Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(15): 7397-7404, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35789487

RESUMO

BACKGROUND: Understanding how climate change affects the phosphorus (P) nutrition of crops grown on acid soils is important in optimizing the management of P, and to secure future food production on these soils. This study assessed the impact of elevated CO2 (eCO2 ) on the P nutrition of wheat (Triticum aestivum) grown on Al3+ -toxic and P-deficient soils or in hydroponics. The aluminium-resistant near-isogenic wheat lines EGA-Burke (malate efflux only) and EGA-Burke TaMATE1B (malate and citrate efflux) were grown under ambient (400 µmol mol-1 ) and elevated CO2 (800 µmol mol-1 ) in growth chambers for 4-6 weeks. RESULTS: Elevated CO2 enhanced shoot growth and total P uptake of both lines at P rates >250 mg kg-1 , which was associated with improved root biomass allocation and thus increased root growth, but these effects were not apparent at lower P rates. Elevated CO2 decreased specific P uptake (P uptake per unit root length) at P supply >250 mg kg-1 , but did not significantly affect external or internal P requirements. This effect on the specific P uptake was less for EGA-Burke TaMATE1B than for EGA-Burke, possibly due to the increased citrate efflux and decreased Al concentration in root tips of EGA-Burke TaMATE1B. Compared to EGA-Burke, citrate-exuding EGA-Burke TaMATE1B had greater shoot P concentration and greater specific P uptake. CONCLUSION: Elevated CO2 improved root growth, and thus total P uptake and plant production of both lines when high P alleviated Al3+ toxicity and improved P nutrition in acid soils. The decreased P uptake efficiency under eCO2 was less for EGA-Burke TaMATE1B than EGA-Burke. © 2022 Society of Chemical Industry.


Assuntos
Fósforo , Triticum , Dióxido de Carbono , Ácido Cítrico , Malatos , Solo , Alumínio/química
3.
New Phytol ; 228(1): 179-193, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32406528

RESUMO

C2H2-type zinc finger transcription factor sensitive to proton rhizotoxicity 1 (STOP1) plays an essential role in aluminium (Al) resistance in Arabidopsis thaliana by controlling the expression of a set of Al-resistance genes, including the malate transporter-encoding gene A. thaliana aluminium activated malate transporter 1 (AtALMT1) that is critically required for Al resistance. STOP1 is suggested to be modulated by Al at post-transcriptional and/or post-translational levels. However, the underlying molecular mechanisms remain to be demonstrated. We carried out a forward genetic screen on an ethyl methanesulphonate mutagenized population, which contains the AtALMT1 promoter-driven luciferase reporter gene (pAtALMT1:LUC), and identified hyperrecombination protein 1 (HPR1), which encodes a subunit of the THO/TREX complex. We investigate the effect of hpr1 mutations on the expression of Al-resistance genes and Al resistance, and we also examined the regulatory role of HPR1 in nuclear messenger RNA (mRNA) and protein accumulation of STOP1 gene. Mutation of HPR1 reduces the expression of STOP1-regulated genes and the associated Al resistance. The hpr1 mutations increase STOP1 mRNA retention in the nucleus and consequently decrease STOP1 protein abundance. Mutation of regulation of AtALMT1 expression 1 (RAE1) that mediates STOP1 degradation in the hpr1 mutant background can partially rescue the deficient phenotypes of hpr1 mutants. Our results demonstrate that HPR1 modulates Al resistance partly through the regulation of nucleocytoplasmic STOP1 mRNA export.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Alumínio/toxicidade , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação/genética , Fatores de Transcrição
4.
Physiol Mol Biol Plants ; 26(1): 3-13, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32158116

RESUMO

Transgenic tobacco (N. tabacum cv. Xanthi nc) expressing Capsicum chinense CchGLP gene that encodes an Mn-SOD, constitutively produces hydrogen peroxide that increase endogenous ROS levels. Previous studies using these plants against geminivirus infections as well as drought stress confirmed that CchGLP expression conferred resistance against biotic and abiotic stresses. Cadmium (Cd) and Aluminium (Al) contamination in soils are a major ecological concern since they are two of the most widespread toxic elements in terrestrial environments. Trying to explore additional possible tolerance to another stresses in these plants, the aim of this work was to analyse the response to cadmium and aluminium salts during germination and early stages of plantlet development and a differential transcriptome of microRNAs (miRNAs) expression in expressing CchGLP transgenic lines and an azygote non-CchGLP expressing line. Plants were grown in vitro with addition of CdCl2 and AlCl3 at three different concentrations: 100, 300 and 500 µM and 50, 150 and 300 µM, respectively. The results showed higher tolerance to Cd and Al salts evaluated in two CchGLP-expressing transgenic lines L8 and L26 in comparison with the azygous non-CchGLP expressing line L1. Interestingly, L8 under Al stress presented vigorous roots and development of radicular hairs in comparison with azygous control (L1). Differentially expressed miRNAs in the comparison between L8 and L1 were associated with up and down-regulation of target genes related with structural molecule activity and ribosome constituents, as well as down-regulation in proton-transporting V-type ATPase (Vacuolar ATPase or V-ATPase). Moreover, KEGG analysis of the target genes for the differentially expressed miRNAs, led to identification of genes related with metabolic pathways and biosynthesis of secondary metabolites. One possible explanation of the tolerance to Cd and Al displayed in the transgenic tobaccos evaluated, might involve the fact that several down-regulated miRNAs, were found associated with target genes expressing V-ATPase. Specifically, miR7904-5p was down regulated and related with the up-regulation of one V-ATPase. The expression levels of these genes was confirmed by qRT-PCR assays, thus suggesting that a cation transport activity driven by the V-ATPases-dependent proton motive force, might significantly contribute as one mechanism for Cd and Al detoxification by vacuolar compartmentation in these transgenic tobacco plants.

5.
Plant Cell Environ ; 42(8): 2340-2356, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30938457

RESUMO

Hydrogen sulphide (H2 S) is emerging as an important signalling molecule involved in plant resistance to various stresses. However, the underlying mechanism of H2 S in aluminium (Al) resistance and the crosstalk between H2 S and nitric oxide (NO) in Al stress signalling remain elusive. Citrate secretion is a wide-spread strategy for plants against Al toxicity. Here, two citrate transporter genes, GmMATE13 and GmMATE47, were identified and characterized in soybean. Functional analysis in Xenopus oocytes and transgenic Arabidopsis showed that GmMATE13 and GmMATE47 mediated citrate exudation and enhanced Al resistance. Al treatment triggered H2 S generation and citrate exudation in soybean roots. Pretreatment with an H2 S donor significantly elevated Al-induced citrate exudation, reduced Al accumulation in root tips, and alleviated Al-induced inhibition of root elongation, whereas application of an H2 S scavenger elicited the opposite effect. Furthermore, H2 S and NO mediated Al-induced GmMATE expression and plasma membrane (PM) H+ -ATPase activity and expression. Further investigation showed that NO induced H2 S production by regulating the key enzymes involved in biosynthesis and degradation of H2 S. These findings indicate that H2 S acts downstream of NO in mediating Al-induced citrate secretion through the upregulation of PM H+ -ATPase-coupled citrate transporter cotransport systems, thereby conferring plant resistance to Al toxicity.


Assuntos
Alumínio/metabolismo , Proteínas de Transporte/metabolismo , Glycine max/metabolismo , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo , Poluentes do Solo/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Glycine max/crescimento & desenvolvimento , Estresse Fisiológico
6.
Mol Biol Rep ; 45(6): 2103-2113, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30218353

RESUMO

Development of aluminium (Al) resistant genotypes through molecular breeding is a major approach for increasing seed yield under acidic conditions. There are no available reports on mapping of Al resistance loci and molecular breeding for Al resistant varieties in lentil. The present study reports a major quantitative trait loci (QTL) for Al resistance using simple sequence repeat (SSR) markers in F2 and F3 mapping populations derived from contrasting parents. Phenotypic response to Al was measured on the bases of root re-growth (RRG), fluorescent signals (callose accumulation) and Al contents in hydroponic assay. After screening 495 SSR markers to search polymorphism between two contrasting parents, 73 polymorphic markers were used for bulk segregation analysis. Two major QTLs were identified using seven trait linked markers, one each for fluorescent signals and RRG mapped on linkage group (LG) 1 under Al stress conditions in F2 mapping population of cross BM-4 × L-4602. One major QTL (qAlt_fs) was localised between PLC_88 and PBA_LC_373, covering 25.9 cM with adjacent marker PLC_88 at a distance of 0.4 cM. Another major QTL (qAlt_rrg) for RRG was in the marker interval of PBA_LC_1247 and PLC_51, covering a distance of 45.7 cM with nearest marker PBA_LC_1247 at a distance of 21.2 cM. Similarly, in F3 families of BM-4 × L-4602 and BM-4 × L-7903, LG-1 was extended to 285.9 and 216.4 cM respectively, having four newly developed genic-SSR markers. These QTLs had a logarithm of odd (LOD) value of 140.5 and 28.8 along with phenotypic variation of 52% and 11% for fluorescent signals and RRG respectively, whereas, qAlt_rrg had LOD of 36 and phenotypic variance of 25% in F3 population of BM-4 × L-4602. Two major QTLs identified in the present study can be further dissected for candidate gene discovery and development of molecular markers for breeding improved varieties with high Al resistance.


Assuntos
Alumínio/metabolismo , Ligação Genética/genética , Lens (Planta)/genética , Agricultura/métodos , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , DNA de Plantas/genética , Genes de Plantas/genética , Marcadores Genéticos/genética , Genótipo , Glucanos/análise , Lens (Planta)/crescimento & desenvolvimento , Repetições de Microssatélites/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Polimorfismo Genético/genética , Locos de Características Quantitativas/genética , Sementes/genética
7.
J Inorg Biochem ; 181: 145-151, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28923414

RESUMO

The mechanisms of extreme Al-resistance in Urochloa decumbens are not established. Full resistance expression requires a lag time of 72-96h and is preceded by a sensitive phase (24-48h) with Al-induced root growth inhibition. The aim here was to identify key processes of the activation phase of Al-resistance analysing both root exudates and comparative root proteome. Samples were taken after 0, 24 and 96h exposure to 0 or 200µM Al. Al-induced stimulation of citrate and oxalate efflux was limited to the sensitive phase. Only 11 proteins revealed Al-induced abundance differences; six were identified. After 24h, phenylalanine ammonium lyase (PAL), methionine synthase (MS), and deoxymugineic acid synthase (DMAS) decreased, while acid phosphatase (APase) abundance increased. Coincident with growth recovering, PAL and MS, but not DMAS, returned to initial levels. After 96h, γ­carbonic anhydrase (γ­CA) and adenylate kinase (AK) along with two unidentified proteins were more abundant. In conclusion, few protein changes characterize the initial response to Al in signalgrass. During the alarm phase, changes are related to P-mobilization, downregulation of Fe-acquisition, reduction of phenolic biosynthesis, and small stimulation of organic acid exudation. After recovering (resistant phase), biosynthesis of phenolics and methionine, but not Fe-mobilization are re-established. Full expression of Al-resistance is characterized by enhanced γ­CA mediating mitochondrial complex I assembly and increased AK abundance indicating higher root respiration and better provision of ADP and Mg2+ to ATP synthase, respectively. The unidentified proteins and the specific role of γ­CA in Al resistance of U. decumbens will centre future research.


Assuntos
Alumínio/toxicidade , Resistência a Medicamentos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Poaceae/efeitos dos fármacos , Poluentes do Solo/toxicidade , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/antagonistas & inibidores , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/química , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Bases de Dados de Proteínas , Perfilação da Expressão Gênica , Mapeamento de Peptídeos , Fenilalanina Amônia-Liase/antagonistas & inibidores , Fenilalanina Amônia-Liase/química , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Proteômica/métodos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
8.
Biochem Soc Trans ; 44(3): 856-62, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27284052

RESUMO

The ALMT (aluminium-activated malate transporter) family comprises a functionally diverse but structurally similar group of ion channels. They are found ubiquitously in plant species, expressed throughout different tissues, and located in either the plasma membrane or tonoplast. The first family member identified was TaALMT1, discovered in wheat root tips, which was found to be involved in aluminium resistance by means of malate exudation into the soil. However, since this discovery other family members have been shown to have many other functions such as roles in stomatal opening, general anionic homoeostasis, and in economically valuable traits such as fruit flavour. Recent evidence has also shown that ALMT proteins can act as key molecular actors in GABA (γ-aminobutyric acid) signalling, the first evidence that GABA can act as a signal transducer in plants.


Assuntos
Adaptação Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transdução de Sinais , Alumínio , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Malatos , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/fisiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA