Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol Anthropol ; 43(1): 11, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528599

RESUMO

BACKGROUND: Local alternating heat and cold stimulation as an alternative to contrast bath may cause intermittent vasoconstriction and vasodilation, inducing a vascular pumping effect and consequently promoting increased tissue blood flow and oxygenation. This study aimed to examine the effects of local alternating heat and cold stimulation, using a wearable thermal device, on the hemodynamics of fatigued muscle tissue and autonomic nervous activity. METHODS: Twenty healthy individuals experienced fatigue in the periarticular muscles of the shoulder joint due to a typing task. Local alternating heat and cold stimulations were then applied to the upper trapezius muscle. Muscle hardness was measured using a muscle hardness meter, and muscle tissue hemodynamics and oxygenation were evaluated using near-infrared spectroscopy before and after the stimulation. Autonomic nervous activity was also evaluated using heart rate variability. RESULTS: Alternating heat and cold stimulation decreased muscle hardness of the fatigued trapezius muscle from 1.38 ± 0.15 to 1.31 ± 0.14 N (P < 0.01). The concentration of total hemoglobin in the trapezius muscle tissue increased from - 0.21 ± 1.36 to 2.29 ± 3.42 µmol/l (P < 0.01), and the tissue hemoglobin oxygen saturation also increased from 70.1 ± 5.4 to 71.1 ± 6.0% (P < 0.05). Additionally, the heart rate variability parameter, which is an index of sympathetic nervous activity, increased from 3.82 ± 2.96 to 6.86 ± 3.49 (P < 0.01). A correlation was found between increased tissue hemoglobin oxygen saturation and increased parameters of sympathetic nervous activity (r = 0.50, P < 0.05). CONCLUSIONS: Local alternating heat and cold stimulation affected the hemodynamic response in fatigued muscle tissue and autonomic nervous activity. This stimulation is more efficient than conventional contrast baths in terms of mobility and temperature control and has potential as a new versatile therapeutic intervention for muscle fatigue. TRIAL REGISTRATION: UMIN-CTR (UMIN000040087: registered on April 7, 2020, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000045710 . UMIN000040620: registered on June 1, 2020, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000046359 ).


Assuntos
Hemodinâmica , Temperatura Alta , Humanos , Hemodinâmica/fisiologia , Temperatura Baixa , Músculo Esquelético/fisiologia , Hemoglobinas
2.
BMC Musculoskelet Disord ; 23(1): 669, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35831832

RESUMO

BACKGROUND: A small, wearable thermo device that uses Peltier elements for programmed heat and cold stimulation has been developed recently and is expected to be applied in conventional contrast bath therapy. This study was aimed to examine improvements in trapezius muscle hardness and subjective symptoms resulting from alternating heat and cold stimulation, with different rates of cooling. METHODS: This cross-over study included four conditions. Twenty healthy young male individuals (age, 22.3 ± 4.5 years) participated in this study. These four interventions targeted the unilateral trapezius muscle of the dominant arm after a 15-min typing task. Specifically, heat and cold stimulations were applied at different ratios (the heating/cooling rate of 3:1, 3:2, and 3:3) or not applied. Each intervention was separated by at least one week. Skin temperature at the stimulation area was recorded using a data logger. Outcome measures included muscle hardness (measured using a portable tester) and subjective symptoms (muscle stiffness and fatigue). Each item was assessed at three time points: baseline, after typing, and after the intervention. RESULTS: Two-way analysis of variance with repeated measures found an interaction effect for muscle hardness between four conditions (3:1, 3:2, 3:3, and no) and three time points (p < 0.05). Only in the 3:1 condition were the post-intervention values lower than those after typing (p < 0.01). There was also an interaction effect for subjective muscle stiffness (p < 0.05); the values after the intervention in the 3:1 condition were lower than those after intervention in the no stimulation condition (p < 0.01). There was no significant relationship between changes in muscle hardness and changes in subjective symptoms in the 3:1 condition. CONCLUSIONS: Our results demonstrate that alternating heat and cold stimulations with a different cooling rate could affect the degree of improvement in muscle hardness and subjective symptoms. In particular, the 3:1 condition has the possibility to improved muscle hardness within the condition and subjective muscle stiffness between conditions. TRIAL REGISTRATION: UMIN000040620. Registered 1 June 2020, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000046359.


Assuntos
Artropatias , Músculos Superficiais do Dorso , Dispositivos Eletrônicos Vestíveis , Adolescente , Adulto , Estudos Cross-Over , Temperatura Alta , Humanos , Masculino , Ombro , Adulto Jovem
3.
J Physiol Anthropol ; 41(1): 1, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980256

RESUMO

BACKGROUND: Technological innovations have allowed the use of miniature apparatus that can easily control and program heat and cold stimulations using Peltier elements. The wearable thermo-device has a potential to be applied to conventional contrast bath therapy. This study aimed to examine the effects of alternating heat and cold stimulation (HC) using a wearable thermo-device on subjective and objective improvement of shoulder stiffness. METHODS: Twenty healthy young male individuals (20.3 ± 0.6 years) participated in this study. The interventions were randomly conducted under four conditions, including HC, heat stimulation, cold stimulation, and no stimulation on their bilateral trapezius muscle, after a 30-min typing task. Each intervention was administered at least 1 week apart. The analyzed limb was the dominant arm. Muscle hardness was assessed using a portable muscle hardness meter, as well as the skin temperature over the stimulated area. After each condition, the participants were asked for feedback regarding subjective improvement in refreshed feelings, muscle stiffness, and muscle fatigue using an 11-point numerical rating scale. RESULTS: With regard to muscle hardness, only the HC condition significantly decreased from 1.43 N to 1.37 N (d = 0.44, p < 0.05). Additionally, reduced muscle hardness in HC condition was associated with the degree of skin cooling during the intervention (cold max: r = 0.634, p < 0.01; cold change: r = -0.548, p < 0.05). Subjective improvement in refreshed feelings, muscle stiffness, and muscle fatigue was determined in the HC and heat stimulation conditions compared with the no stimulation condition (p < 0.01 and p < 0.05, respectively). Moreover, the HC condition showed significantly greater improvements in muscle stiffness and fatigue compared to the cold stimulation condition (p < 0.05). CONCLUSIONS: The current study demonstrated that HC promoted not only better subjective symptoms, such as muscle stiffness and fatigue, but also lesser muscle hardness. Furthermore, an association was observed between the degree of skin temperature cooling and reduced muscle hardness during HC. Further investigations on the ratio and intensity of cooling should be conducted in the future to establish the optimal HC protocol for muscle stiffness or fatigue. TRIAL REGISTRATION: UMIN000040620 . Registered 1 June 2020.


Assuntos
Temperatura Baixa , Autoavaliação Diagnóstica , Temperatura Alta , Amplitude de Movimento Articular , Articulação do Ombro/fisiopatologia , Músculos Superficiais do Dorso/fisiopatologia , Dispositivos Eletrônicos Vestíveis , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA