Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cureus ; 16(8): e67056, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39286678

RESUMO

This case report details a 12-year-old male diagnosed with Hurler syndrome, a rare autosomal recessive disorder caused by a deficiency in the enzyme alpha-L-iduronidase. The patient exhibited typical symptoms, including developmental delays, ocular clouding, and distinctive skeletal deformities, along with mild cognitive abnormalities. Despite the presence of traditional clinical signs and elevated urine heparin and dermatan sulfate levels confirming the diagnosis, access to advanced treatments such as enzyme replacement therapy was severely limited due to socioeconomic constraints and a lack of diagnostic facilities in the region. This case highlights the critical need for accessible diagnostic and treatment options in resource-limited settings and underscores the importance of ethical decision-making in managing rare genetic disorders. The report advocates for a multidisciplinary approach to enhance outcomes for patients with Hurler syndrome.

2.
Reprod Sci ; 31(5): 1391-1400, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38253981

RESUMO

Prediction of women at high risk of preeclampsia is important for prevention and increased surveillance of the disease. Current prediction models need improvement, particularly with regard to late-onset preeclampsia. Preeclampsia shares pathophysiological entities with cardiovascular disease; thus, cardiovascular biomarkers may contribute to improving prediction models. In this nested case-control study, we explored the predictive importance of mid-pregnancy cardiovascular biomarkers for subsequent preeclampsia. We included healthy women with singleton pregnancies who had donated blood in mid-pregnancy (~ 18 weeks' gestation). Cases were women with subsequent preeclampsia (n = 296, 10% of whom had early-onset preeclampsia [< 34 weeks]). Controls were women who had healthy pregnancies (n = 333). We collected data on maternal, pregnancy, and infant characteristics from medical records. We used the Olink cardiovascular II panel immunoassay to measure 92 biomarkers in the mid-pregnancy plasma samples. The Boruta algorithm was used to determine the predictive importance of the investigated biomarkers and first-trimester pregnancy characteristics for the development of preeclampsia. The following biomarkers had confirmed associations with early-onset preeclampsia (in descending order of importance): placental growth factor (PlGF), matrix metalloproteinase (MMP-12), lectin-like oxidized LDL receptor 1, carcinoembryonic antigen-related cell adhesion molecule 8, serine protease 27, pro-interleukin-16, and poly (ADP-ribose) polymerase 1. The biomarkers that were associated with late-onset preeclampsia were BNP, MMP-12, alpha-L-iduronidase (IDUA), PlGF, low-affinity immunoglobulin gamma Fc region receptor II-b, and T cell surface glycoprotein. Our results suggest that MMP-12 is a promising novel preeclampsia biomarker. Moreover, BNP and IDUA may be of value in enhancing prediction of late-onset preeclampsia.


Assuntos
Biomarcadores , Pré-Eclâmpsia , Humanos , Feminino , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/diagnóstico , Gravidez , Biomarcadores/sangue , Estudos de Casos e Controles , Adulto , Segundo Trimestre da Gravidez/sangue
3.
Mol Genet Metab Rep ; 38: 101036, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38173710

RESUMO

Vascular involvement in the genetic disorder mucopolysaccharidosis type I (MPS I) has features of atherosclerotic disease near branch points of arterial vasculature, such as intimal thickening with disruption of the internal elastic lamina, and proliferation of macrophages and myofibroblasts. Inflammatory pathways are implicated in the pathogenesis of vascular disease in MPS I animal models, evidenced by cytokines like CD18 and TGF-ß within arterial plaques. The angiotensin II-mediated inflammatory pathway is well studied in human atherosclerotic coronary artery disease. Recent work indicates treatment with the angiotensin receptor blocker losartan may improve vascular MPS I disease in mouse models. Here, we combined losartan with the standard therapy for MPS I, enzyme replacement therapy (ERT), to measure effects on cytokines in serum and aortic vasculature. Each treatment group (losartan, ERT, and their combination) equally normalized levels of cytokines that were largely differential between normal and mutant mice. Some cytokines, notably CD30 ligand, Eotaxin-2, LIX, IL-13, IL-15, GM-CSF, MCP-5, MIG, and CCL3 showed elevations in mice treated with ERT above normal or mutant levels; these elevations were reduced or absent in mice that received losartan or combination therapy. The observations suggest that losartan may impact inflammatory cascades due to MPS I and may also blunt inflammation in combination with ERT.

4.
Cureus ; 15(4): e37785, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37213966

RESUMO

Hurler syndrome is a rare autosomal recessive disorder of deficiency in the metabolism of glycosaminoglycans (GAGs), including heparan sulfate and dermatan sulfate, which consequently accumulate in the different organs of the body, resulting from deficiency of an enzyme named Alpha-L-iduronidase. Here, we present an interesting case of a young female patient who presented with a combination of skeletal, oro-facial, ophthalmologic, neurological, and radiological findings of this disease. A diagnosis of Hurler syndrome (Mucopolysaccharidosis Type I) was made late in the disease due to lack of facilities, and the patient was ultimately managed supportively.

5.
Bioinformation ; 19(12): 1116-1123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250526

RESUMO

Human alpha-L-iduronidase (IDUA) is a 653 amino acid protein involved in the sequential degradation of glycos-amino-glycans (GAG), heparan sulfate (HS), and dermatan sulfate (DS). Some variants in the IDUA gene produce a deficient enzyme that causes un-degraded DS and HS to accumulate in multiple tissues, leading to an organ dysfunction known as muco-poly-saccharidosis type I (MPS I). Molecular and catalytic activity assays of new or rare variants of IDUA do not predict the phenotype that a patient will develop. Therefore, it is of interest to describe the molecular docking analysis, to locate binding regions of DS to IDUA to better understand the effect of a variant on MPS I development. The results presented herein demonstrate the presence of a polar/acidic catalytic site and a basic region in the putative binding site of DS to IDUA. Further, synthetic substrate docking with the enzyme could help in the predictions of the MPS I phenotype.

6.
Biochem Biophys Res Commun ; 636(Pt 1): 147-154, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36332477

RESUMO

Mucopolysaccharidosis type I Hurler syndrome (MPS IH) is a severe lysosomal storage disorder caused by alpha-l-iduronidase (IDUA) deficiency. Premature truncation mutations (PTC) are the most common (50%-70%) type of IDUA mutations and correlate with MPS IH. Nonsense suppression therapy is a therapeutic approach that aims to induce stop codon readthrough. The different ability of gentamicin to bind mutant mRNA in readthrough is determined by nucleotide sequence (PTC context: UGA > UAG > UAA) and inserted amino acid including the nucleotide position +4 of the PTC, as well as the mRNA secondary structure. We used COS-7 cells to investigate the functional characteristics of p.Q500X and p.R619X, IDUA variants and the effects of gentamicin in inducing stop codon readthrough of seven IDUA variants including p.Q500X, p.R619X, p.Q70X, p.E299X, p.W312X, p.Q380X, and p.W402X. Moreover, we performed prediction of RNA secondary structure using the online tool RNAfold. We found that cells treated with gentamicin showed significantly enhanced full-length IDUA expression and restored IDUA activity, in a dose-dependent manner, only in cells expressing cDNA with W312X, Q380X, W402X, and R619X. Among the readthrough-responsive variants, we observed UGA PTC in W312X, W402X and R619X; and UAG PTC with C at nucleotide +4 in Q380X. Changes of RNA secondary structure were noted only in mutants with readthrough-responsive variants including W312X, Q380X, W402X, and R619X. Additional preclinical studies of selected PTCs with potential readthrough, using drugs with less oto-nephrotoxicity, in patient's skin fibroblasts and animal model are necessary for the premise of personalized medicine.


Assuntos
Iduronidase , Mucopolissacaridose I , Chlorocebus aethiops , Animais , Iduronidase/genética , Códon sem Sentido/genética , Gentamicinas/farmacologia , Códon de Terminação/genética , Células COS , Mucopolissacaridose I/tratamento farmacológico , Mucopolissacaridose I/genética , Mucopolissacaridose I/metabolismo , Mutação , RNA Mensageiro/metabolismo , Nucleotídeos/uso terapêutico
7.
Int J Neonatal Screen ; 8(4)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36412587

RESUMO

The mucopolysaccharidoses (MPS), Pompe Disease (PD), and Krabbe disease (KD) are inherited conditions known as lysosomal storage disorders (LSDs) The resulting enzyme deficiencies give rise to progressive symptoms. The United States Department of Health and Human Services' Recommended Uniform Screening Panel (RUSP) suggests LSDs for inclusion in state universal newborn screening (NBS) programs and has identified screening deficiencies in MPS I, KD, and PD NBS programs. MPS I NBS programs utilize newborn dried blood spots and assay alpha L-iduronidase (IDUA) enzyme to screen for potential cases. Glycosaminoglycans (GAGs) offer potential as a confirmatory test. KD NBS programs utilize galactocerebrosidase (GaLC) as an initial test, with psychosine (PSY) activity increasingly used as a confirmatory test for predicting onset of Krabbe disease, though with an excessive false positive rate. PD is marked by a deficiency in acid α-glucosidase (GAA), causing increased glycogen, creatine (CRE), and other biomarkers. Bivariate normal limit (BVNL) methods have been applied to GaLC and PSY activity to produce a NBS tool for KD, and more recently, to IDUA and GAG activity to develop a NBS tool for MPS I. A BVNL tool based on GAA and CRE is in development for infantile PD diagnosis. Early infantile KD, MPS I, and PD cases were pre-symptomatically identified by BVNL-based NBS tools. This article reviews these developments, discusses how they address screening deficiencies identified by the RUSP and may improve NBS more generally.

8.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232472

RESUMO

Mucopolysaccharidosis type I (MPSI) (OMIM #252800) is an autosomal recessive disorder caused by pathogenic variants in the IDUA gene encoding for the lysosomal alpha-L-iduronidase enzyme. The deficiency of this enzyme causes systemic accumulation of glycosaminoglycans (GAGs). Although disease manifestations are typically not apparent at birth, they can present early in life, are progressive, and include a wide spectrum of phenotypic findings. Among these, the storage of GAGs within the lysosomes disrupts cell function and metabolism in the cartilage, thus impairing normal bone development and ossification. Skeletal manifestations of MPSI are often refractory to treatment and severely affect patients' quality of life. This review discusses the pathological and molecular processes leading to impaired endochondral ossification in MPSI patients and the limitations of current therapeutic approaches. Understanding the underlying mechanisms responsible for the skeletal phenotype in MPSI patients is crucial, as it could lead to the development of new therapeutic strategies targeting the skeletal abnormalities of MPSI in the early stages of the disease.


Assuntos
Iduronidase , Mucopolissacaridose I , Glicosaminoglicanos/metabolismo , Humanos , Iduronidase/genética , Mucopolissacaridose I/genética , Fenótipo , Qualidade de Vida
9.
Biotechnol Bioeng ; 119(10): 2831-2841, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35822204

RESUMO

Hairy root systems have proven to be a viable alternative for recombinant protein production. For recalcitrant proteins, maximizing the productivity of hairy root cultures is essential. The aim of this study was to optimize a Brassica rapa rapa hairy root process for secretion of alpha- l-iduronidase (IDUA), a biologic of medical value. The process was first optimized with hairy roots expressing eGFP. For the biomass optimization, the highest biomass yields were achieved in modified Gamborg B5 culture medium. For the secretion induction, the optimized secretion media was obtained with additives (1.5 g/l PVP + 1 mg/l 2,4- d + 20.5 g/l KNO3 ) resulting in 3.4 fold eGFP secretion when compared to the non-induced control. These optimized conditions were applied to the IDUA-expressing hairy root clone, confirming that the highest yields of secreted IDUA occurred when using the defined additive combination. The functionality of the IDUA protein, secreted and intracellular, was confirmed with an enzymatic activity assay. A > 150-fold increase of the IDUA activity was observed using an optimized secretion medium, compared with a non-induced medium. We have proven that our B. rapa rapa hairy root system can be harnessed to secrete recalcitrant proteins, illustrating the high potential of hairy roots in plant molecular farming.


Assuntos
Produtos Biológicos , Brassica , Produtos Biológicos/metabolismo , Brassica/genética , Brassica/metabolismo , Agricultura Molecular , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Mol Genet Metab Rep ; 28: 100787, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34408967

RESUMO

The impact of hematopoietic stem cell transplantation (HSCT) on growth in patients diagnosed with mucopolysaccharidosis I Hurler (MPS-IH) has been historically regarded as unsatisfactory. Nevertheless, the growth patterns recorded in transplanted patients have always been compared to those of healthy children. The objective of this study was to verify the impact of HSCT on MPS-IH long term growth achievements. The auxological data of 15 patients were assessed longitudinally and compared both to the WHO growth centiles for healthy individuals and to recently published curves of untreated MPS-IH children. Despite a progressive decrease after HSCT when estimated with reference to the WHO growth charts, median height SDS showed a progressive and statistically significant increase when comparing the stature recorded at each timepoint in our population to the curves of untreated MPS-IH individuals (from -0.39 SDS at t0 to +1.35 SDS 5 years after HSCT, p value < 0.001 and to +3.67 SDS at the age of 9 years, p value < 0.0001). In conclusion, though not efficient enough to restore a normal growth pattern in MPS-IH patients, we hereby demonstrate that HSCT positively affects growth and provides transplanted patients with a remarkable height gain compared to untreated gender- and age- matched individuals.

11.
Protein J ; 40(1): 68-77, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33389473

RESUMO

Mucopolysaccharidosis type I is a rare autosomal recessive genetic disease caused by deficient activity of α-L-iduronidase. As a consequence of low or absent activity of this enzyme, glycosaminoglycans accumulate in the lysosomal compartments of multiple cell types throughout the body. Mucopolysaccharidosis type I has been classified into 3 clinical subtypes, ranging from a severe Hurler form to the more attenuated Hurler-Scheie and Scheie phenotypes. Over 200 gene variants causing the various forms of mucopolysaccharidosis type I have been reported. DNA isolated from dried blood spot was used to sequencing of all exons of the IDUA gene from a patient with a clinical phenotype of severe mucopolysaccharidosis type I syndrome. Enzyme activity of α-L-iduronidase was quantified by fluorimetric assay. Additionally, a molecular dynamics simulation approach was used to determine the effect of the Ser633Trp mutation on the structure and dynamics of the α-L-iduronidase. The DNA sequencing analysis and enzymatic activity shows a c.1898C>G mutation associated a patient with a homozygous state and α-L-iduronidase activity of 0.24 µmol/L/h, respectively. The molecular dynamics simulation analysis shows that the p.Ser633Trp mutation on the α-L-iduronidase affect significant the temporal and spatial properties of the different structural loops, the N-glycan attached to Asn372 and amino acid residues around the catalytic site of this enzyme. Low enzymatic activity observed for p.Ser633Trp variant of the α-L-iduronidase seems to lead to severe mucopolysaccharidosis type I phenotype, possibly associated with a perturbation of the structural dynamics in regions of the enzyme close to the active site.


Assuntos
Anormalidades Múltiplas/genética , Dermatan Sulfato/química , Heparitina Sulfato/química , Iduronidase/química , Mucopolissacaridose I/genética , Mutação Puntual , Anormalidades Múltiplas/enzimologia , Anormalidades Múltiplas/patologia , Anormalidades Múltiplas/terapia , Domínio Catalítico , Cristalografia por Raios X , Dermatan Sulfato/metabolismo , Terapia de Reposição de Enzimas/métodos , Expressão Gênica , Heparitina Sulfato/metabolismo , Humanos , Iduronidase/genética , Iduronidase/metabolismo , Lactente , Masculino , Simulação de Dinâmica Molecular , Mucopolissacaridose I/enzimologia , Mucopolissacaridose I/patologia , Mucopolissacaridose I/terapia , Análise de Componente Principal , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Especificidade por Substrato
12.
Int J Neonatal Screen ; 6(4)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33124616

RESUMO

Newborn screening (NBS) for mucopolysaccharidosis type I (MPS I, Hurler syndrome) is currently conducted in about two-fifths of the NBS programs in the United States and in a few other countries. Screening is performed by measurement of residual activity of the enzyme alpha-l-iduronidase in dried blood spots using either tandem mass spectrometry or digital microfluidic fluorometry (DMF). In this article, we focus on the development and practical experience of using DMF to screen for MPS I in the USA. By means of their responses to a questionnaire, we determined for each responding program that is screening for MPS I using DMF the screen positive rate, follow-up methods, and classification of confirmed cases as either severe or attenuated. Overall, the results show that at the time of reporting, over 1.3 million newborns in the US were screened for MPS I using DMF, 2094 (0.173%) of whom were screen positive. Of these, severe MPS I was confirmed in five cases, attenuated MPS I was confirmed in two cases, and undetermined phenotype was reported in one case. We conclude that DMF is an effective and economical method to screen for MPS I and recommend second-tier testing owing to high screen positive rates. Preliminary results of NBS for MPS II and MPS III using DMF are discussed.

13.
JIMD Rep ; 52(1): 35-42, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32154058

RESUMO

PURPOSE: Current newborn screening (NBS) for mucopolysaccharidosis type I (MPSI) has very high false positive rates and low positive predictive values (PPVs). To improve the accuracy of presymptomatic prediction for MPSI, we propose an NBS tool based on known biomarkers, alpha-L-iduronidase enzyme activity (IDUA) and level of the glycosaminoglycan (GAG) heparan sulfate (HS). METHODS: We developed the NBS tool using measures from dried blood spots (DBS) of 5000 normal newborns from Gifu Prefecture, Japan. The tool's predictive accuracy was tested on the newborn DBS from these infants and from seven patients who were known to have early-onset MPSI (Hurler's syndrome). Bivariate analyses of the standardized natural logarithms of IDUA and HS levels were employed to develop the tool. RESULTS: Every case of early-onset MPSI was predicted correctly by the tool. No normal newborn was incorrectly identified as having early-onset MPSI, whereas 12 normal newborns were so incorrectly identified by the Gifu NBS protocol. The PPV was estimated to be 99.9%. CONCLUSIONS: Bivariate analysis of IDUA with HS in newborn DBS can accurately predict early MPSI symptoms, control false positive rates, and enhance presymptomatic treatment. This bivariate analysis-based approach, which was developed for Krabbe disease, can be extended to additional screened disorders.

14.
J Pediatr Genet ; 8(4): 212-217, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31687259

RESUMO

Mucopolysaccharidosis 1 (MPS1) is a rare inherited lysosomal storage disorder resulting from the absence or reduction of lysosomal alpha-l-iduronidase due to mutations in the IDUA gene. Three major clinical manifestations have been established including Hurler's or severe type (OMIM 607914), Hurler-Scheie or intermediate type (MIM 607914) and Scheie's or attenuated type (MIM 607016). In the present study, a patient whose disease was diagnosed by biochemical and enzymatic assay was studied in our laboratory. Molecular analysis implemented by PCR-sequencing of all 14 exons and exon-intron junctions confirmed a novel deleterious mutation in a homozygous state. The result of this study has broadened the genotypic spectrum of MPS1 patients, assisting in a more effective approach for carrier testing and counseling.

15.
Genet Test Mol Biomarkers ; 23(8): 515-522, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31298590

RESUMO

Background and Purpose: Mucopolysaccharidosis 1 (MPS1) is an autosomal recessive disorder of a lysosomal enzyme called alpha-l-iduronidase caused by mutations in the IDUA gene. This enzyme is responsible for the degradation of the mucopolysaccharides, heparan sulfate, and dermatan sulfate. Based on clinical features and enzyme deficiency, MPS1 is divided into three subtypes, including a severe subtype (Hurler syndrome), an intermediate subtype (Hurler-Scheie syndrome), and an attenuated subtype (Scheie syndrome). The objective of this study was to characterize the mutation profiles of 17 Iranian patients with MPS1 and characterize the clinical features associated with their genotypes. Materials and Methods: Polymerase chain reaction-based sequencing of the IDUA gene was carried out for 10 patients with clinical diagnoses of MPS1 and 50 healthy controls. To estimate the impact of newly identified variants on the structure and function of the encoded alpha-l-iduronidase, in silico analyses was performed. Results: Eight genetic variations were detected, including five missense mutations (p.M1L, p.G51D, p.G134V, p.S157P, p.D301E), two nonsense mutations (p.W402* and p.Y343*), and one deletion (p.GFLNYY197-202), among which p.G134V, p.S157P, p.D301E, and p.GFLNYY197-202 were novel variations that had not been previously reported. Conclusion: After combining the results of the two previous IDUA gene studies performed on Iranian MPS1 patients and the results obtained from the current study, it is inferred that despite the presence of a number of previously known mutations, about half of the detected variations were unique in Iranian patients.


Assuntos
Iduronidase/genética , Mucopolissacaridose I/genética , Mutação , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Irã (Geográfico) , Masculino , Reação em Cadeia da Polimerase
16.
Plant Biotechnol J ; 17(2): 505-516, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30058762

RESUMO

The Brassica rapa hairy root based expression platform, a turnip hairy root based expression system, is able to produce human complex glycoproteins such as the alpha-L-iduronidase (IDUA) with an activity similar to the one produced by Chinese Hamster Ovary (CHO) cells. In this article, a particular attention has been paid to the N- and O-glycosylation that characterize the alpha-L-iduronidase produced using this hairy root based system. This analysis showed that the recombinant protein is characterized by highly homogeneous post translational profiles enabling a strong batch to batch reproducibility. Indeed, on each of the 6 N-glycosylation sites of the IDUA, a single N-glycan composed of a core Man3 GlcNAc2 carrying one beta(1,2)-xylose and one alpha(1,3)-fucose epitope (M3XFGN2) was identified, highlighting the high homogeneity of the production system. Hydroxylation of proline residues and arabinosylation were identified during O-glycosylation analysis, still with a remarkable reproducibility. This platform is thus positioned as an effective and consistent expression system for the production of human complex therapeutic proteins.


Assuntos
Brassica rapa/enzimologia , Iduronidase/metabolismo , Animais , Brassica rapa/genética , Células CHO , Cricetulus , Epitopos/imunologia , Fucose/imunologia , Glicosilação , Humanos , Iduronidase/química , Iduronidase/genética , Manose/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Polissacarídeos/metabolismo , Proteínas Recombinantes , Reprodutibilidade dos Testes , Transgenes , Xilose/imunologia
17.
Mol Ther Methods Clin Dev ; 8: 42-51, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29159202

RESUMO

Antibodies against recombinant proteins can significantly reduce their effectiveness in unanticipated ways. We evaluated the humoral response of mice with the lysosomal storage disease mucopolysaccharidosis type I treated with weekly intravenous recombinant human alpha-l-iduronidase (rhIDU). Unlike patients, the majority of whom develop antibodies to recombinant human alpha-l-iduronidase, only approximately half of the treated mice developed antibodies against recombinant human alpha-l-iduronidase and levels were low. Serum from antibody-positive mice inhibited uptake of recombinant human alpha-l-iduronidase into human fibroblasts by partial inhibition compared to control serum. Tissue and cellular distributions of rhIDU were altered in antibody-positive mice compared to either antibody-negative or naive mice, with significantly less recombinant human alpha-l-iduronidase activity in the heart and kidney in antibody-positive mice. In the liver, recombinant human alpha-l-iduronidase was preferentially found in sinusoidal cells rather than in hepatocytes in antibody-positive mice. Antibodies against recombinant human alpha-l-iduronidase enhanced uptake of recombinant human alpha-l-iduronidase into macrophages obtained from MPS I mice. Collectively, these results imply that a humoral immune response against a therapeutic protein can shift its distribution preferentially into macrophage-lineage cells, causing decreased availability of the protein to the cells that are its therapeutic targets.

18.
Ann Hum Genet ; 82(3): 150-157, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29282708

RESUMO

BACKGROUND: Mucopolysaccharidosis type I (MPS I) is a rare autosomal-recessive disorder caused by defects in alpha-L-iduronidase (IDUA), a lysosomal enzyme encoded by the IDUA gene. Herein, we characterized IDUA mutations underlying mucopolysaccharidosis type I intermediate form (Hurler-Scheie syndrome) and its molecular pathogenic mechanisms. METHODS: Clinical data, activity of the IDUA enzyme in leukocytes, and a mutation of the IDUA gene were analyzed. Pathogenesis associated with an IDUA mutation was further investigated by evaluating the mutant cDNA sequence, protein expression and activity in COS-7 cells. RESULTS: Five unrelated patients were identified to have clinical diagnosis of intermediate form of MPS I (Hurler-Scheie) and exhibited low-to-absent levels of leukocyte IDUA activity. Genetic analysis revealed homozygous c.*1T>C (p.X654R) mutation in two patients and compound heterozygosity between the c.*1T>C and another allele including c.265G>A (p.R89Q), c.935G>A (p.W312X), or c.1138 C>T (p.Q380X), each in a single patient. Sequencing the 3'RACE product of the c.*1T>C (p.X654R) allele indicated a 38-amino acids elongation of the mutant protein. COS-7 cells expressing IDUA with the mutations exhibited extremely low levels or complete absence of enzyme activity compared to wild-type IDUA. Western blot analysis detected no protein in p.W312X and p.Q380X samples, while an elevated molecular mass and a different pattern of protein bands were found in p.X654R specimen compared with the wild type IDUA. CONCLUSIONS: Mutational spectrum underlying intermediate MPS I is expanded. Our data suggest that the p.X654R is an intermediate IDUA mutant allele with residual enzyme activity. It can lead to intermediate or milder form of MPS I depending on another associated allele.


Assuntos
Iduronidase/genética , Mucopolissacaridose I/genética , Animais , Células COS , Criança , Pré-Escolar , Chlorocebus aethiops , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Mutação , Tailândia
19.
Plant Mol Biol ; 95(6): 593-606, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29119347

RESUMO

KEY MESSAGE: Arabidopsis N-glycan processing mutants provide the basis for tailoring recombinant enzymes for use as replacement therapeutics to treat lysosomal storage diseases, including N-glycan mannose phosphorylation to ensure lysosomal trafficking and efficacy. Functional recombinant human alpha-L-iduronidase (IDUA; EC 3.2.1.76) enzymes were generated in seeds of the Arabidopsis thaliana complex-glycan-deficient (cgl) C5 background, which is deficient in the activity of N-acetylglucosaminyl transferase I, and in seeds of the Arabidopsis gm1 mutant, which lacks Golgi α-mannosidase I (GM1) activity. Both strategies effectively prevented N-glycan maturation and the resultant N-glycan structures on the consensus sites for N-glycosylation of the human enzyme revealed high-mannose N-glycans of predominantly Man5 (cgl-IDUA) or Man6-8 (gm1-IDUA) structures. Both forms of IDUA were equivalent with respect to their kinetic parameters characterized by cleavage of the artificial substrate 4-methylumbelliferyl-iduronide. Because recombinant lysosomal enzymes produced in plants require the addition of mannose-6-phosphate (M6P) in order to be suitable for lysosomal delivery in human cells, we characterized the two IDUA proteins for their amenability to downstream in vitro mannose phosphorylation mediated by a soluble form of the human phosphotransferase (UDP-GlcNAc: lysosomal enzyme N-acetylglucosamine [GlcNAc]-1-phosphotransferase). Gm1-IDUA exhibited a slight advantage over the cgl-IDUA in the in vitro M6P-tagging process, with respect to having a better affinity (i.e. lower K m) for the soluble phosphotransferase. This may be due to the greater number of mannose residues comprising the high-mannose N-glycans of gm1-IDUA. Our elite cgl- line produces IDUA at > 5.7% TSP (total soluble protein); screening of the gm1 lines showed a maximum yield of 1.5% TSP. Overall our findings demonstrate the relative advantages and disadvantages associated with the two platforms to create enzyme replacement therapeutics for lysosomal storage diseases.


Assuntos
Terapia de Reposição de Enzimas , Iduronidase/química , Iduronidase/metabolismo , Manose/metabolismo , Mucopolissacaridose I/terapia , Polissacarídeos/química , Proteínas Recombinantes/química , Arabidopsis/genética , Glicosilação , Humanos , Cinética , Mutação/genética , Fosforilação , Fosfotransferases/metabolismo , Plantas Geneticamente Modificadas , Polissacarídeos/metabolismo , Proteínas Recombinantes/metabolismo , Sementes/metabolismo , Solubilidade
20.
Orphanet J Rare Dis ; 12(1): 109, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28595620

RESUMO

BACKGROUND: Mucopolysaccharidosis type I (MPS I) is a debilitating hereditary disease characterized by alpha-L-iduronidase (IDUA) deficiency and consequent inability to degrade glycosaminoglycans. The pathological accumulation of glycosaminoglycans systemically results in severe mental retardation and multiple organ dysfunction. Enzyme replacement therapy with recombinant human alpha-L-iduronidase (rhIDU) improves the function of some organs but not neurological deficits owing to its exclusion from the brain by the blood-brain barrier (BBB). METHODS: We divided MPS I mice into control group, enzyme replacement group with rhIDU 2.9 mg/kg injection, enzyme replacement with one-spot ultrasound treatment group, and enzyme replacement with two-spot ultrasound treatment group, and compare treatment effectiveness between groups. All ultrasound treatments were applied on left side brain. Evans blue was used to simulate the distribution of rhIDU in the brain. RESULTS: Transcranial pulsed weakly focused ultrasound combined with microbubbles facilitates brain rhIDU delivery in MPS I mice receiving systemic enzyme replacement therapy. With intravenously injected rhIDU 2.9 mg/kg, the IDUA enzyme activity on the ultrasound treated side of the cerebral hemisphere raised to 7.81-fold that on the untreated side and to 75.84% of its normal value. Evans blue simulation showed the distribution of the delivered drug was extensive, involving a large volume of the treated cerebral hemisphere. Two-spot ultrasound treatment scheme is more efficient for brain rhIDU delivery than one-spot ultrasound treatment scheme. CONCLUSIONS: Transcranial pulsed weakly focused ultrasound can open BBB extensively and facilitates brain rhIDU delivery. This novel technology may provide a new MPS I treatment strategy.


Assuntos
Iduronidase/uso terapêutico , Mucopolissacaridose I/tratamento farmacológico , Ondas Ultrassônicas , Animais , Transporte Biológico , Terapia de Reposição de Enzimas/métodos , Técnicas de Introdução de Genes , Iduronidase/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA