: 121876, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348813

RESUMO

AIMS: Alcohol relapse is a main limitation for the treatment of alcohol use disorders. Previous studies have shown that Alda-1, a pharmacological activator of ALDH2, inhibits both acquisition and chronic ethanol intake in rats; however, its effects on relapse-like ethanol intake are unknown. The aim of this study was to assess the effect of Alda-1 on post-deprivation and reaccess relapse-like ethanol intake in alcohol-preferring UChB rats. We also aimed to assess the possible mechanisms associated with the effects of Alda-1 by measuring the levels of glutamate transporter (GLT-1), oxidative stress and neuroinflammation markers in different regions of the mesocorticolimbic system. MAIN METHODS: In Experiment I, UChB female rats were exposed for 100 days to voluntary ethanol intake followed by 2-weeks of ethanol withdrawal and 1 week of ethanol reaccess. Alda-1 (25 mg/kg, intragastric, i.g) or vehicle was administered daily for 14 days during the withdrawal/re-access period. Experiment II was similar to Experiment I, but after the withdrawal period, ethanol re-access was not allowed, and Alda-1 was administered during the last week of withdrawal. At the end of both experiments, the levels of GLT-1, oxidative stress (GSH, MDA), and neuroinflammation markers (GFAP, Iba-1) were assessed in nucleus accumbens and/or hippocampus. KEY FINDINGS: The results showed that Alda-1 administration markedly blocked (90 %, p < 0.001) relapse-like ethanol intake in UChB rats. Alda-1 increased Iba-1 reactivity (microglial marker) in the NAc of ethanol-deprived rats. Alda-1 administration did not influence the levels of GLT-1, oxidative stress markers (MDA, GSH) or GFAP reactivity in the mesocorticolimbic system. SIGNIFICANCE: These preclinical findings support the use of activators of ALDH2, such as Alda-1, as a potential pharmacological strategy in the treatment of alcohol relapse.


Assuntos
Alcoolismo , Etanol , Ratos , Feminino , Animais , Alcoolismo/tratamento farmacológico , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Doenças Neuroinflamatórias , Aldeído-Desidrogenase Mitocondrial , Doença Crônica , Sistema X-AG de Transporte de Aminoácidos , Recidiva
6.
Neurotoxicology ; 97: 12-24, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37142061

RESUMO

Lead (Pb), a common environmental contaminant, and ethanol (EtOH), a widely available drug of abuse, are well-known neurotoxicants. In vivo, experimental evidence indicates that Pb exposure affects oxidative EtOH metabolism with a high impact on living organisms. On these bases, we evaluated the consequences of combined Pb and EtOH exposure on aldehyde dehydrogenase 2 (ALDH2) functionality. In vitro exposure to 10 µM Pb, 200 mM EtOH, or their combination for 24 h reduced ALDH2 activity and content in SH-SY5Y human neuroblastoma cells. In this scenario, we observed mitochondrial dysfunction characterized by reduced mass and membrane potential, decreased maximal respiration, and spare capacity. We also evaluated the oxidative balance in these cells finding a significant increase in reactive oxygen species (ROS) production and lipid peroxidation products under all treatments accompanied by an increase in catalase (CAT) activity and content. These data suggest that ALDH2 inhibition induces the activation of converging cytotoxic mechanisms resulting in an interplay between mitochondrial dysfunction and oxidative stress. Notably, NAD+ (1 mM for 24 h) restored ALDH2 activity in all groups, while an ALDH2 enhancer (Alda-1, 20 µM for 24 h) also reversed some of the deleterious effects resulting from impaired ALDH2 function. Overall, these results reveal the crucial role of this enzyme on the Pb and EtOH interaction and the potential of activators such as Alda-1 as therapeutic approaches against several conditions involving aldehydes accumulation.


Assuntos
Etanol , Neuroblastoma , Humanos , Aldeído-Desidrogenase Mitocondrial/metabolismo , Etanol/toxicidade , Chumbo/toxicidade , Chumbo/metabolismo , Neuroblastoma/metabolismo , Antioxidantes/metabolismo , Oxirredução , Linhagem Celular , Mitocôndrias/metabolismo , Benzodioxóis
7.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142350

RESUMO

To ameliorate diabetes mellitus-associated heart failure with preserved ejection fraction (HFpEF), we plan to lower diabetes-mediated oxidative stress-induced 4-hydroxy-2-nonenal (4HNE) accumulation by pharmacological agents that either decrease 4HNE generation or increase its detoxification.A cellular reactive carbonyl species (RCS), 4HNE, was significantly increased in diabetic hearts due to a diabetes-induced decrease in 4HNE detoxification by aldehyde dehydrogenase (ALDH) 2, a cardiac mitochondrial enzyme that metabolizes 4HNE. Therefore, hyperglycemia-induced 4HNE is critical for diabetes-mediated cardiotoxicity and we hypothesize that lowering 4HNE ameliorates diabetes-associated HFpEF. We fed a high-fat diet to ALDH2*2 mice, which have intrinsically low ALDH2 activity, to induce type-2 diabetes. After 4 months of diabetes, the mice exhibited features of HFpEF along with increased 4HNE adducts, and we treated them with vehicle, empagliflozin (EMP) (3 mg/kg/d) to reduce 4HNE and Alda-1 (10 mg/kg/d), and ALDH2 activator to enhance ALDH2 activity as well as a combination of EMP + Alda-1 (E + A), via subcutaneous osmotic pumps. After 2 months of treatments, cardiac function was assessed by conscious echocardiography before and after exercise stress. EMP + Alda-1 improved exercise tolerance, diastolic and systolic function, 4HNE detoxification and cardiac liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathways in ALDH2*2 mice with diabetes-associated HFpEF. This combination was even more effective than EMP alone. Our data indicate that ALDH2 activation along with the treatment of hypoglycemic agents may be a salient strategy to alleviate diabetes-associated HFpEF.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Proteínas Quinases Ativadas por AMP/metabolismo , Aldeído Desidrogenase/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Compostos Benzidrílicos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucosídeos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Camundongos , Volume Sistólico
8.
Cell Mol Gastroenterol Hepatol ; 14(4): 925-944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35787976

RESUMO

BACKGROUND & AIMS: The lipid oxidation is a key factor for damaging hepatocytes and causing cell death. However, the mechanisms underlying hepatocyte death and the role of the most popular lipid peroxidation product 4-hydroxy-2-nonenal (HNE) in nonalcoholic steatohepatitis (NASH) remains unclear. METHODS: We demonstrated using hepatoma cell lines, a NASH mouse model, HNE-treated monkeys, and biopsy specimens from patients with NASH that HNE induced hepatocyte death by disintegrating the lysosomal limiting membrane. RESULTS: The degree of HNE deposition in human NASH hepatocytes was more severe in cases with high lobular inflammation, ballooning, and fibrosis scores, and was associated with enlargement of the staining of lysosomes in hepatocytes. In in vitro experiments, HNE activated µ-calpain via G-protein coupled receptor (GPR) 120. The resultant rupture/permeabilization of the lysosomal limiting membrane induced the leakage of cathepsins from lysosomes and hepatocyte death. The blockade of G-protein coupled receptor 120 (GPR120) or µ-calpain expression suppressed lysosomal membrane damage and hepatocyte death by HNE. Alda-1, which activates aldehyde dehydrogenase 2 to degrade HNE, prevented HNE-induced hepatocyte death. Intravenous administration of HNE to monkeys for 6 months resulted in hepatocyte death by a mechanism similar to that of cultured cells. In addition, intraperitoneal administration of Alda-1 to choline-deficient, amino-acid defined treated mice for 8 weeks inhibited HNE deposition, decreased liver inflammation, and disrupted lysosomal membranes in hepatocytes, resulting in improvement of liver fibrosis. CONCLUSIONS: These results provide novel insights into the mechanism of hepatocyte death in NASH and will contribute to the development of new therapeutic strategies for NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Aldeído Desidrogenase/metabolismo , Animais , Catepsinas/metabolismo , Colina/metabolismo , Hepatócitos/metabolismo , Humanos , Inflamação/patologia , Lipídeos , Lisossomos/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia
9.
Front Med (Lausanne) ; 9: 892472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646953

RESUMO

Aim: After successful cardiopulmonary resuscitation (CPR), most survivors will develop acute kidney injury and intestinal barrier dysfunction, both of which contribute to the poor outcomes of cardiac arrest (CA) victims. Recently, the aldehyde dehydrogenase 2 (ALDH2) agonist, Alda-1 was shown to effectively alleviate regional ischemia/reperfusion injury of various organs. In the present study, we investigated the effects of Alda-1 treatment on renal and intestinal injuries after CA and resuscitation in pigs. Methods: Twenty-four male domestic pigs were randomly divided into one of the three groups: sham (n = 6), CPR (n = 10), or CPR+Alda-1 (n = 8). CA was induced and untreated for 8 min, and then CPR was performed for 8 min in the CPR and CPR+Alda-1 groups. At 5 min after resuscitation, a dose of 0.88 mg/kg of Alda-1 was intravenously administered in the CPR+Alda-1 group. The biomarkers of renal and intestinal injuries after resuscitation were regularly measured for a total of 24 h. Subsequently, the animals were euthanized, and then renal and intestinal tissues were obtained for the measurements of ALDH2 activity and expression, and cell apoptosis and ferroptosis. Results: Five of the 10 animals in the CPR group and six of the eight animals in the CPR+Alda-1 group were successfully resuscitated. After resuscitation, the levels of biomarkers of renal and intestinal injuries were significantly increased in all animals experiencing CA and resuscitation compared with the sham group; however, Alda-1 treatment significantly alleviated renal and intestinal injuries compared to the CPR group. Post-resuscitation ALDH2 activity was significantly decreased and its expression was markedly reduced in the kidney and intestine in those resuscitated animals compared with the sham group; nevertheless, both of them were significantly greater in those animals receiving Alda-1 treatment compared to the CPR group. In addition, renal, intestinal apoptosis and ferroptosis after resuscitation were observed in the CPR and CPR+Alda-1 groups, in which both of them were significantly milder in the CPR+Alda1 group than in the CPR group. Conclusions: The activation of ALDH2 by Alda-1 treatment significantly alleviated post-resuscitation renal and intestinal injuries through the inhibition of cell apoptosis and ferroptosis in a pig model of CA and resuscitation.

10.
Autophagy ; 18(11): 2671-2685, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35293288

RESUMO

Ethanol increases hepatic mitophagy driven by unknown mechanisms. Type 1 mitophagy sequesters polarized mitochondria for nutrient recovery and cytoplasmic remodeling. In Type 2, mitochondrial depolarization (mtDepo) initiates mitophagy to remove the damaged organelles. Previously, we showed that acute ethanol administration produces reversible hepatic mtDepo. Here, we tested the hypothesis that ethanol-induced mtDepo initiates Type 2 mitophagy. GFP-LC3 transgenic mice were gavaged with ethanol (2-6 g/kg) with and without pre-treatment with agents that decrease or increase mtDepo-Alda-1, tacrolimus, or disulfiram. Without ethanol, virtually all hepatocytes contained polarized mitochondria with infrequent autophagic GFP-LC3 puncta visualized by intravital microscopy. At ~4 h after ethanol treatment, mtDepo occurred in an all-or-none fashion within individual hepatocytes, which increased dose dependently. GFP-LC3 puncta increased in parallel, predominantly in hepatocytes with mtDepo. Mitochondrial PINK1 and PRKN/parkin also increased. After covalent labeling of mitochondria with MitoTracker Red (MTR), GFP-LC3 puncta encircled MTR-labeled mitochondria after ethanol treatment, directly demonstrating mitophagy. GFP-LC3 puncta did not associate with fat droplets visualized with BODIPY558/568, indicating that increased autophagy was not due to lipophagy. Before ethanol administration, rhodamine-dextran (RhDex)-labeled lysosomes showed little association with GFP-LC3. After ethanol treatment, TFEB (transcription factor EB) translocated to nuclei, and lysosomal mass increased. Many GFP-LC3 puncta merged with RhDex-labeled lysosomes, showing autophagosomal processing into lysosomes. After ethanol treatment, disulfiram increased, whereas Alda-1 and tacrolimus decreased mtDepo, and mitophagy changed proportionately. In conclusion, mtDepo after acute ethanol treatment induces mitophagic sequestration and subsequent lysosomal processing.Abbreviations : AcAld, acetaldehyde; ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; ALD, alcoholic liver disease; Alda-1, N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFP, green fluorescent protein; LAMP1, lysosomal-associated membrane protein 1; LMNB1, lamin B1; MAA, malondialdehyde-acetaldehyde adducts; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; MPT, mitochondrial permeability transition; mtDAMPS, mitochondrial damage-associated molecular patterns; mtDepo, mitochondrial depolarization; mtDNA, mitochondrial DNA; MTR, MitoTracker Red; PI, propidium iodide; PINK1, PTEN induced putative kinase 1; PRKN, parkin; RhDex, rhodamine dextran; TFEB, transcription factor EB; Tg, transgenic; TMRM, tetramethylrhodamine methylester; TOMM20, translocase of outer mitochondrial membrane 20; VDAC, voltage-dependent anion channel.


Assuntos
Etanol , Mitofagia , Camundongos , Animais , Mitofagia/genética , Etanol/farmacologia , Etanol/metabolismo , Dissulfiram , Tacrolimo , Autofagia , Ubiquitina-Proteína Ligases/metabolismo , DNA Mitocondrial , Proteínas Quinases/metabolismo , Acetaldeído
11.
Neurochem Res ; 47(4): 1097-1109, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35094247

RESUMO

Aldehyde dehydrogenase 2 (ALDH2) has been proven to protect the heart and brain against regional ischemia/reperfusion injury, in which the protective role is related to the inhibition of pyroptosis. In the present study, we investigated whether an ALDH2 activator N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichloro-benzamide (Alda-1) would improve postresuscitation cardiac and neurological outcomes in a clinically relevant swine model of cardiac arrest (CA) and resuscitation. The animal model was established by 8 min of untreated ventricular fibrillation and then 8 min of cardiopulmonary resuscitation (CPR). After restoring spontaneous circulation, the animals were randomly divided to receive either Alda-1 (0.88 mg/kg, n = 6) or saline (n = 5). Postresuscitation hemodynamic parameters, cardiac function, and cardiac and cerebral injuries were periodically measured for a total of 24 h. At 24 h postresuscitation, neurological function was evaluated, and then the animals were sacrificed, and cardiac and cerebral tissue samples were obtained for the measurements of oxidative stress, inflammation and pyroptosis. Consequently, postresuscitation cardiac and neurological dysfunction were significantly improved accompanied with significantly milder cardiac and cerebral injuries in the Alda-1 group compared with the CPR group. In addition, the increase in NLR family pyrin domain-containing 3 inflammasome expression and proinflammatory cytokine production, which indicated the occurrence of inflammatory response, were significantly less in the Alda1 group than in the CPR group. The expression level of gasdermin D used as a protein marker of pyroptosis was also significantly reduced in all resuscitated animals receiving Alda1 treatment. Moreover, the severity of oxidative stress indicated by the changes of 4-hydroxy-2-nonenal and malondialdehyde was significantly decreased in the heart and brain in all animals treated with Alda-1 compared to the CPR group. Thus, Alda-1 mitigated postresuscitation cardiac and neurological dysfunction and injuries possibly by inhibiting oxidative stress-mediated NLRP3 inflammasome activation and pyroptosis in a swine model of CA and resuscitation.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Traumatismo por Reperfusão , Animais , Parada Cardíaca/terapia , Inflamassomos/metabolismo , Piroptose , Traumatismo por Reperfusão/metabolismo , Suínos
12.
Acta Pharmacol Sin ; 43(1): 39-49, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33767380

RESUMO

Alzheimer's disease (AD) is associated with high incidence of cardiovascular events but the mechanism remains elusive. Our previous study reveals a tight correlation between cardiac dysfunction and low mitochondrial aldehyde dehydrogenase (ALDH2) activity in elderly AD patients. In the present study we investigated the effect of ALDH2 overexpression on cardiac function in APP/PS1 mouse model of AD. Global ALDH2 transgenic mice were crossed with APP/PS1 mutant mice to generate the ALDH2-APP/PS1 mutant mice. Cognitive function, cardiac contractile, and morphological properties were assessed. We showed that APP/PS1 mice displayed significant cognitive deficit in Morris water maze test, myocardial ultrastructural, geometric (cardiac atrophy, interstitial fibrosis) and functional (reduced fractional shortening and cardiomyocyte contraction) anomalies along with oxidative stress, apoptosis, and inflammation in myocardium. ALDH2 transgene significantly attenuated or mitigated these anomalies. We also noted the markedly elevated levels of lipid peroxidation, the essential lipid peroxidation enzyme acyl-CoA synthetase long-chain family member 4 (ACSL4), the transcriptional regulator for ACLS4 special protein 1 (SP1) and ferroptosis, evidenced by elevated NCOA4, decreased GPx4, and SLC7A11 in myocardium of APP/PS1 mutant mice; these effects were nullified by ALDH2 transgene. In cardiomyocytes isolated from WT mice and in H9C2 myoblasts in vitro, application of Aß (20 µM) decreased cell survival, compromised cardiomyocyte contractile function, and induced lipid peroxidation; ALDH2 transgene or activator Alda-1 rescued Aß-induced deteriorating effects. ALDH2-induced protection against Aß-induced lipid peroxidation was mimicked by the SP1 inhibitor tolfenamic acid (TA) or the ACSL4 inhibitor triacsin C (TC), and mitigated by the lipid peroxidation inducer 5-hydroxyeicosatetraenoic acid (5-HETE) or the ferroptosis inducer erastin. These results demonstrate an essential role for ALDH2 in AD-induced cardiac anomalies through regulation of lipid peroxidation and ferroptosis.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Coenzima A Ligases/metabolismo , Modelos Animais de Doenças , Presenilina-1/metabolismo , Doença de Alzheimer/patologia , Animais , Relação Dose-Resposta a Droga , Ferroptose , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Contração Miocárdica , Relação Estrutura-Atividade
13.
CNS Neurol Disord Drug Targets ; 21(4): 343-353, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34477539

RESUMO

BACKGROUND: Parkinson's Disease (PD) exhibits the extrapyramidal symptoms caused due to the dopaminergic neuronal degeneration in the substantia nigra of the brain and depletion of Aldehyde Dehydrogenase (ALDH) enzyme. OBJECTIVE: This study was designed to enlighten the importance of the Aldehyde dehydrogenase enzyme in protecting the dopamine levels in a living system. Camalexin, a potentially active compound, has been evaluated for its dopamine enhancing and aldehyde dehydrogenase protecting role in pesticide-induced Parkinson's disease. METHODS: AutoDock 4.2 software was employed to perform the docking simulations between the ligand camalexin and standard drugs Alda-1, Ropirinole with three proteins 4WJR, 3INL, 5AER. Consequently, the compound was evaluated for its in vivo neuroprotective role in the zebrafish model by attaining Institutional Animal Ethical Committee permission. The behavioral assessments and catecholamine analysis in zebrafish were performed. RESULTS: The Autodock result shows that the ligand camalexin has a lower binding energy (-3.84) that indicates a higher affinity with the proteins when compared to the standard drug of proteins (-3.42). In the zebrafish model, behavioral studies provided evidence that camalexin helps in the improvement of motor functions and cognition. The catecholamine assay has proved that there is an enhancement in dopamine levels, as well as an improvement in aldehyde dehydrogenase enzyme. CONCLUSION: The novel compound, camalexin, offers a protective role in Parkinson's disease model by its interaction with neurochemical proteins and also in alternative in vivo model.


Assuntos
Aldeído Desidrogenase/metabolismo , Benomilo/metabolismo , Indóis/metabolismo , Doença de Parkinson/metabolismo , Tiazóis/metabolismo , Peixe-Zebra/metabolismo , Animais , Modelos Animais de Doenças , Dopamina/metabolismo
14.
Neural Regen Res ; 17(1): 185-193, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34100455

RESUMO

Spinal cord injury (SCI) is associated with high production and excessive accumulation of pathological 4-hydroxy-trans-2-nonenal (4-HNE), a reactive aldehyde, formed by SCI-induced metabolic dysregulation of membrane lipids. Reactive aldehyde load causes redox alteration, neuroinflammation, neurodegeneration, pain-like behaviors, and locomotion deficits. Pharmacological scavenging of reactive aldehydes results in limited improved motor and sensory functions. In this study, we targeted the activity of mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2) to detoxify 4-HNE for accelerated functional recovery and improved pain-like behavior in a male mouse model of contusion SCI. N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1), a selective activator of ALDH2, was used as a therapeutic tool to suppress the 4-HNE load. SCI was induced by an impactor at the T9-10 vertebral level. Injured animals were initially treated with Alda-1 at 2 hours after injury, followed by once-daily treatment with Alda-1 for 30 consecutive days. Locomotor function was evaluated by the Basso Mouse Scale, and pain-like behaviors were assessed by mechanical allodynia and thermal algesia. ALDH2 activity was measured by enzymatic assay. 4-HNE protein adducts and enzyme/protein expression levels were determined by western blot analysis and histology/immunohistochemistry. SCI resulted in a sustained and prolonged overload of 4-HNE, which parallels with the decreased activity of ALDH2 and low functional recovery. Alda-1 treatment of SCI decreased 4-HNE load and enhanced the activity of ALDH2 in both the acute and the chronic phases of SCI. Furthermore, the treatment with Alda-1 reduced neuroinflammation, oxidative stress, and neuronal loss and increased adenosine 5'-triphosphate levels stimulated the neurorepair process and improved locomotor and sensory functions. Conclusively, the results provide evidence that enhancing the ALDH2 activity by Alda-1 treatment of SCI mice suppresses the 4-HNE load that attenuates neuroinflammation and neurodegeneration, promotes the neurorepair process, and improves functional outcomes. Consequently, we suggest that Alda-1 may have therapeutic potential for the treatment of human SCI. Animal procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of MUSC (IACUC-2019-00864) on December 21, 2019.

15.
Neural Regen Res ; 17(7): 1505-1511, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34916435

RESUMO

Lipid peroxidation-derived aldehydes, such as acrolein, the most reactive aldehyde, have emerged as key culprits in sustaining post-spinal cord injury (SCI) secondary pathologies leading to functional loss. Strong evidence suggests that mitochondrial aldehyde dehydrogenase-2 (ALDH2), a key oxidoreductase and powerful endogenous anti-aldehyde machinery, is likely important for protecting neurons from aldehydes-mediated degeneration. Using a rat model of spinal cord contusion injury and recently discovered ALDH2 activator (Alda-1), we planned to validate the aldehyde-clearing and neuroprotective role of ALDH2. Over an acute 2 day period post injury, we found that ALDH2 expression was significantly lowered post-SCI, but not so in rats given Alda-1. This lower enzymatic expression may be linked to heightened acrolein-ALDH2 adduction, which was revealed in co-immunoprecipitation experiments. We have also found that administration of Alda-1 to SCI rats significantly lowered acrolein in the spinal cord, and reduced cyst pathology. In addition, Alda-1 treatment also resulted in significant improvement of motor function and attenuated post-SCI mechanical hypersensitivity up to 28 days post-SCI. Finally, ALDH2 was found to play a critical role in in vitro protection of PC12 cells from acrolein exposure. It is expected that the outcome of this study will broaden and enhance anti-aldehyde strategies in combating post-SCI neurodegeneration and potentially bring treatment to millions of SCI victims. All animal work was approved by Purdue Animal Care and Use Committee (approval No. 1111000095) on January 1, 2021.

16.
Front Immunol ; 12: 740562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764958

RESUMO

Heatstroke (HS) can cause acute lung injury (ALI). Heat stress induces inflammation and apoptosis via reactive oxygen species (ROS) and endogenous reactive aldehydes. Endothelial dysfunction also plays a crucial role in HS-induced ALI. Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that detoxifies aldehydes such as 4-hydroxy-2-nonenal (4-HNE) protein adducts. A single point mutation in ALDH2 at E487K (ALDH2*2) intrinsically lowers the activity of ALDH2. Alda-1, an ALDH2 activator, attenuates the formation of 4-HNE protein adducts and ROS in several disease models. We hypothesized that ALDH2 can protect against heat stress-induced vascular inflammation and the accumulation of ROS and toxic aldehydes. Homozygous ALDH2*2 knock-in (KI) mice on a C57BL/6J background and C57BL/6J mice were used for the animal experiments. Human umbilical vein endothelial cells (HUVECs) were used for the in vitro experiment. The mice were directly subjected to whole-body heating (WBH, 42°C) for 1 h at 80% relative humidity. Alda-1 (16 mg/kg) was administered intraperitoneally prior to WBH. The severity of ALI was assessed by analyzing the protein levels and cell counts in the bronchoalveolar lavage fluid, the wet/dry ratio and histology. ALDH2*2 KI mice were susceptible to HS-induced ALI in vivo. Silencing ALDH2 induced 4-HNE and ROS accumulation in HUVECs subjected to heat stress. Alda-1 attenuated the heat stress-induced activation of inflammatory pathways, senescence and apoptosis in HUVECs. The lung homogenates of mice pretreated with Alda-1 exhibited significantly elevated ALDH2 activity and decreased ROS accumulation after WBH. Alda-1 significantly decreased the WBH-induced accumulation of 4-HNE and p65 and p38 activation. Here, we demonstrated the crucial roles of ALDH2 in protecting against heat stress-induced ROS production and vascular inflammation and preserving the viability of ECs. The activation of ALDH2 by Alda-1 attenuates WBH-induced ALI in vivo.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Aldeído-Desidrogenase Mitocondrial/metabolismo , Endotélio Vascular/fisiologia , Golpe de Calor/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/prevenção & controle , Aldeído-Desidrogenase Mitocondrial/genética , Animais , Benzamidas/administração & dosagem , Benzodioxóis/administração & dosagem , Cardiotônicos/administração & dosagem , Técnicas de Introdução de Genes , Golpe de Calor/complicações , Golpe de Calor/tratamento farmacológico , Calefação , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Estresse Oxidativo , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo
17.
Biomolecules ; 11(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34680107

RESUMO

Chronic hyperglycemia and hyperlipidemia hamper beta cell function, leading to glucolipotoxicity. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) detoxifies reactive aldehydes, such as methylglyoxal (MG) and 4-hydroxynonenal (4-HNE), derived from glucose and lipids, respectively. We aimed to investigate whether ALDH2 activators ameliorated beta cell dysfunction and apoptosis induced by glucolipotoxicity, and its potential mechanisms of action. Glucose-stimulated insulin secretion (GSIS) in MIN6 cells and insulin secretion from isolated islets in perifusion experiments were measured. The intracellular ATP concentrations and oxygen consumption rates of MIN6 cells were assessed. Furthermore, the cell viability, apoptosis, and mitochondrial and intracellular reactive oxygen species (ROS) levels were determined. Additionally, the pro-apoptotic, apoptotic, and anti-apoptotic signaling pathways were investigated. We found that Alda-1 enhanced GSIS by improving the mitochondrial function of pancreatic beta cells. Alda-1 rescued MIN6 cells from MG- and 4-HNE-induced beta cell death, apoptosis, mitochondrial dysfunction, and ROS production. However, the above effects of Alda-1 were abolished in Aldh2 knockdown MIN6 cells. In conclusion, we reported that the activator of ALDH2 not only enhanced GSIS, but also ameliorated the glucolipotoxicity of beta cells by reducing both the mitochondrial and intracellular ROS levels, thereby improving mitochondrial function, restoring beta cell function, and protecting beta cells from apoptosis and death.


Assuntos
Aldeído-Desidrogenase Mitocondrial/genética , Células Secretoras de Insulina/metabolismo , Mitocôndrias/genética , Estresse Oxidativo/efeitos dos fármacos , Trifosfato de Adenosina/genética , Aldeídos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Glucose/metabolismo , Humanos , Secreção de Insulina/genética , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Lipídeos/genética , Desintoxicação Metabólica Fase I/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Brain Res ; 1758: 147335, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33545099

RESUMO

Traumatic spinal cord injury (SCI) enhances the activity of S-nitrosoglutathione reductase (GSNOR) and inhibits the mitochondrial aldehyde dehydrogenase 2 (ALDH2) activity, resulting in prolonged and sustained pain and functional deficits. This study's objective was to test the hypotheses that GSNOR's specific inhibitor N6022 mitigates pain and improves functional recovery in a mouse model of SCI. Furthermore, the degree of recovery is enhanced and the rate of recovery is accelerated by an ALDH2 activator Alda-1. Using both wild-type and GSNOR-/- mice, the SCI model deployed for groups was contusion at the T9-T10 vertebral level. The enzymatic activity of GSNOR and ALDH2 was measured, and the expression of GSNOR and ALDH2 was determined by western blot analysis. Functional improvements in experimental animals were assessed with locomotor, sensorimotor, and pain-like behavior tests. Wild-type SCI animals had enhanced GSNOR activity and decreased ALDH2 activity, leading to neurovascular dysfunction, edema, and worsened functional outcomes, including locomotor deficits and pain. Compared to wild-type SCI mice, GSNOR-/- mice had better functional outcomes. Monotherapy with either GSNOR inhibition by N6022 or enhanced ALDH2 activity by Alda-1 correlated well with functional recovery and lessened pain. However, combination therapy provided synergistic pain-relieving effects and more significant functional recovery compared with monotherapy. Conclusively, dysregulations in GSNOR and ALDH2 are among the causative mechanisms of SCI injury. Either inhibiting GSNOR or activating ALDH2 ameliorates SCI. Combining the specific inhibitor of GSNOR (N6022) with the selective activator of ALDH2 (Alda-1) provides greater protection to the neurovascular unit and confers greater functional recovery. The study is novel, and the combination therapy (N6022 + Alda-1) possesses translational potential.


Assuntos
Álcool Desidrogenase/metabolismo , Aldeído-Desidrogenase Mitocondrial/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/enzimologia , Animais , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Inibidores Enzimáticos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pirróis/farmacologia
19.
Curr Mol Pharmacol ; 14(5): 871-882, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33494689

RESUMO

BACKGROUND: Alcoholic fatty liver disease (AFLD), a leading chronic hepatic disease, affects an increasing number of people, and no effective drugs for the treatment of AFLD are available. Antrodia cinnamomea (AC) can inhibit AFLD, but its mechanisms and the effective compound in AC are unknown. OBJECTIVE: We aimed to explore the anti-AFLD mechanism of AC and the active compound within AC. METHODS: Wild-type (WT) C57BL/6J mice underwent 4 weeks of daily ethanol (EtOH) feeding to induce AFLD. AC or dehydroeburicoic acid 32 (DEA32), a compound in AC, was given to the mice. Parallel experiments to assess the effect of AC were conducted in aldehyde dehydrogenase 2 (ALDH2)-knockout (KO) mice. Primary mouse hepatocytes were incubated with ethanol and Alda- 1 (an ALDH2 agonist), AC or DEA32. RESULTS: In WT mice with AFLD, AC reduced lipid deposition, increased the expression and activity of ALDH2, reduced the acetaldehyde content, and downregulated the expression of lipogenic and inflammatory genes in the liver. These effects of AC disappeared in ALDH2 KO mice. DEA32 was identified as an active compound in AC, as its effects on EtOH-treated WT hepatocytes were similar to those of AC, which were comparable to the effects of Alda-1. These effects of DEA32 disappeared in EtOH-treated ALDH2 KO hepatocytes. Furthermore, in WT mice with AFLD, DEA32 reduced lipid deposition, increased the activity of ALDH2, and reduced the accumulation of acetaldehyde in the liver. DEA32 also downregulated the mRNA expression of genes related to lipogenesis and inflammation. CONCLUSION: AC and its constituent compound DEA32 inhibit AFLD by upregulating ALDH2 activity, accelerating acetaldehyde metabolism, and suppressing lipogenesis and inflammation in the liver.


Assuntos
Produtos Biológicos/farmacologia , Fígado Gorduroso Alcoólico , Lanosterol/farmacologia , Polyporales , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Fígado Gorduroso Alcoólico/tratamento farmacológico , Lanosterol/análogos & derivados , Camundongos , Camundongos Endogâmicos C57BL
20.
Neuroscience ; 458: 31-42, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33493617

RESUMO

Reactive aldehydes are generated as a toxic end-product of lipid peroxidation under inflammatory oxidative stress condition which is a well-established phenomenon in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Alda-1, a selective agonist of mitochondrial aldehyde dehydrogenase 2 (ALDH2), is known to detoxify the reactive aldehydes. In this study, we investigated the effect of Alda-1 on CNS myelin pathology associated with reactive aldehydes and mitochondrial/peroxisomal dysfunctions in a mouse model of EAE. Daily treatment of EAE mice with Alda-1, starting at the peak of disease, ameliorated the clinical manifestation of disease along with the improvement of motor functions. Accordingly, Alda-1 treatment improved demyelination and neuroaxonal degeneration in EAE mice. EAE mice had increased levels of reactive aldehyde species, such as 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), and acrolein (ACL) in the spinal cords and these levels were significantly reduced in Alda-1-treated EAE mice. Furthermore, Alda-1 treatment improved the loss of mitochondrial (OXPHOS) and peroxisomal (PMP70 and catalase) proteins as well as mitochondrial/peroxisomal proliferation factors (PGC-1α and PPARs) in the spinal cords of EAE mice. Taken together, this study demonstrates the therapeutic efficacy of ALDH2-agonist Alda-1 in the abatement of EAE disease through the detoxification of reactive aldehydes, thus suggesting Alda-1 as a potential therapeutic intervention for MS.


Assuntos
Encefalomielite Autoimune Experimental , Aldeído-Desidrogenase Mitocondrial , Aldeídos , Animais , Benzamidas , Benzodioxóis , Encefalomielite Autoimune Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA