Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 747
Filtrar
1.
Mol Ther Nucleic Acids ; 35(3): 102237, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38993932

RESUMO

Gapmer antisense oligonucleotides (ASOs) hold therapeutic promise for allele-specific silencing, but face challenges in distinguishing between mutant and wild-type transcripts. This study explores new design strategies to enhance ASO specificity, focusing on a common dominant mutation in COL6A3 gene associated with Ullrich congenital muscular dystrophy. Initial gapmer ASO design exhibited high efficiency but poor specificity for the mutant allele. We then adopted a mixmer design, incorporating additional RNA bases based on computational predictions of secondary structures for both mutant and wild-type alleles, aiming to enhance ASO accessibility to mutant transcripts. The mixmer ASO design demonstrated up to a 3-fold increase in specificity compared with the classical gapmer design. Further refinement involved introducing a nucleotide mismatch as a structural modification, resulting in a 10-fold enhancement in specificity compared with the gapmer design and a 3-fold over the mixmer design. Additionally, we identified for the first time a potential role of the RNA-induced silencing complex (RISC), alongside RNase H1, in gapmer-mediated silencing, in contrast with what was observed with mixmer ASOs, where only RNase H1 was involved. In conclusion, this study presents a novel design concept for allele-specific ASOs leveraging mRNA secondary structures and nucleotide mismatching and suggests a potential involvement of RISC in gapmer-mediated silencing.

2.
Plant J ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976378

RESUMO

The utilization of rice heterosis is essential for ensuring global food security; however, its molecular mechanism remains unclear. In this study, comprehensive analyses of accessible chromatin regions (ACRs), DNA methylation, and gene expression in inter-subspecific hybrid and its parents were performed to determine the potential role of chromatin accessibility in rice heterosis. The hybrid exhibited abundant ACRs, in which the gene ACRs and proximal ACRs were directly related to transcriptional activation rather than the distal ACRs. Regarding the dynamic accessibility contribution of the parents, paternal ZHF1015 transmitted a greater number of ACRs to the hybrid. Accessible genotype-specific target genes were enriched with overrepresented transcription factors, indicating a unique regulatory network of genes in the hybrid. Compared with its parents, the differentially accessible chromatin regions with upregulated chromatin accessibility were much greater than those with downregulated chromatin accessibility, reflecting a stronger regulation in the hybrid. Furthermore, DNA methylation levels were negatively correlated with ACR intensity, and genes were strongly affected by CHH methylation in the hybrid. Chromatin accessibility positively regulated the overall expression level of each genotype. ACR-related genes with maternal Z04A-bias allele-specific expression tended to be enriched during carotenoid biosynthesis, whereas paternal ZHF1015-bias genes were more active in carbohydrate metabolism. Our findings provide a new perspective on the mechanism of heterosis based on chromatin accessibility in inter-subspecific hybrid rice.

3.
Front Aging Neurosci ; 16: 1417515, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026991

RESUMO

PD is a prevalent and progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Genes play a significant role in the onset and progression of the disease. While the complexity and pleiotropy of gene expression networks have posed challenges for gene-targeted therapies, numerous pathways of gene variant expression show promise as therapeutic targets in preclinical studies, with some already in clinical trials. With the recognition of the numerous genes and complex pathways that can influence PD, it may be possible to take a novel approach to choose a treatment for the condition. This approach would be based on the symptoms, genomics, and underlying mechanisms of the disease. We discuss the utilization of emerging genetic and pathological knowledge of PD patients to categorize the disease into subgroups. Our long-term objective is to generate new insights for the therapeutic approach to the disease, aiming to delay and treat it more effectively, and ultimately reduce the burden on individuals and society.

4.
Vavilovskii Zhurnal Genet Selektsii ; 28(3): 351-359, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38946890

RESUMO

Single-nucleotide polymorphisms (SNPs) can serve as reliable markers in genetic engineering, selection, screening examinations, and other fields of science, medicine, and manufacturing. Whole-genome sequencing and genotyping by sequencing can detect SNPs with high specificity and identify novel variants. Nonetheless, in situations where the interest of researchers is individual specific loci, these methods become redundant, and their cost, the proportion of false positive and false negative results, and labor costs for sample preparation and analysis do not justify their use. Accordingly, accurate and rapid methods for genotyping individual alleles are still in demand, especially for verification of candidate polymorphisms in analyses of association with a given phenotype. One of these techniques is genotyping using TaqMan allele-specific probes (TaqMan dual labeled probes). The method consists of real-time PCR with a pair of primers and two oligonucleotide probes that are complementary to a sequence near a given locus in such a way that one probe is complementary to the wild-type allele, and the other to a mutant one. Advantages of this approach are its specificity, sensitivity, low cost, and quick results. It makes it possible to distinguish alleles in a genome with high accuracy without additional manipulations with DNA samples or PCR products; hence the popularity of this method in genetic association studies in molecular genetics and medicine. Due to advancements in technologies for the synthesis of oligonucleotides and improvements in techniques for designing primers and probes, we can expect expansion of the possibilities of this approach in terms of the diagnosis of hereditary diseases. In this article, we discuss in detail basic principles of the method, the processes that influence the result of genotyping, criteria for selecting optimal primers and probes, and the use of locked nucleic acid modifications in oligonucleotides as well as provide a protocol for the selection of primers and probes and for PCR by means of rs11121704 as an example. We hope that the presented protocol will allow research groups to independently design their own effective assays for testing for polymorphisms of interest.

5.
Genome Biol ; 25(1): 180, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978101

RESUMO

Spatial transcriptomics technologies permit the study of the spatial distribution of RNA at near-single-cell resolution genome-wide. However, the feasibility of studying spatial allele-specific expression (ASE) from these data remains uncharacterized. Here, we introduce spASE, a computational framework for detecting and estimating spatial ASE. To tackle the challenges presented by cell type mixtures and a low signal to noise ratio, we implement a hierarchical model involving additive mixtures of spatial smoothing splines. We apply our method to allele-resolved Visium and Slide-seq from the mouse cerebellum and hippocampus and report new insight into the landscape of spatial and cell type-specific ASE therein.


Assuntos
Alelos , Cerebelo , Transcriptoma , Animais , Camundongos , Cerebelo/metabolismo , Hipocampo/metabolismo , Perfilação da Expressão Gênica , Análise de Célula Única
6.
Methods Mol Biol ; 2842: 167-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012595

RESUMO

In this chapter, we present an experimental protocol to conduct DNA methylation editing experiments, that is, to induce loss or gain of DNA methylation, targeting Dlk1-Dio3 imprinted domain, a well-studied imprinted locus, in ES cells. In this protocol, plasmid vectors expressing the DNA methylation editing tools, combining the CRISPR/dCas9 system and the SunTag system coupled to a DNA methyltransferase or a TET enzyme, are introduced into cells for transient expression. By employing this strategy, researchers can effectively investigate a distinct DNA methylation signature that has an impact on the imprinting status, including gene expression and histone modifications, across the entire domain. We also describe strategies for allele-specific quantitative analyses of DNA methylation, gene expression, and histone modifications and binding protein levels for assessing the imprinting state of the locus.


Assuntos
Sistemas CRISPR-Cas , Metilação de DNA , Edição de Genes , Impressão Genômica , Edição de Genes/métodos , Animais , Camundongos , Loci Gênicos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Iodeto Peroxidase/genética , Alelos , Humanos
7.
Methods Mol Biol ; 2842: 179-192, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012596

RESUMO

The discovery and adaptation of CRISPR/Cas systema for epigenome editing has allowed for a straightforward design of targeting modules that can direct epigenome editors to virtually any genomic site. This advancement in DNA-targeting technology brings allele-specific epigenome editing into reach, a "super-specific" variation of epigenome editing whose goal is an alteration of chromatin marks at only one selected allele of the genomic target locus. This technology could be useful for the treatment of diseases caused by a mutant allele with a dominant effect, because allele-specific epigenome editing allows the specific silencing of the mutated allele leaving the healthy counterpart expressed. Moreover, it may allow the direct correction of aberrant imprints in imprinting disorders where editing of DNA methylation is required exclusively in a single allele. Here, we describe a basic protocol for the design and application of allele-specific epigenome editing systems using allele-specific DNA methylation at the NARF gene in HEK293 cells as an example. An sgRNA/dCas9 unit is used for allele-specific binding to the target locus containing a SNP in the seed region of the sgRNA or the PAM region. The dCas9 protein is connected to a SunTag allowing to recruit up to 10 DNMT3A/3L units fused to a single-chain Fv fragment, which specifically binds to the SunTag peptide sequence. The plasmids expressing dCas9-10x SunTag, scFv-DNMT3A/3L, and sgRNA, each of them co-expressing a fluorophore, are introduced into cells by co-transfection. Cells containing all three plasmids are enriched by FACS, cultivated, and later the genomic DNA and RNA can be retrieved for DNA methylation and gene expression analysis.


Assuntos
Alelos , Sistemas CRISPR-Cas , Metilação de DNA , Epigenoma , Edição de Genes , Humanos , Edição de Genes/métodos , Células HEK293 , RNA Guia de Sistemas CRISPR-Cas/genética , Epigenômica/métodos , Epigênese Genética
8.
Plant Commun ; : 101000, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38859586

RESUMO

Hybrid crops often exhibit increased yield and greater resilience, yet the genomic mechanism(s) underlying hybrid vigor or heterosis remain unclear, hindering our ability to predict the expression of phenotypic traits in hybrid breeding. Here, we generated haplotype-resolved T2T genome assemblies of two pear hybrid varieties, 'Yuluxiang' (YLX) and 'Hongxiangsu' (HXS), which share the same maternal parent but differ in their paternal parents. We then used these assemblies to explore the genome-scale landscape of allele-specific expression (ASE) and create a pangenome graph for pear. ASE was observed for close to 6000 genes in both hybrid cultivars. A subset of ASE genes related to aspects of fruit quality such as sugars, organic acids, and cuticular wax were identified, suggesting their important contributions to heterosis. Specifically, Ma1, a gene regulating fruit acidity, is absent in the paternal haplotypes of HXS and YLX. A pangenome graph was built based on our assemblies and seven published pear genomes. Resequencing data for 139 cultivated pear genotypes (including 97 genotypes sequenced here) were subsequently aligned to the pangenome graph, revealing numerous structural variant hotspots and selective sweeps during pear diversification. As predicted, the Ma1 allele was found to be absent in varieties with low organic acid content, and this association was functionally validated by Ma1 overexpression in pear fruit and calli. Overall, these results reveal the contributions of ASE to fruit-quality heterosis and provide a robust pangenome reference for high-resolution allele discovery and association mapping.

9.
Parasit Vectors ; 17(1): 260, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880909

RESUMO

BACKGROUND: The Anopheles dirus complex plays a significant role as a malaria vector in the Greater Mekong Subregion (GMS), with varying degrees of vector competence among species. Accurate identification of sibling species in this complex is essential for understanding malaria transmission dynamics and deploying effective vector control measures. However, the original molecular identification assay, Dirus allele-specific polymerase chain reaction (AS-PCR), targeting the ITS2 region, has pronounced nonspecific amplifications leading to ambiguous results and misidentification of the sibling species. This study investigates the underlying causes of these inconsistencies and develops new primers to accurately identify species within the Anopheles dirus complex. METHODS: The AS-PCR reaction and thermal cycling conditions were modified to improve specificity for An. dirus member species identification. In silico analyses with Benchling and Primer-BLAST were conducted to identify problematic primers and design a new set for Dirus complex species identification PCR (DiCSIP). DiCSIP was then validated with laboratory and field samples of the An. dirus complex. RESULTS: Despite several optimizations by reducing primer concentration, decreasing thermal cycling time, and increasing annealing temperature, the Dirus AS-PCR continued to produce inaccurate identifications for Anopheles dirus, Anopheles scanloni, and Anopheles nemophilous. Subsequently, in silico analyses pinpointed problematic primers with high Guanine-Cytosine (GC) content and multiple off-target binding sites. Through a series of in silico analyses and laboratory validation, a new set of primers for Dirus complex species identification PCR (DiCSIP) has been developed. DiCSIP primers improve specificity, operational range, and sensitivity to identify five complex member species in the GMS accurately. Validation with laboratory and field An. dirus complex specimens demonstrated that DiCSIP could correctly identify all samples while the original Dirus AS-PCR misidentified An. dirus as other species when used with different thermocyclers. CONCLUSIONS: The DiCSIP assay offers a significant improvement in An. dirus complex identification, addressing challenges in specificity and efficiency of the previous ITS2-based assay. This new primer set provides a valuable tool for accurate entomological surveys, supporting effective vector control strategies to reduce transmission and prevent malaria re-introducing in the GMS.


Assuntos
Anopheles , Reação em Cadeia da Polimerase , Anopheles/genética , Anopheles/classificação , Animais , Reação em Cadeia da Polimerase/métodos , Primers do DNA/genética , Mosquitos Vetores/genética , Mosquitos Vetores/classificação , Malária/transmissão , Malária/prevenção & controle , Sudeste Asiático , Sensibilidade e Especificidade
10.
Genome Biol ; 25(1): 144, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822397

RESUMO

BACKGROUND: Variation in X chromosome inactivation (XCI) in human-induced pluripotent stem cells (hiPSCs) can impact their ability to model biological sex biases. The gene-wise landscape of X chromosome gene dosage remains unresolved in female hiPSCs. To characterize patterns of de-repression and escape from inactivation, we performed a systematic survey of allele specific expression in 165 female hiPSC lines. RESULTS: XCI erosion is non-random and primarily affects genes that escape XCI in human tissues. Individual genes and cell lines vary in the frequency and degree of de-repression. Bi-allelic expression increases gradually after modest decrease of XIST in cultures, whose loss is commonly used to mark lines with eroded XCI. We identify three clusters of female lines at different stages of XCI. Increased XCI erosion amplifies female-biased expression at hypomethylated sites and regions normally occupied by repressive histone marks, lowering male-biased differences in the X chromosome. In autosomes, erosion modifies sex differences in a dose-dependent way. Male-biased genes are enriched for hypermethylated regions, and de-repression of XIST-bound autosomal genes in female lines attenuates normal male-biased gene expression in eroded lines. XCI erosion can compensate for a dominant loss of function effect in several disease genes. CONCLUSIONS: We present a comprehensive view of X chromosome gene dosage in hiPSCs and implicate a direct mechanism for XCI erosion in regulating autosomal gene expression in trans. The uncommon and variable reactivation of X chromosome genes in female hiPSCs can provide insight into X chromosome's role in regulating gene expression and sex differences in humans.


Assuntos
Cromossomos Humanos X , Células-Tronco Pluripotentes Induzidas , RNA Longo não Codificante , Inativação do Cromossomo X , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Feminino , Cromossomos Humanos X/genética , Masculino , RNA Longo não Codificante/genética , Alelos , Regulação da Expressão Gênica , Metilação de DNA
11.
Sci Bull (Beijing) ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38910106

RESUMO

Many clustered regularly interspaced short palindromic repeat and CRISPR-associated protein 12b (CRISPR-Cas12b) nucleases have been computationally identified, yet their potential for genome editing remains largely unexplored. In this study, we conducted a GFP-activation assay screening 13 Cas12b nucleases for mammalian genome editing, identifying five active candidates. Candidatus hydrogenedentes Cas12b (ChCas12b) was found to recognize a straightforward WTN (W = T or A) proto-spacer adjacent motif (PAM), thereby dramatically expanding the targeting scope. Upon optimization of the single guide RNA (sgRNA) scaffold, ChCas12b exhibited activity comparable to SpCas9 across a panel of nine endogenous loci. Additionally, we identified nine mutations enhancing ChCas12b specificity. More importantly, we demonstrated that both ChCas12b and its high-fidelity variant, ChCas12b-D496A, enabled allele-specific disruption of genes harboring single nucleotide polymorphisms (SNPs). These data position ChCas12b and its high-fidelity counterparts as promising tools for both fundamental research and therapeutic applications.

12.
Evol Bioinform Online ; 20: 11769343241257344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38826865

RESUMO

In diploid organisms, half of the chromosomes in each cell come from the father and half from the mother. Through previous studies, it was found that the paternal chromosome and the maternal chromosome can be regulated and expressed independently, leading to the emergence of allele specific expression (ASE). In this study, we analyzed the differential expression of alleles in the high-altitude population and the normal population based on the RNA sequencing data. Through gene cluster analysis and protein interaction network analysis, we found some changes occurred at the gene level, and some negative effects. During the study, we realized that the calmodulin homology domain may have a certain correlation with long-term survival at high altitude. The plateau environment is characterized by hypoxia, low air pressure, strong ultraviolet radiation, and low temperature. Accordingly, the genetic changes in the process of adaptation are mainly reflected in these characteristics. High altitude generation living is also highly related to cancer, immune disease, cardiovascular disease, neurological disease, endocrine disease, and other diseases. Therefore, the medical system in high altitude areas should pay more attention to these diseases.

13.
Gene ; 921: 148540, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38723785

RESUMO

BACKGROUND: Alpha-1 antitrypsin deficiency is an underdiagnosed genetic condition that predisposes to pulmonary complications and is mainly caused by rs28929474 (PI*Z allele) and rs17580 (PI*S allele) mutations in the SERPINA1 gene. OBJECTIVE: Development of a homogeneous genotyping test for detection of PI*S and PI*Z alleles based on the principles of allele-specific PCR and amplicon melting analysis with a fluorescent dye. METHODS: Sixty individuals, which included all possible genotypes that result from combinations of rs28929474 and rs17580 single nucleotide variants, were assayed with tailed allele-specific primers and SYBR Green dye in a real-time PCR machine. RESULTS: A clear discrimination of mutant and wild-type variants was achieved in the genetic loci that define PI*S and PI*Z alleles. Specific amplicons showed a difference of 2.0 °C in melting temperature for non-S and S variants and of 2.9 °C for non-Z and Z variants. CONCLUSIONS: The developed genotyping method is robust, fast, and easily scalable on a standard real-time PCR platform. While it overcomes the handicaps of non-homogeneous approaches, it greatly reduces genotyping costs compared with other homogeneous approaches.


Assuntos
Alelos , Benzotiazóis , Diaminas , Compostos Orgânicos , Quinolinas , Reação em Cadeia da Polimerase em Tempo Real , alfa 1-Antitripsina , alfa 1-Antitripsina/genética , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Deficiência de alfa 1-Antitripsina/genética , Polimorfismo de Nucleotídeo Único , Técnicas de Genotipagem/métodos , Genótipo , Corantes Fluorescentes/química
14.
Talanta ; 276: 126224, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772176

RESUMO

Tailored healthcare, an approach focused on individual patients, requires integrating emerging interdisciplinary technologies to develop accurate and user-friendly diagnostic tools. KRAS mutations, prevalent in various common cancers, are crucial determinants in selecting patients for novel KRAS inhibitor therapies. This study presents a novel state-of-the-art Lab-on-a-Disc system utilizing peptide nucleic acids-loop backward (PNA-LB) mediated allele-specific loop-mediated isothermal amplification (LAMP) for detecting the frequent G12D KRAS mutation, signifying its superiority over alternative mutation detection approaches. The designed Lab-on-a-Disc system demonstrated exceptional preclinical and technical precision, accuracy, and versatility. By applying varying cutoff values to PNA- LB LAMP reactions, the assay's sensitivity and specificity were increased by 80 % and 90 %, respectively. The device's key advantages include a robust microfluidic Lab-on-a-Disc design, precise rotary control, and a cutting-edge induction heating module. These features enable multiplexing of LAMP reactions with high reproducibility and repeatability, with CV% values less than 3.5 % and 5.5 %, respectively. The device offers several methods for accurate endpoint result detection, including naked-eye observation, RGB image analysis using Python code, and time of fluorescence (Tf) values. Preclinical specificity and sensitivity, assessed using different cutoffs for Eva-Green fluorescence Tf values and pH-sensitive dyes, demonstrated comparable performance to the best standard methods. Overall, this study represents a significant step towards tailoring treatment strategies for cancer patients through precise and efficient mutation detection technologies.


Assuntos
Dispositivos Lab-On-A-Chip , Mutação , Técnicas de Amplificação de Ácido Nucleico , Ácidos Nucleicos Peptídicos , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Alelos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
15.
Genome Biol ; 25(1): 130, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773520

RESUMO

Bulk DNA sequencing of multiple samples from the same tumor is becoming common, yet most methods to infer copy-number aberrations (CNAs) from this data analyze individual samples independently. We introduce HATCHet2, an algorithm to identify haplotype- and clone-specific CNAs simultaneously from multiple bulk samples. HATCHet2 extends the earlier HATCHet method by improving identification of focal CNAs and introducing a novel statistic, the minor haplotype B-allele frequency (mhBAF), that enables identification of mirrored-subclonal CNAs. We demonstrate HATCHet2's improved accuracy using simulations and a single-cell sequencing dataset. HATCHet2 analysis of 10 prostate cancer patients reveals previously unreported mirrored-subclonal CNAs affecting cancer genes.


Assuntos
Algoritmos , Variações do Número de Cópias de DNA , Haplótipos , Neoplasias da Próstata , Humanos , Neoplasias da Próstata/genética , Masculino , Análise de Sequência de DNA/métodos , Neoplasias/genética , Frequência do Gene , Análise de Célula Única
16.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791258

RESUMO

Barley is one of the most important cereal crops in the world, and its value as a food is constantly being revealed, so the research into and the use of barley germplasm are very important for global food security. Although a large number of barley germplasm samples have been collected globally, their specific genetic compositions are not well understood, and in many cases their origins are even disputed. In this study, 183 barley germplasm samples from the Shanghai Agricultural Gene Bank were genotyped using genotyping-by-sequencing (GBS) technology, SNPs were identified and their genetic parameters were estimated, principal component analysis (PCA) was preformed, and the phylogenetic tree and population structure of the samples were also analyzed. In addition, a genome-wide association study (GWAS) was carried out for the hulled/naked grain trait, and a KASP marker was developed using an associated SNP. The results showed that a total of 181,906 SNPs were identified, and these barley germplasm samples could be roughly divided into three categories according to the phylogenetic analysis, which was generally consistent with the classification of the traits of row type and hulled/naked grain. Population structure analysis showed that the whole barley population could be divided into four sub-populations (SPs), the main difference from previous classifications being that the two-rowed and the hulled genotypes were sub-divided into two SPs. The GWAS analysis of the hulled/naked trait showed that many associated loci were unrelated to the Nud/nud locus, indicating that there might be new loci controlling the trait. A KASP marker was developed for one exon-type SNP on chromosome 7. Genotyping based on the KASP assay was consistent with that based on SNPs, indicating that the gene of this locus might be associated with the hulled/naked trait. The above work not only lays a good foundation for the future utilization of this barley germplasm population but it provides new loci and candidate genes for the hulled/naked trait.


Assuntos
Estudo de Associação Genômica Ampla , Hordeum , Filogenia , Polimorfismo de Nucleotídeo Único , Hordeum/genética , Estudo de Associação Genômica Ampla/métodos , China , Locos de Características Quantitativas , Genótipo , Banco de Sementes , Genoma de Planta , Variação Genética , Análise de Componente Principal , Fenótipo
17.
Rice (N Y) ; 17(1): 33, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727876

RESUMO

BACKGROUND: The lack of stable-high yielding and direct-seeded adapted varieties with better germination ability from deeper soil depth and availability of molecular markers are major limitation in achieving the maximum yield potential of rice under water and resource limited conditions. Development of high-throughput and trait-linked markers are of great interest in genomics-assisted breeding. The aim of present study was to develop and validate novel KASP (Kompetitive Allele-Specific PCR) markers associated with traits improving germination and seedling vigor of deep sown direct seeded rice (DSR). RESULTS: Out of 58 designed KASP assays, four KASP assays did not show any polymorphism in any of the eleven genetic backgrounds considered in the present study. The 54 polymorphic KASP assays were then validated for their robustness and reliability on the F1s plants developed from eight different crosses considered in the present study. The third next validation was carried out on 256 F3:F4 and 713 BC3F2:3 progenies. Finally, the reliability of the KASP assays was accessed on a set of random 50 samples from F3:F4 and 80-100 samples from BC3F2:3 progenies using the 10 random markers. From the 54 polymorphic KASP, based on the false positive rate, false negative rate, KASP utility in different genetic backgrounds and significant differences in the phenotypic values of the positive (desirable) and negative (undesirable) traits, a total of 12 KASP assays have been selected. These 12 KASP include 5 KASP on chromosome 3, 1 on chromosome 4, 3 on chromosome 7 and 3 on chromosome 8. The two SNPs lying in the exon regions of LOC_Os04g34290 and LOC_Os08g32100 led to non-synonymous mutations indicating a possible deleterious effect of the SNP variants on the protein structure. CONCLUSION: The present research work will provide trait-linked KASP assays, improved breeding material possessing favourable alleles and breeding material in form of expected pre-direct-seeded adapted rice varieties. The marker can be utilized in introgression program during pyramiding of valuable QTLs/genes providing adaptation to rice under DSR. The functional studies of the genes LOC_Os04g34290 and LOC_Os08g32100 possessing two validated SNPs may provide valuable information about these genes.

18.
J Adv Res ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38782298

RESUMO

INTRODUCTION: The rapid development of next-generation sequencing (NGS)-based single-cell RNA sequencing (scRNA-seq) allows for detecting and quantifying gene expression in a high-throughput manner, providing a powerful tool for comprehensively understanding cellular function in various biological processes. However, the NGS-based scRNA-seq only quantifies gene expression and cannot reveal the exact transcript structures (isoforms) of each gene due to the limited read length. On the other hand, the long read length of third-generation sequencing (TGS) technologies, including Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio), enable direct reading of intact cDNA molecules. OBJECTIVES: Both ONT and PacBio have been used in conjunction with scRNA-seq, but their performance in single-cell analyses has not been systematically evaluated. METHODS: To address this, we generated ONT and PacBio data from the same single-cell cDNA libraries containing different amount of cells. RESULTS: Using NGS as a control, we assessed the performance of each platform in cell type identification. Additionally, the reliability in identifying novel isoforms and allele-specific gene/isoform expression by both platforms was verified, providing a systematic evaluation to design the sequencing strategies in single-cell transcriptome studies. CONCLUSION: Beyond gene expression analysis, which the NGS-based scRNA-seq only affords, TGS-based scRNA-seq achieved gene splicing analyses, identifying novel isoforms. Attribute to higher sequencing quality of PacBio, it outperforms ONT in accuracy of novel transcripts identification and allele-specific gene/isoform expression.

19.
BMC Genomics ; 25(1): 476, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745122

RESUMO

BACKGROUND: Heterosis has successfully enhanced maize productivity and quality. Although significant progress has been made in delineating the genetic basis of heterosis, the molecular mechanisms underlying its genetic components remain less explored. Allele-specific expression (ASE), the imbalanced expression between two parental alleles in hybrids, is increasingly being recognized as a factor contributing to heterosis. ASE is a complex process regulated by both epigenetic and genetic variations in response to developmental and environmental conditions. RESULTS: In this study, we explored the differential characteristics of ASE by analyzing the transcriptome data of two maize hybrids and their parents under four light conditions. On the basis of allele expression patterns in different hybrids under various conditions, ASE genes were divided into three categories: bias-consistent genes involved in basal metabolic processes in a functionally complementary manner, bias-reversal genes adapting to the light environment, and bias-specific genes maintaining cell homeostasis. We observed that 758 ASE genes (ASEGs) were significantly overlapped with heterosis quantitative trait loci (QTLs), and high-frequency variations in the promoter regions of heterosis-related ASEGs were identified between parents. In addition, 10 heterosis-related ASEGs participating in yield heterosis were selected during domestication. CONCLUSIONS: The comprehensive analysis of ASEGs offers a distinctive perspective on how light quality influences gene expression patterns and gene-environment interactions, with implications for the identification of heterosis-related ASEGs to enhance maize yield.


Assuntos
Alelos , Regulação da Expressão Gênica de Plantas , Vigor Híbrido , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Vigor Híbrido/genética , Perfilação da Expressão Gênica , Variação Genética , Transcriptoma
20.
J Neuroendocrinol ; 36(7): e13385, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38586906

RESUMO

The conserved and multifaceted functions of prolactin (PRL) are coordinated through varied distribution and expression of its cell-surface receptor (PRLR) across a range of tissues and physiological states. The resultant heterogeneous expression of PRLR mRNA and protein across different organs and cell types supports a wide range of PRL-regulated processes including reproduction, lactation, development, and homeostasis. Genetic variation within the PRLR gene also accounts for several phenotypes impacting agricultural production and human pathology. The goal of this review is to highlight the many elements that control differential expression of the PRLR across tissues, and the various phenotypes that exist across species due to variation in the PRLR gene.


Assuntos
Regulação da Expressão Gênica , Variação Genética , Receptores da Prolactina , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Humanos , Animais , Especificidade da Espécie , Especificidade de Órgãos , Prolactina/metabolismo , Prolactina/genética , Transcrição Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA