Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Biochem Biophys Res Commun ; 735: 150670, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39276520

RESUMO

Lipid droplets (LD) are storage sites for neutral lipids that can be used as a source of energy during nutrient starvation, but also function as hubs for fatty acid (FA) trafficking between organelles. In the yeast Saccharomyces cerevisiae, the absence of LD causes a severe disorganization of the endomembrane network during starvation. Here we show that cells devoid of LD respond to amino acid (AA) starvation by activating the serine/threonine phosphatase calcineurin and the nuclear translocation of its target protein Crz1. This activation was inhibited by treatments that restore a normal endomembrane organization, i.e. inhibition of FA synthesis with cerulenin or deletion of the inhibitory transcription factor Opi1. Activation of calcineurin increased the lifespan of LD-deficient cells during AA starvation. Indeed, deletion of its regulatory or catalytic subunits accelerated cell death. Surprisingly, calcineurin activation appeared to be calcium-independent. An increase in intracellular calcium was observed in LD-deficient cells during AA starvation, but its inhibition by genetic deletion of MID1 or YVC1 did not affect calcineurin activity. In contrast, calcineurin activation required the direct regulator of calcineurin Rcn1 and its activating (GSK-3)-related protein kinase Mck1.

2.
Biochem Biophys Res Commun ; 708: 149802, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38520913

RESUMO

METTL16 is a well-characterized m6A methyltransferase that has been reported to contribute to tumorigenesis in various types of cancer. However, the effect of METTL16 on tumor progression under restricted nutrient conditions, which commonly occur in tumor microenvironment, has yet to be elucidated. Herein, our study initially reported the inhibitory effect of METTL16 depletion on apoptosis under amino acid starvation conditions. Mechanistically, we determined that the METTL16 knockdown represses the expression of extrinsic death receptors at both transcription and translation levels. Depletion of METTL16 prevented protein synthesis of GCN2, resulting in diminished ATF4 expression in a GCN2-eIF2α-dependent manner. Reduction of ATF4 further declined the expression of apoptotic receptor protein DR5. Meanwhile, METTL16 deficiency directly hampered protein synthesis of FADD and DR5, thereby impairing apoptosis and promoting cancer cell survival. Taken together, our study provides novel evidence for the involvement of METTL16 in regulating cancer progression, suggesting that METTL16 as a potential therapeutic target for cancer treatment.


Assuntos
Aminoácidos , Neoplasias , Humanos , Aminoácidos/metabolismo , Apoptose/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Neoplasias/genética , Nutrientes , Receptores de Morte Celular , Microambiente Tumoral
3.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474243

RESUMO

GCN1 is recognized as a factor that is essential for the activation of GCN2, which is a sensor of amino acid starvation. This function is evolutionarily conserved from yeast to higher eukaryotes. However, recent studies have revealed non-canonical functions of GCN1 that are independent of GCN2, such as its participation in cell proliferation, apoptosis, and the immune response, beyond the borders of species. Although it is known that GCN1 and GCN2 interact with ribosomes to accomplish amino acid starvation sensing, recent studies have reported that GCN1 binds to disomes (i.e., ribosomes that collide each other), thereby regulating both the co-translational quality control and stress response. We propose that GCN1 regulates ribosome-mediated signaling by dynamically changing its partners among RWD domain-possessing proteins via unknown mechanisms. We recently demonstrated that GCN1 is essential for cell proliferation and whole-body energy regulation in mice. However, the manner in which ribosome-initiated signaling via GCN1 is related to various physiological functions warrants clarification. GCN1-mediated mechanisms and its interaction with other quality control and stress response signals should be important for proteostasis during aging and neurodegenerative diseases, and may be targeted for drug development.


Assuntos
Proteínas Serina-Treonina Quinases , Animais , Humanos , Camundongos , Aminoácidos/metabolismo , Homeostase , Fatores de Alongamento de Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo
4.
Cancers (Basel) ; 16(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38539506

RESUMO

Cancer cells demand amino acids beyond their usage as "building blocks" for protein synthesis. As a result, targeting amino acid acquisition and utilization has emerged as a pivotal strategy in cancer treatment. In the setting of leukemia therapy, compelling examples of targeting amino acid metabolism exist at both pre-clinical and clinical stages. This review focuses on summarizing novel insights into the metabolism of glutamine, asparagine, arginine, and tryptophan in leukemias, and providing a comprehensive discussion of perturbing their metabolism to improve the therapeutic outcomes. Certain amino acids, such as glutamine, play a vital role in the energy metabolism of cancer cells and the maintenance of redox balance, while others, such as arginine and tryptophan, contribute significantly to the immune microenvironment. Therefore, assessing the efficacy of targeting amino acid metabolism requires comprehensive strategies. Combining traditional chemotherapeutics with novel strategies to perturb amino acid metabolism is another way to improve the outcome in leukemia patients via overcoming chemo-resistance or promoting immunotherapy. In this review, we also discuss several ongoing or complete clinical trials, in which targeting amino acid metabolism is combined with other chemotherapeutics in treating leukemia.

5.
HLA ; 103(1): e15252, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37848366

RESUMO

T cell therapy strategies, from allogeneic stem cell transplantation toward genetically-modified T cells infusion, develop powerful anti-tumor effects but are often accompanied by side effects and their efficacy remains sometimes to be improved. It therefore appears important to provide a flexible and easily reversible gene expression regulation system to control T cells activity. We developed a gene expression regulation technology that exploits the physiological GCN2-ATF4 pathway's ability to induce gene expression in T cells in response to one essential amino acid deficiency. We first demonstrated the functionality of NUTRIREG in human T cells by transient expression of reporter genes. We then validated that NUTRIREG can be used in human T cells to transiently express a therapeutic gene such as IL-10. Overall, our results represent a solid basis for the promising use of NUTRIREG to regulate transgene expression in human T cells in a reversible way, and more generally for numerous preventive or curative therapeutic possibilities in cellular immunotherapy strategies.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante Homólogo , Aminoácidos , Alelos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Linfócitos T , Transgenes
6.
Adv Sci (Weinh) ; 11(1): e2304791, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983609

RESUMO

To grow in nutrient-deprived tumor microenvironment, cancer cells often internalize and degrade extracellular proteins to refuel intracellular amino acids. However, the nutrient acquisition routes reported by previous studies are mainly restricted in autophagy-lysosomal pathway. It remains largely unknown if other protein degradation systems also contribute to the utilization of extracellular nutrients. Herein, it is demonstrated that under amino acid starvation, extracellular protein internalization through macropinocytosis and protein degradation through ubiquitin-proteasome system are activated as a nutrient supply route, sensitizing cancer cells to proteasome inhibition. By inhibiting both macropinocytosis and ubiquitin-proteasome system, an innovative approach to intensify amino acid starvation for cancer therapy is presented. To maximize therapeutic efficacy and minimize systemic side effects, a pH-responsive polymersome nanocarrier is developed to deliver therapeutic agents specifically to tumor tissues. This nanoparticle system provides an approach to exacerbate amino acid starvation for cancer therapy, which represents a promising strategy for cancer treatment.


Assuntos
Neoplasias , Complexo de Endopeptidases do Proteassoma , Humanos , Ubiquitina/metabolismo , Aminoácidos , Nutrientes , Microambiente Tumoral
7.
bioRxiv ; 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38077042

RESUMO

Autophagy is a highly conserved, intracellular recycling process by which cytoplasmic contents are degraded in the lysosome. This process occurs at a low level constitutively; however, it is induced robustly in response to stressors, in particular, starvation of critical nutrients such as amino acids and glucose. That said, the relative contribution of these inputs is ambiguous and many starvation medias are poorly defined or devoid of multiple nutrients. Here, we sought to generate a quantitative catalog of autophagy across multiple stages and in single, living cells under normal growth conditions as well as in media starved specifically of amino acids or glucose. We found that autophagy is induced by starvation of amino acids, but not glucose, in U2OS cells, and that MTORC1-mediated ULK1 regulation and autophagy are tightly linked to amino acid levels. While autophagy is engaged immediately during amino acid starvation, a heightened response occurs during a period marked by transcriptional upregulation of autophagy genes during sustained starvation. Finally, we demonstrated that cells immediately return to their initial, low-autophagy state when nutrients are restored, highlighting the dynamic relationship between autophagy and environmental conditions. In addition to sharing our findings here, we provide our data as a high-quality resource for others interested in mathematical modeling or otherwise exploring autophagy in individual cells across a population.

8.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686063

RESUMO

Amino acid availability is crucial for cancer cells' survivability. Leukemia and colorectal cancer cells have been shown to resist asparagine depletion by utilizing GSK3-dependent proteasomal degradation, termed the Wnt-dependent stabilization of proteins (Wnt/STOP), to replenish their amino acid pool. The inhibition of GSK3α halts the sourcing of amino acids, which subsequently leads to cancer cell vulnerability toward asparaginase therapy. However, resistance toward GSK3α-mediated protein breakdown can occur, whose underlying mechanism is poorly understood. Here, we set out to define the mechanisms driving dependence toward this degradation machinery upon asparagine starvation in cancer cells. We show the independence of known stress response pathways including the integrated stress response mediated with GCN2. Additionally, we demonstrate the independence of changes in cell cycle progression and expression levels of the asparagine-synthesizing enzyme ASNS. Instead, RNA sequencing revealed that GSK3α inhibition and asparagine starvation leads to the temporally dynamic downregulation of distinct ribosomal proteins, which have been shown to display anti-proliferative functions. Using a CRISPR/Cas9 viability screen, we demonstrate that the downregulation of these specific ribosomal proteins can rescue cell death upon GSK3α inhibition and asparagine starvation. Thus, our findings suggest the vital role of the previously unrecognized regulation of ribosomal proteins in bridging GSK3α activity and tolerance of asparagine starvation.


Assuntos
Quinase 3 da Glicogênio Sintase , Neoplasias , Aminoácidos , Asparagina , Quinase 3 da Glicogênio Sintase/genética , Neoplasias/genética , Proteínas Serina-Treonina Quinases , Proteínas Ribossômicas/genética , Humanos
9.
Elife ; 122023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083494

RESUMO

Circadian clocks are evolved to adapt to the daily environmental changes under different conditions. The ability to maintain circadian clock functions in response to various stresses and perturbations is important for organismal fitness. Here, we show that the nutrient-sensing GCN2 signaling pathway is required for robust circadian clock function under amino acid starvation in Neurospora. The deletion of GCN2 pathway components disrupts rhythmic transcription of clock gene frq by suppressing WC complex binding at the frq promoter due to its reduced histone H3 acetylation levels. Under amino acid starvation, the activation of GCN2 kinase and its downstream transcription factor CPC-1 establish a proper chromatin state at the frq promoter by recruiting the histone acetyltransferase GCN-5. The arrhythmic phenotype of the GCN2 kinase mutants under amino acid starvation can be rescued by inhibiting histone deacetylation. Finally, genome-wide transcriptional analysis indicates that the GCN2 signaling pathway maintains robust rhythmic expression of metabolic genes under amino acid starvation. Together, these results uncover an essential role of the GCN2 signaling pathway in maintaining the robust circadian clock function in response to amino acid starvation, and demonstrate the importance of histone acetylation at the frq locus in rhythmic gene expression.


Assuntos
Relógios Circadianos , Neurospora crassa , Acetilação , Aminoácidos/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Neurospora crassa/genética , Nutrientes , Transdução de Sinais
10.
Proc Natl Acad Sci U S A ; 120(16): e2300521120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37043534

RESUMO

The General Amino Acid Control is a conserved response to amino acid starvation involving activation of protein kinase Gcn2, which phosphorylates eukaryotic initiation factor 2 (eIF2α) with attendant inhibition of global protein synthesis and increased translation of yeast transcriptional activator GCN4. Gcn2 can be activated by either amino acid starvation or conditions that stall elongating ribosomes without reducing aminoacylation of tRNA, but it is unclear whether distinct molecular mechanisms operate in these two circumstances. We identified three regimes that activate Gcn2 in yeast cells by starvation-independent (SI) ribosome-stalling: treatment with tigecycline, eliminating the sole gene encoding tRNAArgUCC, and depletion of translation termination factor eRF1. We further demonstrated requirements for the tRNA- and ribosome-binding domains of Gcn2, the positive effector proteins Gcn1/Gcn20, and the tethering of at least one of two distinct P1/P2 heterodimers to the uL10 subunit of the ribosomal P stalk, for detectable activation by SI-ribosome stalling. Remarkably, no tethered P1/P2 proteins were required for strong Gcn2 activation elicited by starvation for histidine or branched-chain amino acids isoleucine/valine. These results indicate that Gcn2 activation has different requirements for the P stalk depending on how ribosomes are stalled. We propose that accumulation of deacylated tRNAs in amino acid-starved cells can functionally substitute for the P stalk in binding to the histidyl-tRNA synthetase-like domain of Gcn2 for eIF2α kinase activation by ribosomes stalled with A sites devoid of the eEF1A∙GTP∙aminoacyl-tRNA ternary complex.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ribossomos/metabolismo , eIF-2 Quinase/metabolismo , Fatores de Transcrição/metabolismo , Aminoácidos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Transporte/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fosforilação
11.
Bioact Mater ; 24: 26-36, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36582345

RESUMO

Ultrasound (US)-activated sonodynamic therapy (SDT) stands for a distinct antitumor modality because of its attractive characteristics including intriguing noninvasiveness, desirable safety, and high tissue penetration depth, which, unfortunately, suffers from compromised therapeutic efficacy due to cancer cell-inherent adaptive mechanisms, such as glutathione (GSH) neutralization response to reactive oxygen species (ROS), and glutamine addictive properties of tumors. In this work, we developed a biological sonosensitive platelet (PLT) pharmacytes for favoring US/GSH-responsive combinational therapeutic of glutamine deprivation and augmented SDT. The amino acid transporter SLC6A14 blockade agent α-methyl-DL-tryptophan (α-MT)-loaded and MnO2-coated porphyrinic metal-organic framework (MOF) nanoparticles were encapsulated in the PLTs through the physical adsorption of electrostatic attraction and the intrinsic endocytosis of PLTs. When the sonosensitive PLT pharmacytes reached tumor sites through their natural tendencies to TME, US stimulated the PLTs-loaded porphyrinic MOF to generate ROS, resulting in morphological changes of the PLTs and the release of nanoparticles. Subsequently, intracellular high concentration of GSH and extracellular spatio-temporal controlled US irradiation programmatically triggered the release of α-MT, which enabled the synergistically amplified SDT by inducing amino acid starvation, inhibiting mTOR, and mediating ferroptosis. In addition, US stimulation achieved the targeted activation of PLTs at tumor vascular site, which evolved from circulating PLTs to dendritic PLTs, effectively blocking the blood supply of tumors through thrombus formation, and revealing the encouraging potential to facilitate tumor therapeutics.

12.
Cell Metab ; 34(12): 2036-2046.e8, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36384144

RESUMO

Impairment of translation can lead to collisions of ribosomes, which constitute an activation platform for several ribosomal stress-surveillance pathways. Among these is the ribotoxic stress response (RSR), where ribosomal sensing by the MAP3K ZAKα leads to activation of p38 and JNK kinases. Despite these insights, the physiological ramifications of ribosomal impairment and downstream RSR signaling remain elusive. Here, we show that stalling of ribosomes is sufficient to activate ZAKα. In response to amino acid deprivation and full nutrient starvation, RSR impacts on the ensuing metabolic responses in cells, nematodes, and mice. The RSR-regulated responses in these model systems include regulation of AMPK and mTOR signaling, survival under starvation conditions, stress hormone production, and regulation of blood sugar control. In addition, ZAK-/- male mice present a lean phenotype. Our work highlights impaired ribosomes as metabolic signals and demonstrates a role for RSR signaling in metabolic regulation.


Assuntos
MAP Quinase Quinase Quinases , Biossíntese de Proteínas , Ribossomos , Estresse Fisiológico , Animais , Masculino , Camundongos , MAP Quinase Quinase Quinases/metabolismo
13.
Cell Rep ; 41(4): 111548, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288708

RESUMO

Translation of 5' terminal oligopyrimidine (TOP) mRNAs encoding the protein synthesis machinery is strictly regulated by an amino-acid-sensing mTOR pathway. However, its regulatory mechanism remains elusive. Here, we demonstrate that TOP mRNA translation positively correlates with its poly(A) tail length under mTOR active/amino-acid-rich conditions, suggesting that TOP mRNAs are post-transcriptionally controlled by poly(A) tail-length regulation. Consistent with this, the tail length of TOP mRNAs dynamically fluctuates in response to amino acid availability. The poly(A) tail shortens under mTOR active/amino-acid-rich conditions, whereas the long-tailed TOP mRNAs accumulate under mTOR inactive/amino-acid-starved (AAS) conditions. An RNA-binding protein, LARP1, is indispensable for the process. LARP1 interacts with non-canonical poly(A) polymerases and induces post-transcriptional polyadenylation of the target. Our findings illustrate that LARP1 contributes to the selective accumulation of TOP mRNAs with long poly(A) tails under AAS, resulting in accelerated ribosomal loading onto TOP mRNAs for the resumption of translation after AAS.


Assuntos
Autoantígenos , Ribonucleoproteínas , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Autoantígenos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ribossomos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Polinucleotídeo Adenililtransferase/genética , Aminoácidos/metabolismo , Biossíntese de Proteínas
14.
J Biol Chem ; 298(12): 102629, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273589

RESUMO

mTORC1 and GCN2 are serine/threonine kinases that control how cells adapt to amino acid availability. mTORC1 responds to amino acids to promote translation and cell growth while GCN2 senses limiting amino acids to hinder translation via eIF2α phosphorylation. GCN2 is an appealing target for cancer therapies because malignant cells can harness the GCN2 pathway to temper the rate of translation during rapid amino acid consumption. To isolate new GCN2 inhibitors, we created cell-based, amino acid limitation reporters via genetic manipulation of Ddit3 (encoding the transcription factor CHOP). CHOP is strongly induced by limiting amino acids and in this context, GCN2-dependent. Using leucine starvation as a model for essential amino acid sensing, we unexpectedly discovered ATP-competitive PI3 kinase-related kinase inhibitors, including ATR and mTOR inhibitors like torins, completely reversed GCN2 activation in a time-dependent way. Mechanistically, via inhibiting mTORC1-dependent translation, torins increased intracellular leucine, which was sufficient to reverse GCN2 activation and the downstream integrated stress response including stress-induced transcriptional factor ATF4 expression. Strikingly, we found that general translation inhibitors mirrored the effects of torins. Therefore, we propose that mTOR kinase inhibitors concurrently inhibit different branches of amino acid sensing by a dual mechanism involving direct inhibition of mTOR and indirect suppression of GCN2 that are connected by effects on the translation machinery. Collectively, our results highlight distinct ways of regulating GCN2 activity.


Assuntos
Aminoácidos , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Aminoácidos/genética , Aminoácidos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Leucina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Humanos , Animais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
15.
Mol Cell Biol ; 42(9): e0024122, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36005752

RESUMO

Upon pathogen infection, intricate innate signaling cascades are induced to initiate the transcription of immune effectors, including cytokines and chemokines. Transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy genes, was found recently to be a novel regulator of innate immunity in both Caenorhabditis elegans and mammals. Despite TFEB participating in critical mechanisms of pathogen recognition and in the transcriptional response to infection in mammalian macrophages, little is known about its roles in the infected epithelium or infected nonimmune cells in general. Here, we demonstrate that TFEB is activated in nonimmune cells upon infection with bacterial pathogens through a pathway dependent on mTORC1 inhibition and RAG-GTPase activity, reflecting the importance of membrane damage and amino acid starvation responses during infection. Additionally, we present data demonstrating that although TFEB does not affect bacterial killing or load in nonimmune cells, it alters the host transcriptome upon infection, thus promoting an antibacterial transcriptomic landscape. Elucidating the roles of TFEB in infected nonimmune cells and the upstream signaling cascade provides critical insight into understanding how cells recognize and respond to bacterial pathogens.


Assuntos
Aminoácidos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Aminoácidos/metabolismo , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Caenorhabditis elegans/metabolismo , Citocinas/metabolismo , Células Epiteliais/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Lisossomos/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
16.
EMBO Rep ; 23(3): e53373, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34994492

RESUMO

Mammalian cells utilize Akt-dependent signaling to deploy intracellular Glut4 toward cell surface to facilitate glucose uptake. Low-density lipoprotein receptor (LDLR) is the cargo receptor mediating endocytosis of apolipoprotein B-containing lipoproteins. However, signaling-controlled regulation of intracellular LDLR trafficking remains elusive. Here, we describe a unique amino acid stress response, which directs the deployment of intracellular LDLRs, causing enhanced LDL endocytosis, likely via Ca2+ and calcium/calmodulin-dependent protein kinase II-mediated signalings. This response is independent of induction of autophagy. Amino acid stress-induced increase in LDL uptake in vitro is comparable to that by pravastatin. In vivo, acute AAS challenge for up to 72 h enhanced the rate of hepatic LDL uptake without changing the total expression level of LDLR. Reducing dietary amino acids by 50% for 2 to 4 weeks ameliorated high fat diet-induced hypercholesterolemia in heterozygous LDLR-deficient mice, with reductions in both LDL and VLDL fractions. We suggest that identification of signaling-controlled regulation of intracellular LDLR trafficking has advanced our understanding of the LDLR biology, and may benefit future development of additional therapeutic strategies for treating hypercholesterolemia.


Assuntos
Aminoácidos , Receptores de LDL , Aminoácidos/metabolismo , Animais , Proteínas de Transporte/metabolismo , Endocitose , Lipoproteínas/metabolismo , Fígado/metabolismo , Camundongos , Receptores de LDL/genética , Receptores de LDL/metabolismo
17.
Autophagy ; 18(7): 1694-1714, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34836487

RESUMO

Macroautophagy/autophagy is a highly conserved nutrient-recycling pathway that eukaryotes utilize to combat diverse stresses including nutrient depletion. Dysregulation of autophagy disrupts cellular homeostasis leading to starvation susceptibility in yeast and disease development in humans. In yeast, the robust autophagy response to starvation is controlled by the upregulation of ATG genes, via regulatory processes involving multiple levels of gene expression. Despite the identification of several regulators through genetic studies, the predominant mechanism of regulation modulating the autophagy response to subtle differences in nutrient status remains undefined. Here, we report the unexpected finding that subtle changes in nutrient availability can cause large differences in autophagy flux, governed by hitherto unknown post-transcriptional regulatory mechanisms affecting the expression of the key autophagyinducing kinase Atg1 (ULK1/ULK2 in mammals). We have identified two novel post-transcriptional regulators of ATG1 expression, the kinase Rad53 and the RNA-binding protein Ded1 (DDX3 in mammals). Furthermore, we show that DDX3 regulates ULK1 expression post-transcriptionally, establishing mechanistic conservation and highlighting the power of yeast biology in uncovering regulatory mechanisms that can inform therapeutic approaches.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Proteínas Quinases , Proteínas de Saccharomyces cerevisiae , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação Fúngica da Expressão Gênica , Nutrientes , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Cells ; 12(1)2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36611873

RESUMO

Glutamine is one of the most abundant amino acids in the cell. In mitochondria, glutaminases 1 and 2 (GLS1/2) hydrolyze glutamine to glutamate, which serves as the precursor of multiple metabolites. Here, we show that ammonium generated during GLS1/2-mediated glutaminolysis regulates lysosomal pH and in turn lysosomal degradation. In primary human skin fibroblasts BJ cells and mouse embryonic fibroblasts, deprivation of total amino acids for 1 h increased lysosomal degradation capacity as shown by the increased turnover of lipidated microtubule-associated proteins 1A/1B light chain 3B (LC3-II), several autophagic receptors, and endocytosed DQ-BSA. Removal of glutamine but not any other amino acids from the culture medium enhanced lysosomal degradation similarly as total amino acid starvation. The presence of glutamine in regular culture media increased lysosomal pH by >0.5 pH unit and the removal of glutamine caused lysosomal acidification. GLS1/2 knockdown, GLS1 antagonist, or ammonium scavengers reduced lysosomal pH in the presence of glutamine. The addition of glutamine or NH4Cl prevented the increase in lysosomal degradation and curtailed the extension of mTORC1 function during the early time period of amino acid starvation. Our findings suggest that glutamine tunes lysosomal pH by producing ammonium, which regulates lysosomal degradation to meet the demands of cellular activities. During the early stage of amino acid starvation, the glutamine-dependent mechanism allows more efficient use of internal reserves and endocytosed proteins to extend mTORC1 activation such that the normal anabolism is not easily interrupted by a brief disruption of the amino acid supply.


Assuntos
Compostos de Amônio , Glutamina , Animais , Camundongos , Humanos , Glutamina/metabolismo , Compostos de Amônio/farmacologia , Compostos de Amônio/metabolismo , Fibroblastos/metabolismo , Aminoácidos/metabolismo , Ácido Glutâmico/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Lisossomos/metabolismo , Concentração de Íons de Hidrogênio
19.
J Cell Sci ; 134(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34350957

RESUMO

The phase separation of the non-membrane bound Sec bodies occurs in Drosophila S2 cells by coalescence of components of the endoplasmic reticulum (ER) exit sites under the stress of amino acid starvation. Here, we address which signaling pathways cause Sec body formation and find that two pathways are critical. The first is the activation of the salt-inducible kinases (SIKs; SIK2 and SIK3) by Na+ stress, which, when it is strong, is sufficient. The second is activation of IRE1 and PERK (also known as PEK in flies) downstream of ER stress induced by the absence of amino acids, which needs to be combined with moderate salt stress to induce Sec body formation. SIK, and IRE1 and PERK activation appear to potentiate each other through the stimulation of the unfolded protein response, a key parameter in Sec body formation. This work shows the role of SIKs in phase transition and re-enforces the role of IRE1 and PERK as a metabolic sensor for the level of circulating amino acids and salt. This article has an associated First Person interview with the first author of the paper.


Assuntos
Drosophila , eIF-2 Quinase , Animais , Drosophila/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
20.
J Biochem ; 170(1): 119-129, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-33725110

RESUMO

D-amino acid oxidase (DAO) is a flavoenzyme catalyzing the oxidation of D-amino acid (AA)s. In the kidney, its expression is detected in proximal tubules, and DAO is considered to play a role in the conversion of D-form AAs to α-keto acids. LLC-PK1 cells, a pig renal proximal tubule cell line, were used to elucidate the regulation of DAO protein synthesis and degradation. In this study, we showed that trypsinization of LLC-PK1 cells in culture system rapidly reduced the intracellular DAO protein level to ∼33.9% of that before treatment, even within 30 min. Furthermore, we observed that the DAO protein level was decreased when LLC-PK1 cells were subjected to AA starvation. To determine the degradation pathway, we treated the cells with chloroquine and MG132. DAO degradation was found to be inhibited by chloroquine, but not by MG132 treatment. We next examined whether or not DAO was degraded by autophagy. We found that AA starvation led to an increased accumulation of LC3-II, suggesting that DAO protein is degraded by autophagy due to AA starvation conditions. Furthermore, treatment with cycloheximide inhibited DAO protein degradation. Taken together, DAO protein is degraded by autophagy under starvation. The present study revealed the potential dynamics of DAO correlated with renal pathophysiology.


Assuntos
Aminoácidos/metabolismo , D-Aminoácido Oxidase/metabolismo , Células Epiteliais/metabolismo , Rim/metabolismo , Animais , Células Cultivadas , Células Epiteliais/citologia , Rim/citologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA