Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
J Nanobiotechnology ; 22(1): 307, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825668

RESUMO

Skin aging is characterized by the disruption of skin homeostasis and impaired skin injury repair. Treatment of aging skin has long been limited by the unclear intervention targets and delivery techniques. Engineering extracellular vesicles (EVs) as an upgraded version of natural EVs holds great potential in regenerative medicine. In this study, we found that the expression of the critical antioxidant and detoxification gene Gstm2 was significantly reduced in aging skin. Thus, we constructed the skin primary fibroblasts-derived EVs encapsulating Gstm2 mRNA (EVsGstm2), and found that EVsGstm2 could significantly improve skin homeostasis and accelerate wound healing in aged mice. Mechanistically, we found that EVsGstm2 alleviated oxidative stress damage of aging dermal fibroblasts by modulating mitochondrial oxidative phosphorylation, and promoted dermal fibroblasts to regulate skin epidermal cell function by paracrine secretion of Nascent Polypeptide-Associated Complex Alpha subunit (NACA). Furthermore, we confirmed that NACA is a novel skin epidermal cell protective molecule that regulates skin epidermal cell turnover through the ROS-ERK-ETS-Cyclin D pathway. Our findings demonstrate the feasibility and efficacy of EVs-mediated delivery of Gstm2 for aged skin treatment and unveil novel roles of GSTM2 and NACA for improving aging skin.


Assuntos
Vesículas Extracelulares , Fibroblastos , Glutationa Transferase , RNA Mensageiro , Envelhecimento da Pele , Cicatrização , Animais , Camundongos , Fibroblastos/metabolismo , Glutationa Transferase/metabolismo , Vesículas Extracelulares/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Epiderme/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Pele/metabolismo , Masculino , Humanos , Células Epidérmicas/metabolismo , Células Cultivadas
2.
Protein J ; 43(3): 627-638, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38760596

RESUMO

Stonustoxin (SNTX) is a lethal protein found in stonefish venom, responsible for many of the symptoms associated with stonefish envenomation. To counter stonefish venom challenges, antivenom is a well-established and effective solution. In this study, we aimed to produce the recombinant alpha subunit protein of Stonustoxin from Synanceia horrida and prepare antibodies against it The SNTXα gene sequence was optimized for E. coli BL21 (DE3) expression and cloned into the pET17b vector. Following purification, the recombinant protein was subcutaneously injected into rabbits, and antibodies were extracted from rabbit´s serum using a G protein column As a result of codon optimization, the codon adaptation index for the SNTXα cassette increased to 0.94. SDS-PAGE analysis validated the expression of SNTXα, with a band observed at 73.5 kDa with a yield of 60 mg/l. ELISA results demonstrated rabbits antibody titers were detectable up to a 1:256,000 dilution. The isolated antibody from rabbit´s serum exhibited a concentration of 1.5 mg/ml, and its sensitivity allowed the detection of a minimum protein concentration of 9.7 ng. In the neutralization assay the purified antibody against SNTXα protected mice challenged with 2 LD50. In conclusion, our study successfully expressed the alpha subunit of Stonustoxin in a prokaryotic host, enabling the production of antibodies for potential use in developing stonefish antivenom.


Assuntos
Proteínas Recombinantes , Animais , Coelhos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Camundongos , Antivenenos/imunologia , Antivenenos/biossíntese , Antivenenos/genética , Venenos de Peixe/imunologia , Venenos de Peixe/genética , Venenos de Peixe/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Soros Imunes/imunologia
3.
Heliyon ; 10(7): e28684, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571618

RESUMO

Background: SCN4A mutations account for a diverse array of clinical manifestations, encompassing periodic paralysis, myotonia, and newly recognized symptoms like classical congenital myopathy or congenital myasthenic syndromes. We describe the initial occurrence of myopathic features mimic with recessive classical CM in a Korean infant presenting with novel compound heterozygous SCN4A mutations. The infant exhibited profound hypotonia after birth, thereby expanding the spectrum of SCN4A-related channelopathy. Methods: The genetic analyses comprised targeted exome sequencing, employing a Celemics G-Mendeliome DES Panel, along with Sanger sequencing. Results: Considering the clinical manifestations observed in the proband, SCN4A variants emerged as the primary contenders for autosomal recessive (AR) congenital myopathy 22a, classic (#620351). Sanger sequencing validated the association of SCN4A variants with the phenotype, affirming the AR nature of the compound heterozygous variants in both the carrier mother (c.3533G > T/p.Gly1178Val) and the father (c.4216G > A/p.Ala1406Thr). Conclusion: Our report emphasizes the association of novel compound heterozygous mutations in SCN4A with myopathic features resembling CM, as supporting by muscle biopsy. It is essential to note that pathogenic SCN4A LoF mutations are exceedingly rare. This study contributes to our understanding of SCN4A mutations and their role in myopathic features mimic with classical CM.

4.
Endocrinol Metab (Seoul) ; 39(2): 387-396, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311828

RESUMO

BACKGRUOUND: Thyroid-stimulating hormone (TSH)-secreting pituitary neuroendocrine tumor (TSH PitNET) is a rare subtype of PitNET. We investigated the comprehensive characteristics and outcomes of TSH PitNET cases from a single medical center. Also, we compared diagnostic methods to determine which showed superior sensitivity. METHODS: A total of 17 patients diagnosed with TSH PitNET after surgery between 2002 and 2022 in Samsung Medical Center was retrospectively reviewed. Data on comprehensive characteristics and treatment outcomes were collected. The sensitivities of diagnostic methods were compared. RESULTS: Seven were male (41%), and the median age at diagnosis was 42 years (range, 21 to 65); the median follow-up duration was 37.4 months. The most common (59%) initial presentation was hyperthyroidism-related symptoms. Hormonal co-secretion was present in four (23%) patients. Elevated serum alpha-subunit (α-SU) showed the greatest diagnostic sensitivity (91%), followed by blunted response at thyrotropin-releasing hormone (TRH) stimulation (80%) and elevated sex hormone binding globulin (63%). Fourteen (82%) patients had macroadenoma, and a specimen of one patient with heavy calcification was negative for TSH. Among 15 patients who were followed up for more than 6 months, 10 (67%) achieved hormonal and structural remission within 6 months postoperatively. A case of growth hormone (GH)/TSH/prolactin (PRL) co-secreting mixed gangliocytoma-pituitary adenoma (MGPA) was discovered. CONCLUSION: The majority of the TSH PitNET cases was macroadenoma, and 23% showed hormone co-secretion. A rare case of GH/TSH/PRL co-secreting MGPA was discovered. Serum α-SU and TRH stimulation tests showed great diagnostic sensitivity. Careful consideration is needed in diagnosing TSH PitNET. Achieving remission requires complete tumor resection. In case of nonremission, radiotherapy or medical therapy can improve the long-term remission rate.


Assuntos
Tumores Neuroendócrinos , Neoplasias Hipofisárias , Tireotropina , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Tireotropina/sangue , Tireotropina/metabolismo , Estudos Retrospectivos , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/diagnóstico , Neoplasias Hipofisárias/sangue , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/terapia , Tumores Neuroendócrinos/sangue , Idoso , Adulto Jovem , Seguimentos , Resultado do Tratamento
5.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256149

RESUMO

In this study, novel solid lipid particles containing the adjuvant lipid monophosphoryl lipid A (termed 'SLN-A') were synthesised. The SLN-A particles were able to efficiently bind and form complexes with a DNA vaccine encoding the urease alpha subunit of Helicobacter pylori. The resultant nanoparticles were termed lipoplex-A. In a mouse model of H. pylori infection, the lipoplex-A nanoparticles were used to immunise mice, and the resultant immune responses were analysed. It was found that the lipoplex-A vaccine was able to induce high levels of antigen-specific antibodies and an influx of gastric CD4+ T cells in vaccinated mice. In particular, a prime with lipoplex-A and a boost with soluble UreA protein induced significantly high levels of the IgG1 antibody, whereas two doses of lipoplex-A induced high levels of the IgG2c antibody. In this study, lipoplex-A vaccination did not lead to a significant reduction in H. pylori colonisation in a challenge model; however, these results point to the utility of the system for delivering DNA vaccine-encoded antigens to induce immune responses and suggest the ability to tailor those responses.


Assuntos
Helicobacter pylori , Lipossomos , Nanopartículas , Vacinas de DNA , Animais , Camundongos , Urease/genética , Modelos Animais de Doenças
6.
Mutat Res Rev Mutat Res ; 793: 108487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38103632

RESUMO

BACKGROUND: GNAS (guanine nucleotide-binding protein, alpha stimulating) is an imprinted gene that encodes Gsα, the α subunit of the heterotrimeric stimulatory G protein. This subunit mediates the signalling of a diverse array of G protein-coupled receptors (GPCRs), including the melanocortin 4 receptor (MC4R) that serves a pivotal role in regulating food intake, energy homoeostasis, and body weight. Genetic or epigenetic alterations in GNAS are known to cause pseudohypoparathyroidism in its different subtypes and have been recently associated with isolated, early-onset, severe obesity. Given the diverse biological functions that Gsα serves, multiple molecular mechanisms involving various GPCRs, such as MC4R, ß2- and ß3-adrenoceptors, and corticotropin-releasing hormone receptor, have been implicated in the pathophysiology of severe, early-onset obesity that results from genetic or epigenetic GNAS changes. SCOPE OF REVIEW: This review examines the structure and function of GNAS and provides an overview of the disorders that are caused by defects in this gene and may feature early-onset obesity. Moreover, it elucidates the potential molecular mechanisms underlying Gsα deficiency-induced early-onset obesity, highlighting some of their implications for the diagnosis, management, and treatment of this complex condition. MAJOR CONCLUSIONS: Gsα deficiency is an underappreciated cause of early-onset, severe obesity. Therefore, screening children with unexplained, severe obesity for GNAS defects is recommended, to enhance the molecular diagnosis and management of this condition.


Assuntos
Cromograninas , Epigênese Genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Obesidade , Humanos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Cromograninas/genética , Epigênese Genética/genética , Obesidade/genética , Animais , Pseudo-Hipoparatireoidismo/genética , Mutação/genética , Receptor Tipo 4 de Melanocortina/genética , Idade de Início
7.
Korean J Physiol Pharmacol ; 28(1): 83-91, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154967

RESUMO

Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor activated under hypoxic conditions, and it plays a crucial role in cellular stress regulation. While HIF-1α activity is essential in normal tissues, its presence in the tumor microenvironment represents a significant risk factor as it can induce angiogenesis and confer resistance to anti-cancer drugs, thereby contributing to poor prognoses. Typically, HIF-1α undergoes rapid degradation in normoxic conditions via oxygen-dependent degradation mechanisms. However, certain cancer cells can express HIF-1α even under normoxia. In this study, we observed an inclination toward increased normoxic HIF-1α expression in cancer cell lines exhibiting increased HDAC6 expression, which prompted the hypothesis that HDAC6 may modulate HIF-1α stability in normoxic conditions. To prove this hypothesis, several cancer cells with relatively higher HIF-1α levels under normoxic conditions were treated with ACY-241, a selective HDAC6 inhibitor, and small interfering RNAs for HDAC6 knockdown. Our data revealed a significant reduction in HIF-1α expression upon HDAC6 inhibition. Moreover, the downregulation of HIF-1α under normoxic conditions decreased zinc finger E-box-binding homeobox 1 expression and increased E-cadherin levels in lung cancer H1975 cells, consequently suppressing cell invasion and migration. ACY-241 treatment also demonstrated an inhibitory effect on cell invasion and migration by reducing HIF-1α level. This study confirms that HDAC6 knockdown and ACY-241 treatment effectively decrease HIF-1α expression under normoxia, thereby suppressing the epithelial-mesenchymal transition. These findings highlight the potential of selective HDAC6 inhibition as an innovative therapeutic strategy for lung cancer.

8.
J Tradit Chin Med ; 43(6): 1219-1226, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37946484

RESUMO

OBJECTIVE: To investigate the bioactive compounds of Chaihu (Radix Bupleuri Chinensis) (RB) on glaucomatous optic atrophy (GOA), and to study the pharmacological mechanism. METHODS: We collected information on the bioactive compounds of RB from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets related to bioactive compounds and GOA were also obtained. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and network analyses were performed to investigate the potential mechanism of RB against GOA. Subsequently, the main bioactive compounds of RB and targets of GOA were docked by Autodock software. Moreover, a GOA model of retinal ganglion cells (RGCs) induced by cobalt chloride was established to verify the effect of RB on GOA. RESULTS: There were 17 main bioactive compounds and 46 key targets were screened as potential players in GOA. The compound-target network mainly contained 17 compounds and 46 corresponding targets, and the key targets consisted of interleukin-6 (IL-6), hypoxia inducible factor-1α (HIF1A), Caspase-3, estrogen receptor alpha (ESR1), MYC proto-oncogene (MYC), and vascular endothelial growth factor A (VEGFA). Forty-nine significantly enriched GO terms, and 134 KEGG signaling pathways were identified (P < 0.05), including HIF-1, tumor necrosis factor, VEGF, prolaction, and other signaling pathways. Molecular docking results showed that the main bioactive compounds of RB exhibited the strongest binding activity with IL-6. Furthermore, experimental validation showed that the RB extract inhibited the activity and promoted apoptosis of RGCs in a dose-dependent manner. The RB extract also suppressed the expression of Bax, Caspase-3, and Caspase-9 and regulated malonaldehyde, superoxide dismutase, and glutathione peroxide by inhibiting the IL-6/HIF-1α signaling pathway. CONCLUSIONS: The present study provided insights into the mechanism of RB on GOA. RB mainly reverses GOA by inhibiting the IL-6/HIF-1α signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Interleucina-6 , Humanos , Interleucina-6/genética , Caspase 3 , Fator A de Crescimento do Endotélio Vascular , Simulação de Acoplamento Molecular , Extratos Vegetais , Hipóxia
9.
Vaccines (Basel) ; 11(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38005984

RESUMO

Using removable silica templates, protein nanocapsules comprising the A subunit of Helicobacter pylori urease (UreA) were synthesised. The templates were of two sizes, with solid core mesoporous shell (SC/MS) silica templates giving rise to nanocapsules of average diameter 510 nm and mesoporous (MS) silica templates giving rise to nanocapsules of average diameter 47 nm. Both were shown to be highly monodispersed and relatively homogenous in structure. Various combinations of the nanocapsules in formulation were assessed as vaccines in a mouse model of H. pylori infection. Immune responses were evaluated and protective efficacy assessed. It was demonstrated that vaccination of mice with the larger nanocapsules combined with an adjuvant was able to significantly reduce colonisation.

10.
J Transl Med ; 21(1): 857, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012636

RESUMO

BACKGROUND: The prognosis of patients with lung cancer accompanied by interstitial pneumonia is poorer than that of patients with lung cancer but without interstitial pneumonia. Moreover, the available therapeutic interventions for lung cancer patients with interstitial pneumonia are limited. Therefore, a new treatment strategy for these patients is required. The aim of the present study was to investigate the pathophysiological relationship between interstitial pneumonia and lung cancer and explore potential therapeutic agents. METHODS: A novel hybrid murine model of lung cancer with interstitial pneumonia was established via bleomycin-induced pulmonary fibrosis followed by orthotopic lung cancer cell transplantation into the lungs. Changes in tumor progression, lung fibrosis, RNA expression, cytokine levels, and tumor microenvironment in the lung cancer with interstitial pneumonia model were investigated, and therapeutic agents were examined. Additionally, clinical data and samples from patients with lung cancer accompanied by interstitial pneumonia were analyzed to explore the potential clinical significance of the findings. RESULTS: In the lung cancer with interstitial pneumonia model, accelerated tumor growth was observed based on an altered tumor microenvironment. RNA sequencing analysis revealed upregulation of the hypoxia-inducible factor 1 signaling pathway. These findings were consistent with those obtained for human samples. Moreover, we explored whether ascorbic acid could be an alternative treatment for lung cancer with interstitial pneumonia to avoid the disadvantages of hypoxia-inducible factor 1 inhibitors. Ascorbic acid successfully downregulated the hypoxia-inducible factor 1 signaling pathway and inhibited tumor progression and lung fibrosis. CONCLUSIONS: The hypoxia-inducible factor 1 pathway is critical in lung cancer with interstitial pneumonia and could be a therapeutic target for mitigating interstitial pneumonia-mediated lung cancer progression.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Doenças Pulmonares Intersticiais , Neoplasias Pulmonares , Pneumonia , Fibrose Pulmonar , Animais , Humanos , Camundongos , Ácido Ascórbico , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/patologia , Doenças Pulmonares Intersticiais/complicações , Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/patologia , Neoplasias Pulmonares/genética , Fibrose Pulmonar/patologia , Microambiente Tumoral
11.
Seizure ; 112: 40-47, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741152

RESUMO

Epilepsy is a common neurological disorder in children. Numerous studies have demonstrated the association between SCN1A polymorphisms and risk of epilepsy in adults, but their role in epilepsy in children has just gained traction and results have remained inconsistent. In this work, we performed a systematic review and meta-analysis to assess the association between SCN1A polymorphisms and risk for epilepsy in children. A systematic literature search was performed in PubMed, Scopus, Web of Science, China National Knowledge Internet, Wanfang and VIP databases to identify eligible studies up to June 2023. Quantitative data synthesis was then performed under five genetic models: dominant, recessive, homozygous, heterozygous, and allele. Five studies involving 1380 subjects were included in the meta-analysis. Among many SCN1A polymorphisms reported, only rs2298771 was repeatedly studied in these reports. Pooled analysis demonstrated that there was no significant association between the polymorphism and risk of epilepsy in children (P>0.05). In conclusion, SCN1A rs2298771 polymorphism was not significantly associated with the risk of epilepsy in children.


Assuntos
Epilepsia , Predisposição Genética para Doença , Adulto , Humanos , Criança , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsia/genética , China
12.
Biomarkers ; 28(7): 599-607, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37667642

RESUMO

BACKGROUND: Chagas disease (CD) is considered by the World Health Organisation (WHO) a neglected disease endemic to the Americas, but it has spread throughout the world due to migrations. The disease is almost 100% curable if detected in time. Still, the lack of rapid diagnostic tests with sufficient sensitivity and specificity leads to a chronic phase with a mortality of about 50,000 people worldwide per year. METHODS: Using the total proteins extracted from serum samples of patients confirmed with chronic phase CD; we performed the Bio-SELEX strategy. The best aptamers were selected using next-generation sequencing (NGS) based on their most abundant sequences (reads and rpm). Then, selected aptamers were used to isolate potential biomarkers directly from serum samples of patients with chronic phase CD using pull-down and mass spectrometry experiments. RESULTS: CH1 aptamer was the aptamer selected after the NGS results analysis. The pull-down and mass spectrometry experiments identified the presence of the ATPase alpha subunit of T. cruzi circulating in serum samples of patients with chronic phase CD. CONCLUSIONS: We report the ATPase alpha subunit of T. cruzi as a potential biomarker for chronic phase CD and CH1 aptamer as a potential tool for diagnosing CD.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/genética , Adenosina Trifosfatases , Doença de Chagas/diagnóstico , Sensibilidade e Especificidade , Biomarcadores
13.
World J Gastroenterol ; 29(28): 4433-4450, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37576703

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a major health burden with an increasing global incidence. Unfortunately, the unavailability of knowledge underlying NAFLD pathogenesis inhibits effective preventive and therapeutic measures. AIM: To explore the molecular mechanism of NAFLD. METHODS: Whole genome sequencing (WGS) analysis was performed on liver tissues from patients with NAFLD (n = 6) and patients with normal metabolic conditions (n = 6) to identify the target genes. A NAFLD C57BL6/J mouse model induced by 16 wk of high-fat diet feeding and a hepatocyte-specific F-box only protein 2 (FBXO2) overexpression mouse model were used for in vivo studies. Plasmid transfection, co-immunoprecipitation-based mass spectrometry assays, and ubiquitination in HepG2 cells and HEK293T cells were used for in vitro studies. RESULTS: A total of 30982 genes were detected in WGS analysis, with 649 up-regulated and 178 down-regulated. Expression of FBXO2, an E3 ligase, was upregulated in the liver tissues of patients with NAFLD. Hepatocyte-specific FBXO2 overexpression facilitated NAFLD-associated phenotypes in mice. Overexpression of FBXO2 aggravated odium oleate (OA)-induced lipid accumulation in HepG2 cells, resulting in an abnormal expression of genes related to lipid metabolism, such as fatty acid synthase, peroxisome proliferator-activated receptor alpha, and so on. In contrast, knocking down FBXO2 in HepG2 cells significantly alleviated the OA-induced lipid accumulation and aberrant expression of lipid metabolism genes. The hydroxyl CoA dehydrogenase alpha subunit (HADHA), a protein involved in oxidative stress, was a target of FBXO2-mediated ubiquitination. FBXO2 directly bound to HADHA and facilitated its proteasomal degradation in HepG2 and HEK293T cells. Supplementation with HADHA alleviated lipid accumulation caused by FBXO2 overexpression in HepG2 cells. CONCLUSION: FBXO2 exacerbates lipid accumulation by targeting HADHA and is a potential therapeutic target for NAFLD.


Assuntos
Proteínas F-Box , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Células HEK293 , Fígado , Metabolismo dos Lipídeos , Oxirredutases , Lipídeos , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Proteínas F-Box/farmacologia
14.
Int J Hematol ; 118(2): 277-287, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37173550

RESUMO

The NUP98::NSD1 fusion gene is associated with extremely poor prognosis in patients with acute myeloid leukemia (AML). NUP98::NSD1 induces self-renewal and blocks differentiation of hematopoietic stem cells, leading to development of leukemia. Despite its association with poor prognosis, targeted therapy for NUP98::NSD1-positive AML is lacking, as the details of NUP98::NSD1 function are unknown. Here, we generated 32D cells (a murine interleukin-3 (IL-3)-dependent myeloid progenitor cell line) expressing mouse Nup98::Nsd1 to explore the function of NUP98::NSD1 in AML, including comprehensive gene expression analysis. We identified two properties of Nup98::Nsd1 + 32D cells in vitro. First, Nup98::Nsd1 promoted blocking of AML cell differentiation, consistent with a previous report. Second, Nup98::Nsd1 increased dependence on IL-3 for cell proliferation, due to overexpression of the alpha subunit of the IL-3 receptor (IL3-RA, also known as CD123). Consistent with our in vitro data, IL3-RA was also upregulated in samples from patients with NUP98::NSD1-positive AML. These results highlight CD123 as a potential new therapeutic target in NUP98::NSD1-positive AML.


Assuntos
Interleucina-3 , Animais , Camundongos , Histona-Lisina N-Metiltransferase , Interleucina-3/genética , Interleucina-3/metabolismo , Subunidade alfa de Receptor de Interleucina-3/genética , Leucemia Mieloide Aguda/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética
15.
Front Plant Sci ; 14: 1174582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139111

RESUMO

Baphicacanthus cusia (Nees) Bremek (B. cusia) is an essential traditional Chinese herb that is commonly used to treat colds, fever, and influenza. Indole alkaloids, such as indigo and indirubin, are the primary active constituents of B. cusia. The indole-producing reaction is crucial for regulating the flow of indole alkaloids metabolites along the pathways and coordinating primary and secondary product biosynthesis in plants. The tryptophan synthase alpha-subunit (TSA) can catalyse a process that produces indole, which is free to enter secondary metabolite pathways; however, the underlying potential mechanism of regulating indigo alkaloids synthesis remains unknown. Here, a BcTSA was cloned from the transcriptome of B. cusia. The BcTSA has a significant degree of similarity with other plant TSAs according to bioinformatics and phylogenetic analyses. Quantitative real-time PCR (RT-qPCR) research showed that BcTSA was dramatically enhanced in response to treatment with methyl jasmonate (MeJA), salicylic acid (SA), and abscisic acid (ABA), and was predominantly expressed in the stems as opposed to the leaves and rhizomes. Subcellular localization revealed that BcTSA is localized in chloroplasts, which is compatible with the fact that the conversion of indole-3-glycerol phosphate (IGP) to indole occurs in chloroplasts. The complementation assay results showed that BcTSA was functional, demonstrating that it was capable of catalyzing the conversion of IGP to indole. BcTSA was shown to stimulate the manufacture of indigo alkaloids including isatin, indigo, and indirubin when the gene was overexpressed in the hairy roots of Isatis indigotica. In conclusion, our research provides novel perspectives that might be applied to manipulating the indole alkaloid composition of B. cusia.

16.
Front Oncol ; 13: 1080910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816977

RESUMO

Background: Hypoxia-inducible factor 1-alpha (HIF-1α) stability and transcriptional action are reduced by the hypoxia-inducible factor 1-alpha subunit suppressor (HIF1AN). Its inappropriate expression is associated with the development of cancer and immune control. It is yet unknown how HIF1AN, clinical outcomes, and immune involvement in breast cancer (BC) are related. Methods: Using the GEPIA, UALCAN, TIMER, Kaplan-Meier plotter, and TISIDB datasets, a thorough analysis of HIF1AN differential expression, medical prognosis, and the relationship between HIF1AN and tumor-infiltrating immune cells in BC was conducted. Quantitative real-time PCR (qRT-PCR) analysis of BC cells were used for external validation. Results: The findings revealed that, as compared to standard specimens, BC cells had significantly lower levels of HIF1AN expression. Good overall survival (OS) for BC was associated with higher HIF1AN expression. Additionally, in BC, the expression of HIF1AN was closely associated with the chemokines and immune cell infiltration, including neutrophils, macrophages, T helper cells, B cells, Tregs, monocytes, dendritic cells, and NK cells. A high correlation between HIF1AN expression and several immunological indicators of T-cell exhaustion was particularly revealed by the bioinformatic study. Conclusions: HIF1AN is a predictive indicator for breast tumors, and it is useful for predicting survival rates.

17.
Perfusion ; 38(6): 1277-1287, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35506656

RESUMO

BACKGROUND: Previous studies proved that pyrin domain-containing protein 3 (NLRP3)-induced pyroptosis plays an important role in Myocardial ischemia-reperfusion injury (MIRI). Insulin can inhibit the activation of NLRP3 inflammasome, although the exact mechanism remains unclear. The aim of this study was to determine whether insulin reduces NLRP3-induced pyroptosis by regulating pyruvate dehydrogenase E1alpha subunit (PDHA1) dephosphorylation during MIRI. METHODS: Rat hearts were subject to 30 min global ischemia followed by 60 min reperfusion, with or without 0.5 IU/L insulin. Myocardial ischemia-reperfusion injury was evaluated by measuring myocardial enzymes release, Cardiac hemodynamics, pathological changes, infarct size, and apoptosis rate. Cardiac aerobic glycolysis was evaluated by measuring ATP, lactic acid content, and pyruvate dehydrogenase complex (PDHc) activity in myocardial tissue. Recombinant adenoviral vectors for PDHA1 knockdown were constructed. Pyroptosis-related proteins were measured by Western blotting analysis, immunohistochemistry staining, and ELISA assay, respectively. RESULTS: It was found that insulin significantly reduced the area of myocardial infarction, apoptosis rate, and improved cardiac hemodynamics, pathological changes, energy metabolism. Insulin inhibits pyroptosis-induced inflammation during MIRI. Subsequently, Adeno-associated virus was used to knock down cardiac PDHA1 expression. Knockdown PDHA1 not only promoted the expression of NLRP3 but also blocked the inhibitory effect of insulin on NLRP3-mediated pyroptosis in MIRI. CONCLUSIONS: Results suggest that insulin protects against MIRI by regulating PDHA1 dephosphorylation, its mechanism is not only to improve myocardial energy metabolism but also to reduce the NLRP3-induced pyroptosis.


Assuntos
Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Insulina/farmacologia , Inflamação
18.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38203223

RESUMO

Intracellular tripeptide glutathione is an important agent of cell survival under hypoxia. Glutathione covalently binds to SH groups of hemoglobin cysteine residues, protecting them from irreversible oxidation, and changes its affinity to oxygen. Reduced glutathione (GSH) can also form a noncovalent complex with hemoglobin. Previously, we showed that hemoglobin tetramer has four noncovalent binding sites of glutathione GSH molecules inside, two of which are released during hemoglobin transition to deoxy form. In this study, we characterized the conserved cysteine residues and residues of noncovalent glutathione binding sites in the sequences of a number of hypoxia-tolerant and hypoxia-sensitive mammals. The solvent accessibility of all HbA and HbB residues in oxy and deoxy forms was analyzed. The alpha subunit of all species considered was shown to have no conserved cysteines, whereas the beta subunit contains Cys93 residue, which is conserved across species and whose glutathionylation changes the affinity of hemoglobin for oxygen 5-6-fold. It was found that the key residues of noncovalent glutathione binding sites in both alpha and beta subunits are absolutely conserved in all species considered, suggesting a common mechanism of hemoglobin redox regulation for both hypoxia-sensitive and hypoxia-tolerant mammals.


Assuntos
Cisteína , Hipóxia , Animais , Oxigênio , Sítios de Ligação , Glutationa , Hemoglobinas , Mamíferos
19.
Iran J Allergy Asthma Immunol ; 21(5): 549-560, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36341563

RESUMO

It is believed that preformed antibodies are responsible for blood transfusion reactions and transplant rejections. In order to remove a tumor, the tissue must be rejected. On the basis of transfusion reaction and transplantation immunology, we hypothesized that allogeneic serum can inhibit tumor growth when injected intra-tumor. Initially, an in vitro cytotoxicity test was conducted using the C57BL/6 serum (intact or decomplemented) in combination with the BALB/c-originating CT26 cell line.  The CT26 cell line was used to establish a mouse model of colon cancer. When the tumor was palpable, C57BL/6 serum was injected intra-tumor. In addition to tumor size, hypoxia, metastatic capacity, angiogenesis, and metabolic and inflammatory status, we evaluated matrix metalloproteinase-2 (MMP)-2 and 9, vascular endothelial growth factor (VEGF)-A, Cluster of Designation (CD) 31, CD38 and interleukine (IL)-10. An in vitro experiment showed that heat-inactivated C57BL/6 serum had significantly lower cytotoxic effects on BALB/c-derived CT26 cells than intact C57BL/6 serum or BALB/c serum. In vivo experiments revealed that tumor size, HIF-1α, MMP-2, and MMP-9 levels were significantly lower in the experimental group than in the control group. In contrast to control animals, allogeneic serum treatment led to marked reductions in CD31, VEGF-1, CD38, and IL-10 levels. A new approach to serum or plasma therapy and allogeneic vaccines for cancer is intra-tumor injection of allogeneic serum. In light of the ease and availability of allogeneic immunotherapies, allogeneic serum and plasma therapy could potentially be used as an alternative monotherapy or in combination with other therapies.


Assuntos
Neoplasias do Colo , Transplante de Células-Tronco Hematopoéticas , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Neoplasias do Colo/terapia , Neovascularização Patológica/terapia , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Imunoterapia
20.
Front Hum Neurosci ; 16: 1006027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405075

RESUMO

Port-wine birthmarks (PWBs) are caused by somatic, mosaic mutations in the G protein guanine nucleotide binding protein alpha subunit q (GNAQ) and are characterized by the formation of dilated, dysfunctional blood vessels in the dermis, eyes, and/or brain. Cutaneous PWBs can be treated by current dermatologic therapy, like laser intervention, to lighten the lesions and diminish nodules that occur in the lesion. Involvement of the eyes and/or brain can result in serious complications and this variation is termed Sturge-Weber syndrome (SWS). Some of the biggest hurdles preventing development of new therapeutics are unanswered questions regarding disease biology and lack of models for drug screening. In this review, we discuss the current understanding of GNAQ signaling, the standard of care for patients, overlap with other GNAQ-associated or phenotypically similar diseases, as well as deficiencies in current in vivo and in vitro vascular malformation models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA