Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bull Entomol Res ; : 1-11, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716670

RESUMO

Euwallacea interjectus, a recently discovered pest in poplar plantations, poses a significant economic threat due to its role in causing widespread tree mortality. This pest's cryptic behaviour has hindered research and control efforts, making laboratory rearing a valuable tool for studying its development and biology. We investigated the development period and biological characteristics of E. interjectus using artificial diets and fungal medium. Our findings revealed that the development time for eggs, larvae, and pupae averages approximately 6, 18, and 6 days, respectively. Notably, first and second instar larvae displayed peak moulting periods at 3.45 ± 0.64 SD and 7.92 ± 1.77 SD days, respectively. Furthermore, we measured head capsule widths of postmolt larvae, yielding values of 318.02 ± 7.38 SD µm for first-instar larvae, 403.01 ± 11.08 SD µm for second-instar larvae, and 549.54 ± 20.74 SD µm for third-instar larvae. Our research also uncovered a positive correlation between the number of progeny (eggs, larvae, pupae, and adults) and the mean length of the gallery system. Interestingly, the haplodiploid reproductive strategy did not significantly affect the number of offspring produced by the foundress. Additionally, we observed that foundresses displayed higher fecundity when subjected to nutrient-rich diets as compared to nutrient-poor diets. Our results will deepen our understanding of the biology of E. interjectus and provide criteria for larval instar classification. Additionally, managing nutrient availability within the colony could be considered a viable approach to regulating population size.

2.
J Econ Entomol ; 117(3): 1192-1197, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38641562

RESUMO

Euwallacea fornicatus is an invasive tree pest able to infest healthy plants and cause damage to many host plants. This beetle has become established in several countries where it was introduced. It has now become established in Brazil, and while the original introduction site remains uncertain, there is a possibility of multiple introductions. We report the first evidence for the establishment of E. fornicatus with molecular confirmation, as well as its distribution, and host plants in Brazil. Euwallacea fornicatus has spread to main commercial avocado groves, other monocultures, and native vegetation in the country, and its pest status puts it as a threat, mainly to Brazilian avocado producers.


Assuntos
Distribuição Animal , Espécies Introduzidas , Persea , Gorgulhos , Animais , Gorgulhos/fisiologia , Brasil
3.
Environ Entomol ; 53(1): 108-115, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38198762

RESUMO

Anisandrus maiche Stark (Coleoptera: Curculionidae: Scolytinae) is a non-native ambrosia beetle from central Asia that has been spreading throughout the eastern United States since 2005. Preferred hosts of A. maiche are not well characterized within its currently invaded range, but it is established in managed and natural forests throughout Indiana. Current monitoring and detection efforts for this beetle rely on ethanol-baited traps, but fungal volatiles may alter the attraction of A. maiche to ethanol. In this study, we conducted trapping experiments in Indiana to determine the extent to which a suite of common fungal alcohols influences the response of A. maiche to ethanol-baited traps. We then evaluated isoamyl and isobutyl alcohol as potential attractants for A. maiche and their ability to enhance attraction to ethanol. Lastly, we used SPME-GC-MS to identify volatiles from Ambrosiella cleistominuta (Mayers & Harr.), the fungal symbiont of A. maiche, grown for 7 and 14 days on malt extract agar. Benzyl alcohol, isobutyl alcohol, hexanol, methyl phenylacetate, phenethyl alcohol, and piperitone reduced the attraction of A. maiche to ethanol-baited traps in the field. Moreover, adding methyl benzoate and isoamyl alcohol individually to ethanol-baited traps did not further increase A. maiche capture. When paired with ethanol, isoamyl alcohol repelled beetles in the early flight period but did not significantly increase trap capture during the fall flight. These results represent a first step in understanding the role of fungal volatiles in the colonization behavior of A. maiche and may ultimately inform management strategies for this species.


Assuntos
Butanóis , Besouros , Pentanóis , Gorgulhos , Animais , Besouros/fisiologia , Etanol/farmacologia , Controle de Insetos , Feromônios
4.
J Econ Entomol ; 117(1): 366-372, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38011810

RESUMO

Xylosandrus germanus (Blandford) is an invasive species of ambrosia beetle known to attack apple trees in North America. Xylosandrus germanus are attracted to ethanol produced by stressed and injured trees and can be a serious problem when grafting a new cultivar onto established fruit trees (topworking). The objective of this study was to evaluate the efficacy of 2 insecticides (emamectin benzoate and azadirachtin) and injection timing (fall and spring) on their ability to control X. germanus colonization in apple trees with simulated topworking. Our study shows evidence that both emamectin benzoate and azadirachtin injections can reduce X. germanus infestations; however, our results were inconsistent. The timing of injections influenced X. germanus, with spring injected azadirachtin being more effective than fall injections. Residue analyses of emamectin benzoate and azadirachtin showed the presence of residues in woody tissue comparable to those found in leaves.


Assuntos
Besouros , Ivermectina/análogos & derivados , Limoninas , Malus , Gorgulhos , Animais , Controle de Insetos/métodos , Árvores
5.
Environ Entomol ; 52(6): 1042-1047, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37738471

RESUMO

Laurel wilt disease (LWD) is a lethal vascular wilt caused by an exotic ambrosia beetle-fungal complex, the redbay ambrosia beetle, Xyleborus glabratus Eichhoff, and its nutritional symbiont, Harringtonia lauricola (Harr., Fraedrich & Aghayeva) de Beer & Procter. LWD is responsible for the widespread mortality of redbay, Persea borbonia (L.) Spreng., devastating coastal forests in the southeast United States. More recently, LWD is causing mortality of understory sassafras, Sassafras albidum (Nutt.) Nees, in deciduous forests in Kentucky, USA; the biology, epidemiology, and long-term impacts of LWD in deciduous forests are unclear. All North American lauraceous species evaluated have shown susceptibility, and numerous additional ambrosia beetles have demonstrated vector potential, but no studies to date have assessed the presence of H. lauricola in other insects associated with LWD-infected sassafras. We sampled infected sassafras from the leading edge of the LWD range and collected insect associates to evaluate phoretic and internal presence of H. lauricola. We recorded 118 individuals of 38 morphospecies emerging; most were Coleoptera. Of the 48 specimens evaluated for H. lauricola, none tested positive for phoretic presence, but internal presence was evident in the granulate ambrosia beetle, Xylosandrus crassiusculus Motschulsky, and in a hidden snout weevil, Apteromechus ferratus Say. This is the first report of H. lauricola associated with a non-ambrosia beetle and expands our understanding of the vector potential of additional insect species while confirming the role of the granulate ambrosia beetle. These findings contribute to our understanding of LWD epidemiology in sassafras hosts from more northerly latitudes.


Assuntos
Besouros , Persea , Sassafras , Gorgulhos , Animais , Besouros/microbiologia , Gorgulhos/microbiologia
6.
Plants (Basel) ; 12(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687292

RESUMO

Durian (Durio zibethinus L.) is an economically important crop in the southern and eastern parts of Thailand. The occurrence of die-back disease caused by plant pathogenic fungi poses a serious threat to the quality and quantity of durian products. However, the identification of causal agents has been a subject of mixed information and uncertainty. In this research, we conducted a comprehensive investigation of die-back disease in nine durian plantations located in Thailand. By analyzing a total of 86 Fusarium isolates obtained from infected tissues, we aimed to provide clarity and a better understanding of the fungal pathogens responsible for this economically significant disease. Through a combination of colony characteristics, microscopic morphology, and a multilocus sequence analysis (MLSA) of the internal transcribed spacer (ITS) region, translation elongation factor 1-α (TEF1-α) gene, and RNA polymerase II gene (RPB2) sequences, we were able to identify and categorize the isolates into three distinct groups, namely, Fusarium incarnatum, F. solani, and F. mangiferae. Koch's postulates demonstrated that only F. incarnatum and F. solani were capable of causing die-back symptoms. This research represents the first report of F. incarnatum as a causal agent of die-back disease in durian in Thailand. Additionally, this study uncovers the association of ambrosia beetles and F. solani, highlighting the potential involvement of E. similia in facilitating the spread of die-back disease caused by Fusarium in durian.

7.
Insects ; 14(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37754694

RESUMO

Euwallacea perbrevis, the tea shot-hole borer (TSHB), is an invasive ambrosia beetle that vectors several fungal pathogens that cause Fusarium branch dieback in avocado trees in southern Florida. This study assessed the potential of four commercial products containing the entomopathogenic fungus Beauveria bassiana (Bb) for managing adult TSHB beetles. Formulated products containing Bb strains to which adult beetles were exposed were BioCeres WP, BotaniGard WP, BotaniGard ES, and Velifer ES. Controls consisted of water only and BotaniGard ES and Velifer ES supernatant with spores removed. Acquisition of spores by adult beetles dipped in product suspensions with 2.5 ± 0.1 × 106 spores/mL was assessed. Survival time of beetles after residual exposure to the Bb-based products in an in vivo avocado bark plug bioassay was determined. Production of Bb spores on beetles after being dipped in product suspensions and placed in a moistened bark-plug assay with water only was assessed. Significantly more spores were acquired by beetles exposed to Velifer ES and BotaniGard ES than beetles exposed to the other fungal products. Beetles exposed to Velifer ES and BotaniGard ES died faster (6-8 days) compared to beetles dipped in the other fungal products (10-11 days) and controls (12 days). Percentage of mycosis was highest with beetles exposed to Velifer ES (63%). Spore production on cadavers of beetles dipped in Velifer ES (20 ± 6.4 × 105 spores/cadaver) was the highest among all treatments, whereas it was the lowest on cadavers of beetles dipped in BotaniGard ES (1 ± 0.2 × 105 spores/cadaver). All Bb-based products, especially Velifer ES, demonstrated potential to manage TSHB populations under laboratory conditions. These Bb-based fungal products should be tested under field conditions to confirm these laboratory results.

8.
Ecol Evol ; 13(7): e10345, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37492462

RESUMO

By-product mutualisms are ubiquitous yet seldom considered in models of mutualism. Most models represent conditional mutualisms that shift between mutualism and antagonism in response to shifts in costs and benefits resulting from changes in environmental quality. However, in by-product mutualisms, benefits arise as a part of normal life processes that may be costly to produce but incur little-to-no additional costs in response to the interaction. Without costs associated with the interaction, they do not have antagonistic alternate states. Here, we present a conceptual model that differs from traditional conditional models in three ways: (1) partners exchange by-product benefits, (2) interactions do not have alternate antagonistic states, and (3) tradeoffs are allowed among factors that influence environmental quality (rather than all factors that contribute to environmental quality being combined into a single gradient ranging from high to low). We applied this model to bark and ambrosia beetles (Curculionidae: Scolytinae), a diverse group that associates with fungi and that has repeatedly developed two distinct pathways to by-product mutualism. We used independent axes for each major factor influencing environmental quality in these systems, including those that exhibit tradeoffs (tree defense and nutritional quality). For these symbioses, tradeoffs in these two factors are key to which mutualism pathway is taken.

9.
J Econ Entomol ; 116(4): 1372-1378, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37366322

RESUMO

Xylosandrus compactus (Eichhoff) (Coleoptera: Curculionidae, Scolytinae) is a worldwide invasive species that causes huge economic loss and environmental damage in many countries. Traditional morphological characteristics make it hard to identify scolytines due to their tiny size. Besides, the intercepted insect samples are incomplete, and the limitation of insect (larvae and pupae) morphology makes morphological identification more difficult. The majority of the damage is caused by adults and fungi that serve as nutrition for their larvae. They destroy plant trunks, branches, and twigs, affecting plant transport tissues in both weak and healthy plants. An accurate, efficient, and economical molecular identification technique for X. compactus not restricted by professional taxonomic knowledge is necessary. In the present study, a molecular identification tool based on the mitochondrial DNA gene, cytochrome C oxidase subunit I (COI) was developed. A species-specific COI (SS-COI) PCR assay was designed to identify X. compactus regardless of the developmental stage. Twelve scolytines commonly found in eastern China, namely Xylosandrus compactus, X. crassiusculus, X. discolor, X. germanus, X. borealis, X. amputates, X. eupatorii, X. mancus, Xyleborinus saxesenii, Euwallacea interjectus, E. fornicatus, and Acanthotomicus suncei, were included in the study. Additionally, specimens of X. compactus from 17 different areas in China, as well as a specimen collected from the United Stated, were also analyzed. Results demonstrated the accuracy and high efficiency of the assay, regardless of the developmental stage or the type of specimen. These features provide a good application prospect for fundamental departments and can be used to prevent the harmful consequences of the spread of X. compactus.


Assuntos
Besouros , Gorgulhos , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Besouros/genética , Gorgulhos/genética , Gorgulhos/microbiologia , Reação em Cadeia da Polimerase , Larva/genética
10.
Biomolecules ; 13(4)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37189403

RESUMO

The tea shot hole borer, Euwallacea perbrevis, has been recently established in Florida, USA, where it vectors fungal pathogens that cause Fusarium dieback in avocado. Pest monitoring uses a two-component lure containing quercivorol and α-copaene. Incorporation of a repellent into IPM programs may reduce the incidence of dieback in avocado groves, particularly if combined with lures in a push-pull system. This study evaluated piperitone and α-farnesene as potential repellents for E. perbrevis, comparing their efficacy to that of verbenone. Replicate 12-week field tests were conducted in commercial avocado groves. Each test compared beetle captures in traps baited with two-component lures versus captures in traps containing lures plus repellent. To complement field trials, Super-Q collections followed by GC analyses were performed to quantify emissions from repellent dispensers field-aged for 12 weeks. Electroantennography (EAG) was also used to measure beetle olfactory response to each repellent. Results indicated that α-farnesene was ineffective; however, piperitone and verbenone were comparable in repellency, achieving 50-70% reduction in captures, with longevity of 10-12 weeks. EAG responses to piperitone and verbenone were equivalent, and significantly greater than response to α-farnesene. Since piperitone is less expensive than verbenone, this study identifies a potential new E. perbrevis repellent.


Assuntos
Besouros , Repelentes de Insetos , Persea , Gorgulhos , Animais , Gorgulhos/fisiologia , Besouros/microbiologia , Besouros/fisiologia , Florida , Repelentes de Insetos/farmacologia , Chá
11.
Bio Protoc ; 13(1): e4584, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36789083

RESUMO

Advances in imaging technology offer new opportunities in developmental biology. To observe the development of internal structures, microtome cross-sectioning followed by H&E staining on glass slides is a common procedure; however, this technique can be destructive, and artifacts can be introduced during the process. In this protocol, we describe a less invasive procedure with which we can stain insect samples and obtain reconstructed three-dimensional images using micro-computed tomography, or micro-CT (µCT). Specifically, we utilize the fungus-farming ambrosia beetle species Euwallacea validus to observe the morphology of mycangia, a critical internal organ with which beetles transport fungal symbionts. Not only this protocol is ideal to observe mycangia, our staining/scanning procedure can also be applied to observe other delicate tissues and small organs in arthropods. Graphical abstract.

12.
Front Insect Sci ; 3: 1198355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38469540

RESUMO

Non-native pests and diseases pose a risk of economic and environmental damage to managed and natural U.S. forests and agriculture. The U.S. Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) Plant Protection and Quarantine (PPQ) protects the health of U.S. agriculture and natural resources against invasive pests and diseases through efforts to prevent the entry, establishment, and spread of non-native pests and diseases. Because each pest or disease has its own idiosyncratic characteristics, analyzing risk is highly complex. To help PPQ better respond to pest and disease threats, we developed the Spatial Analytic Framework for Advanced Risk Information Systems (SAFARIS), an integrated system designed to provide a seamless environment for producing predictive models. SAFARIS integrates pest biology information, climate and non-climate data drivers, and predictive models to provide users with readily accessible and easily customizable tools to analyze pest and disease risks. The phenology prediction models, spread forecasting models, and other climate-based analytical tools in SAFARIS help users understand which areas are suitable for establishment, when surveys would be most fruitful, and aid in other analyses that inform decision-making, operational efforts, and rapid response. Here we introduce the components of SAFARIS and provide two use cases demonstrating how pest-specific models developed with SAFARIS tools support PPQ in its mission. Although SAFARIS is designed to address the needs of PPQ, the flexible, web-based framework is publicly available, allowing any user to leverage the available data and tools to model pest and disease risks.

13.
J Econ Entomol ; 115(6): 1901-1910, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36181761

RESUMO

The Euwallacea fornicatus species complex (Coleoptera: Curculionidae: Scolytinae: Xyleborini) is a group of four cryptic ambrosia beetle species. Native to Asia, several members of the complex have invaded other continents, where they cause significant economic losses to agricultural crops (e.g., avocado) and natural ecosystems. We were primarily interested in developing management strategies by focusing on the flight behavior of the beetles. Thus, seasonal differences in flight activity were assessed using panel traps baited with a commercial quercivorol lure, placed in infested avocado orchards in Danei, Tainan, Taiwan. Same traps were used to investigate the flight activity of a natural enemy, an undescribed species of the Braconid genus Eucosmophorus sp. Shothole borer species were identified using a DNA-based, high resolution melting assay. Trap data were compared to the predictions of a simple degree-day model, incorporating developmental data and several environmental parameters known to influence flight. Such as the time period representing most of flight activity in a day and temperature-dependent flight propensity. In stark contrast to the degree-day model which predicted the highest emergence, and by extension flight, of shothole borers during spring and summer (May to November), flight activity was actually lowest during these months, and instead, peaked during the winter (October to March). Abundance of the parasitoid wasp closely mirrored flight activity of the shothole borers. The mismatch of trapping and modeling data can have many causes, heavy precipitation and possibly cooperative brood care may suppress the dispersal behavior of the shothole borers during the summer.


Assuntos
Ecossistema , Voo Animal , Vespas , Gorgulhos , Animais , Persea/parasitologia , Estações do Ano , Taiwan , Vespas/fisiologia , Gorgulhos/parasitologia , Voo Animal/fisiologia
14.
Insects ; 13(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36135469

RESUMO

The fossils once assigned to Raractocetus Kurosawa from the Mesozoic and Cenozoic amber deposits differ from extant Raractocetus in the longer elytra, the more strongly projecting metacoxae, and the hind wing with vein 2A forked. Thus, these fossils should be removed from Raractocetus. Cretoquadratus engeli Chen from Kachin amber appears to be conspecific with R. fossilis Yamamoto. As a result, R. fossilis and R. extinctus Yamamoto from Kachin amber, R. balticus Yamamoto from Baltic amber, and R. sverlilo Nazarenko, Perkovsky & Yamamoto from Rovno amber are transferred to Cretoquadratus Chen, as C. fossilis (Yamamoto) comb. nov., C. extinctus (Yamamoto) comb. nov., C. balticus (Yamamoto) comb. nov., and C. sverlilo (Nazarenko, Perkovsky & Yamamoto) comb. nov., and C. engeli syn. nov. is suggested to be a junior synonym of C. fossilis.

15.
Insects ; 13(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36135510

RESUMO

Exudation of mucilage from pinhead-sized boreholes in cocoa pods was recorded in Karnataka, India, during 2021. Further investigations showed the association of scolytine beetles with infested pods. The identity of the pest, Xylosandrus crassiusculus, was confirmed through morphological characterization and sequencing of the mitochondrial COI gene. We studied the predisposing factors for its infestation, visible and concealed damaging symptoms, and fungal symbionts. In addition to its well-known symbiotic fungus, Ambrosiella roeperi, a new association of yeast, Ambrosiozyma monospora, was discovered. We also traced the possible role of the mirid bug, Helopeltis theivora, in host selection by X. crassiusculus. Overall results indicated that a 'mirid bug-ambrosia beetle-pathogen complex' is responsible for the severe damage to cocoa pods in South India.

16.
EFSA J ; 20(6): e07398, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35765383

RESUMO

The EFSA Panel on Plant Health performed a pest categorisation of Platypus apicalis (Coleoptera: Curculionidae: Platypodinae), an ambrosia beetle, also known as a pinhole borer, for the EU territory. P. apicalis is a polyphagous pest native to New Zealand. The majority of its life cycle is spent inside tree wood, but it does not directly feed on plant tissue, instead larvae and adults feed on a symbiotic fungus (Sporothrix nothofagi which is pathogenic to Nothofagus spp.) vectored by adults and introduced when they bore tunnels into the host. P. apicalis feeds within a wide range of live, often stressed trees, in dead or dying hardwood and softwood trees, and fallen or felled trees. Successful reproduction can occur inside a number of living tree species including Castanea sativa, Pinus spp. and Ulmus spp. P. apicalis is not known to have established outside of New Zealand although findings have been reported in Australia. Whilst there are no records of interceptions of this species in the EU, platypodines are intercepted with solid wood packing material (SWPM) and Platypus species, but not P. apicalis, have been intercepted with wooden logs in Japan. Host plants for planting also provide a potential pathway. Hosts are grown widely across the EU in areas with climates comparable to those in New Zealand where the pest occurs suggesting that conditions in the EU are suitable for its establishment. If introduced into the EU, adults could disperse naturally by flight, perhaps tens or hundreds of metres. The movement of infested wood and host plants for planting within the EU could facilitate spread. Economic impacts in forestry and timber industries would result from the galleries created by P. apicalis and from wood staining caused by the symbiotic fungus. Phytosanitary measures are available to inhibit the entry of P. apicalis. P. apicalis satisfies the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.

17.
J Econ Entomol ; 115(4): 1076-1086, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35604375

RESUMO

Studies addressing the economic impacts of invasive alien species are biased towards ex-post assessments of the costs and benefits of control options, but ex-ante assessments are also required to deal with potentially damaging invaders. The polyphagous shot hole borer Euwallacea fornicatus (Coleoptera: Curculionidae) is a recent and potentially damaging introduction to South Africa. We assessed the potential impact of this beetle by working across economic and biological disciplines and developing a simulation model that included dynamic mutualistic relations between the beetle and its symbiotic fungus. We modeled the potential growth in beetle populations and their effect on the net present cost of damage to natural forests, urban trees, commercial forestry, and the avocado industry over 10 yr. We modeled high, baseline, and low scenarios using discount rates of 8, 6, and 4%, and a plausible range of costs and mortality rates. Models predicted steady growth in the beetle and fungus populations, leading to average declines in tree populations of between 3.5 and 15.5% over 10 yr. The predicted net present cost was 18.45 billion international dollars (Int. $), or about 0.66% of the country's GDP for our baseline scenario ($2.7 billion to $164 billion for low and high scenarios). Most of the costs are for the removal of urban trees that die as a result of the beetle and its fungal symbiont, as has been found in other regions. We conclude that an ex-ante economic assessment system dynamics model can be useful for informing national strategies on invasive alien species management.


Assuntos
Besouros , Gorgulhos , Animais , Besouros/microbiologia , Agricultura Florestal , Espécies Introduzidas , África do Sul , Árvores
18.
Insects ; 13(1)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35055909

RESUMO

Xylosandrus crassiusculus (Coleoptera: Curculionidae: Scolytinae) is reported causing damage to areca palm plantations (Areca catechu L.-Arecaceae) in Karnataka (India). In particular, X. crassiusculus has been observed attacking and successfully reproducing on areca nuts; besides the new host plant record, the data provided here represent the first documented case of spermatophagy for this xyleborine beetle. All infestation symptoms of this polyphagous pest were documented and illustrated. The identity of the scolytid, besides morphologically, was confirmed by its DNA barcoding. Eggs, larvae and pupae were found within the galleries of infested kernels. All galleries of the infested kernels were characterized by the presence of whitish to greyish fungal growth. The fungus was identified as Ambrosiella roeperi, a known symbiont of Xylosandrus crassiusculus. Incidence of this symbiotic insect-fungus complex in the economic part of arecanut, i.e., the kernel, is of serious concern. In a climate change scenario, this beetle with fungal symbionts may pose a serious threat to arecanut production in India and elsewhere.

19.
J Econ Entomol ; 115(1): 116-123, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34875691

RESUMO

Species belonging to the Euwallacea fornicatus Eichhoff (Coleoptera: Scolytinae) species complex have invaded the continental U.S. since at least 2003. Three species of this complex are known to have established, two in California (E. fornicatus; and Euwallacea kuroshio), and a third in Florida (Euwallacea perbrevis). Their native ranges are spread across southern and southeast Asia. In Taiwan, all three species occur in sympatry. They attack healthy trees of widely varied species and cause severe damage and death to the trees. The attractant quercivorol is commonly used to promote their detection by passive trapping. Recent studies in Florida have shown that trapping of E. perbrevis can be further improved by adding a synergist, α-copaene, alongside the quercivorol lure. Thus, we were interested in testing the effectiveness of α-copaene for trapping the other invasive members of the complex in California and in an area of Taiwan where all three species co-occur. We found that α-copaene marginally enhanced the trapping of E. perbrevis in Taiwan, but had no effect on the trapping of E. fornicatus or E. kuroshio in either California or Taiwan. We conclude that any enhancing effect of α-copaene is specific to E. perbrevis. This highlights the economic importance of accurate species identification in developing and implementing an efficient, and yet cost-effective, monitoring program for the management of E. fornicatus and E. kuroshio in California and elsewhere.


Assuntos
Besouros , Sesquiterpenos , Gorgulhos , Animais , Taiwan
20.
J Econ Entomol ; 114(5): 2162-2171, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34378779

RESUMO

The ambrosia beetle Xylosandrus germanus (Blandford) is an invasive pest that has caused tree decline and death in numerous NY dwarf apple orchards during the past ten years, despite efforts to control them using trunk sprays of chlorpyrifos or pyrethroids, either alone or combined with the repellent verbenone. From 2017 to 2019, we tested trunk applications of different repellents and plant defense compounds for protection against X. germanus in potted apple trees adjacent to infested orchards. Treatments included topical formulations of verbenone and methyl salicylate (MeSa), alone and in combination, at different rates and timings. Additional treatments evaluated included the systemic acquired resistance activators acibenzolar-S-methyl, Reynoutria sachalinensis extract, and salicylic acid. The combination verbenone+MeSa treatments had the lowest incidences of attack sites and galleries containing adults or brood, although results varied among years. In a separate trial, we found no significant difference in numbers of adults caught in ethanol-baited traps placed 5-20 m from an apple bolt treated with the verbenone+MeSa repellent, suggesting that the repellent's effect did not extend to those distances from the treated target. Cross-sectional discs of trunk tissue sampled in August were analyzed for levels of phytohormones. Quantities of ergosterol, abscissic acid, salicylic acid, jasmonic acid, methyl salicylate, methyl jasmonate, trans-cinnamic acid, and indole-3-cinnamic acid did not significantly vary across treatments; however, trees with greater beetle damage contained higher levels of jasmonic and salicylic acid, which are key molecules in plant defense pathways.


Assuntos
Besouros , Malus , Gorgulhos , Animais , Estudos Transversais , Controle de Insetos , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA