Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836798

RESUMO

Contact lens-mediated microbial keratitis caused by Pseudomonas aeruginosa and Streptococcus pneumoniae provokes corneal damage and vision loss. Recently, natural phytochemicals have become complementary medicines for corneal destruction. Herein, we aimed to identify multi-targeting Aloe vera-derived phytochemicals capable of inhibiting bacterial and host targets of keratitis through ADME (absorption, distribution, metabolism, and excretion), docking, molecular dynamics (MD) simulation, MMGBSA (molecular mechanics generalized Born surface area) and density functional theory (DFT) investigations. An extensive literature search revealed ExoU, ExoS, ExoT, ExoY, and PLY as virulent bacterial targets. Simultaneously, differential gene expression (DGE) and pathway enrichment analysis-specified host transcription factor (SPI1) influences keratitis pathogenesis. Molecular docking analysis uncovered aloeresin-A as a promising inhibitor against bacterial and host targets, demonstrating strong binding energies ranging from -7.59 to -6.20 kcal/mol. Further, MMGBSA and MD simulation analysis reflect higher binding free energies and stable interactions of aloeresin-A with the targets. In addition, DFT studies reveal the chemical reactiveness of aloeresin-A through quantum chemical calculations. Hence, our findings show aloeresin-A to be a promising candidate for effectively inhibiting keratitis. However, additional research is imperative for potential integration into lens care solutions.


Assuntos
Lentes de Contato , Ceratite , Humanos , Simulação de Acoplamento Molecular , Multiômica , Ceratite/microbiologia , Lentes de Contato/efeitos adversos , Fatores de Transcrição/metabolismo , Pseudomonas aeruginosa
2.
Fitoterapia ; 150: 104828, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33434632

RESUMO

Tyrosinase is the key enzyme in the production of melanin. Tyrosinase inhibitors have gained interest in the cosmetics industry to prevent hyperpigmentation and skin-related disorders by inhibiting melanin production. It has been reported that several Aloe species exhibit anti-tyrosinase efficacy in vitro. In this study, the exudates of thirty-nine South African Aloe species were screened to identify species and compounds with anti-tyrosinase activity. Qualitative screening revealed that twenty-nine Aloe species exhibited tyrosinase inhibition activity with one to three active bands. Quantitative screening was performed for 29 species and expressed as IC50 values. Three species were further analysed and subsequently, aloesin and aloeresin A was isolated from A. ferox and plicataloside from A. plicatilis and A. chabaudii. Aloeresin A was determined to be a substrate of mushroom tyrosinase. Dose-response assays showed that aloesin (IC50 = 31.5 µM) and plicataloside (IC50 = 84.1 µM) exhibited moderate to weak activity. Molecular docking scores for plicataloside were considerably lower than for aloesin (P < 0.01), confirming its lower IC50. Several Aloe species may have potential for the management of hyperpigmentation or as a skin lightening agent. This is the first report showing that plicataloside, present in A. plicatilis and A. chabaudii, exhibits anti-tyrosinase activity.


Assuntos
Aloe/química , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Glucosídeos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Agaricales/enzimologia , Aloe/classificação , Cromonas/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Glucosídeos/isolamento & purificação , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , África do Sul
3.
Food Chem ; 170: 501-7, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25306376

RESUMO

The phytochemical profile of Aloe barbadensis Mill. and Aloe arborescens Mill. was investigated using colorimetric assays, triple quadrupole and time-of-flight mass spectrometry, focusing on phenolic secondary metabolites in the different leaf portions. Hydroxycinnamic acids, several characteristic anthrones and chromones, the phenolic dimer feralolide and flavonoids such as flavones and isoflavones were identified. The stable radical DPPH test and the ORAC assay were then used to determine the in vitro radical scavenging. The outer green rind was the most active, while the inner parenchyma was much less effective. The 5-methylchromones aloesin, aloeresin A and aloesone were the most active among the pure secondary metabolites tested. The results suggest that several compounds are likely to contribute to the overall radical scavenging activity, and indicate that leaf portion must be taken into account when the plant is used for its antioxidant properties.


Assuntos
Aloe/química , Sequestradores de Radicais Livres/química , Extratos Vegetais/química , Aloe/metabolismo , Cromatografia Líquida de Alta Pressão , Cromonas/química , Cromonas/metabolismo , Flavonoides/análise , Glucosídeos/química , Glucosídeos/metabolismo , Espectrometria de Massas , Folhas de Planta/química , Folhas de Planta/metabolismo , Polifenóis/análise , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA