Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Protoplasma ; 259(5): 1157-1174, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34939169

RESUMO

The streptophyte algal class Zygnematophyceae is the closest algal sister lineage to land plants. In nature, Zygnematophyceae can grow in both terrestrial and freshwater habitats and how they do this is an important unanswered question. Here, we studied what happens to the zygnematophyceaen alga Mougeotia sp., which usually occurs in permanent and temporary freshwater bodies, when it is shifted to liquid growth conditions after growth on a solid substrate. Using global differential gene expression profiling, we identified changes in the core metabolism of the organism interlinked with photosynthesis; the latter went hand in hand with measurable impact on the photophysiology as assessed via pulse amplitude modulation (PAM) fluorometry. Our data reveal a pronounced change in the overall physiology of the alga after submergence and pinpoint candidate genes that play a role. These results provide insight into the importance of photophysiological readjustment when filamentous Zygnematophyceae transition between terrestrial and aquatic habitats.


Assuntos
Mougeotia , Estreptófitas , Expressão Gênica , Mougeotia/genética , Fotossíntese/genética , Filogenia , Plantas/metabolismo , Estreptófitas/fisiologia
2.
Curr Protoc ; 1(12): e322, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34898042

RESUMO

Ongoing technological advancements continually increase the demand for energy. Among various types of energy harvesting systems, biologically based systems have been an area of increasing interest for the past couple of decades. Such systems provide clean, safe power solutions, mainly for low- and ultra-low-power applications. The microphotosynthetic power cell (µPSC) is one such system that make use of photosynthetic living cells or organisms to generate power. For strong performance, µPSC technology, because of its interdisciplinary nature, requires optimal engineering of both electrochemical cell design and the culture conditions of the photosynthetic microorganisms. We present here a simple, economical culture method for the photosynthetic microorganism Chlamydomonas reinhardtii suitable for the application of this biologically based power system in any geographical location. This article provides a series of protocols for preparing materials and culture medium designed to facilitate the culture of a suitable C. reinhardtii strain even in a non-biological laboratory. Possible challenges and methods to overcome them are also discussed. Cultured C. reinhardtii perform sufficiently well that they have already been successfully utilized to generate power from a µPSC, generating a peak power of 200 µW from just 2 ml of exponential-phase algal culture in a µPSC with an active electrode surface area of 4.84 cm2 . The µPSC thus has potentially broad applications in low- and ultra-low-power devices and sensors. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Algal growth conditions and algal growth chamber fabrication Basic Protocol 2: Preparation of Tris-acetate-phosphate (TAP) nutrient medium Basic Protocol 3: Preparation of suspension algal culture from algal strain Basic Protocol 4: Preparation of stock culture plates (algal strain) from suspension algal culture.


Assuntos
Chlamydomonas reinhardtii , Microfluídica , Fotossíntese , Fenômenos Físicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA