Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Elife ; 122024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39076160

RESUMO

Current methods to quantify the fraction of aminoacylated tRNAs, also known as the tRNA charge, are limited by issues with either low throughput, precision, and/or accuracy. Here, we present an optimized charge transfer RNA sequencing (tRNA-Seq) method that combines previous developments with newly described approaches to establish a protocol for precise and accurate tRNA charge measurements. We verify that this protocol provides robust quantification of tRNA aminoacylation and we provide an end-to-end method that scales to hundreds of samples including software for data processing. Additionally, we show that this method supports measurements of relative tRNA expression levels and can be used to infer tRNA modifications through reverse transcription misincorporations, thereby supporting multipurpose applications in tRNA biology.


Assuntos
RNA de Transferência , RNA de Transferência/genética , RNA de Transferência/metabolismo , Aminoacilação de RNA de Transferência , Análise de Sequência de RNA/métodos , Aminoacilação/genética
2.
Bioorg Chem ; 150: 107530, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38852310

RESUMO

The Asp-tRNAAsn/Glu-tRNAGln amidotransferase (GatCAB) has been proposed as a novel antibacterial drug target due to its indispensability in prominent human pathogens. While several inhibitors with in vitro activity have been identified, none have been demonstrated to have potent activity against live bacteria. In this work, seven non-hydrolyzable transition state mimics of GatCAB were synthesized and tested as the transamidase inhibitors against GatCAB from the human pathogen Helicobacter pylori. Notably, the methyl sulfone analog of glutamyl-adenosine significantly reduced GatCAB's transamination rate. Additionally, four lipid-conjugates of these mimics displayed antibacterial activity against Bacillus subtilis, likely due to enhanced cell permeability. Inhibitory activity against GatCAB in live bacteria was confirmed using a sensitive gain-of-function dual luciferase reporter in Mycobacterium bovis-BCG. Only the lipid-conjugated methyl sulfone analog exhibited a significant increase in mistranslation rate, highlighting its cell permeability and inhibitory potential. This study provides insights for developing urgently needed novel antibacterial agents amidst emerging antimicrobial drug resistance.


Assuntos
Antibacterianos , Inibidores Enzimáticos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Bacillus subtilis/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosina/química , Adenosina/síntese química , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/enzimologia , Transferases de Grupos Nitrogenados/antagonistas & inibidores , Transferases de Grupos Nitrogenados/metabolismo , Humanos
3.
Proc Natl Acad Sci U S A ; 121(26): e2401154121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889150

RESUMO

Almost all elongator tRNAs (Transfer RNAs) harbor 5-methyluridine 54 and pseudouridine 55 in the T arm, generated by the enzymes TrmA and TruB, respectively, in Escherichia coli. TrmA and TruB both act as tRNA chaperones, and strains lacking trmA or truB are outcompeted by wild type. Here, we investigate how TrmA and TruB contribute to cellular fitness. Deletion of trmA and truB in E. coli causes a global decrease in aminoacylation and alters other tRNA modifications such as acp3U47. While overall protein synthesis is not affected in ΔtrmA and ΔtruB strains, the translation of a subset of codons is significantly impaired. As a consequence, we observe translationally reduced expression of many specific proteins, that are either encoded with a high frequency of these codons or that are large proteins. The resulting proteome changes are not related to a specific growth phenotype, but overall cellular fitness is impaired upon deleting trmA and truB in accordance with a general protein synthesis impact. In conclusion, we demonstrate that universal modifications of the tRNA T arm are critical for global tRNA function by enhancing tRNA maturation, tRNA aminoacylation, and translation, thereby improving cellular fitness irrespective of the growth conditions which explains the conservation of trmA and truB.


Assuntos
Escherichia coli , RNA de Transferência , RNA de Transferência/metabolismo , RNA de Transferência/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Biossíntese de Proteínas , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , tRNA Metiltransferases/metabolismo , tRNA Metiltransferases/genética , Processamento Pós-Transcricional do RNA
4.
Curr Protoc ; 4(3): e1010, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516989

RESUMO

Serine-proline (Ser-Pro) backbone-modified dipeptide analogues are powerful tools to investigate the role of cis-trans isomerization in the regulation of the cell cycle and transcription. These studies have previously been limited to synthetic peptides, whose synthesis is a challenge for larger peptides due to the compounding yield loss incurred in each step. We now introduce a method for the aminoacylation of tRNA with dipeptides and dipeptide analogs to permit the installation of cis- and trans-locked Ser-Pro analogues into full-length proteins. To that end, we synthesized the 3,5-dinitrobenzyl (DNB)-activated esters of a native Ser-Pro dipeptide and its cis- and trans-locked alkene analogs. Murakami et al. created the DNB flexizyme (dFx), a ribozyme that acylates tRNA with DNB esters of amino acids to permit unnatural amino acids to be incorporated into proteins. A tRNA from yeast that recognizes the amber stop codon, along with the dFx flexizyme, were generated by in vitro transcription with T7 RNA polymerase. dFx was used to successfully catalyze the chemical misacylation of truncated amber tRNA with the Ser-Pro-DNB activated dipeptide. This method allows the introduction of non-native Ser-Pro dipeptide mimics into full-length proteins by in vitro transcription-translation. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of 3,5-dinitrobenzyl activated esters of Ser-Pro Basic Protocol 2: Preparation of truncated amber tRNA Basic Protocol 3: Acylation of amber-tRNA by the dFx flexizyme Basic Protocol 4: PAGE electrophoresis of tRNASerPro.


Assuntos
Prolina , Serina , Prolina/química , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Dipeptídeos , Peptídeos
5.
Circulation ; 149(16): 1268-1284, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38362779

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a common heritable heart disease. Although HCM has been reported to be associated with many variants of genes involved in sarcomeric protein biomechanics, pathogenic genes have not been identified in patients with partial HCM. FARS2 (the mitochondrial phenylalanyl-tRNA synthetase), a type of mitochondrial aminoacyl-tRNA synthetase, plays a role in the mitochondrial translation machinery. Several variants of FARS2 have been suggested to cause neurological disorders; however, FARS2-associated diseases involving other organs have not been reported. We identified FARS2 as a potential novel pathogenic gene in cardiomyopathy and investigated its effects on mitochondrial homeostasis and the cardiomyopathy phenotype. METHODS: FARS2 variants in patients with HCM were identified using whole-exome sequencing, Sanger sequencing, molecular docking analyses, and cell model investigation. Fars2 conditional mutant (p.R415L) or knockout mice, fars2-knockdown zebrafish, and Fars2-knockdown neonatal rat ventricular myocytes were engineered to construct FARS2 deficiency models both in vivo and in vitro. The effects of FARS2 and its role in mitochondrial homeostasis were subsequently evaluated using RNA sequencing and mitochondrial functional analyses. Myocardial tissues from patients were used for further verification. RESULTS: We identified 7 unreported FARS2 variants in patients with HCM. Heart-specific Fars2-deficient mice presented cardiac hypertrophy, left ventricular dilation, progressive heart failure accompanied by myocardial and mitochondrial dysfunction, and a short life span. Heterozygous cardiac-specific Fars2R415L mice displayed a tendency to cardiac hypertrophy at age 4 weeks, accompanied by myocardial dysfunction. In addition, fars2-knockdown zebrafish presented pericardial edema and heart failure. FARS2 deficiency impaired mitochondrial homeostasis by directly blocking the aminoacylation of mt-tRNAPhe and inhibiting the synthesis of mitochondrial proteins, ultimately contributing to an imbalanced mitochondrial quality control system by accelerating mitochondrial hyperfragmentation and disrupting mitochondrion-related autophagy. Interfering with the mitochondrial quality control system using adeno-associated virus 9 or specific inhibitors mitigated the cardiac and mitochondrial dysfunction triggered by FARS2 deficiency by restoring mitochondrial homeostasis. CONCLUSIONS: Our findings unveil the previously unrecognized role of FARS2 in heart and mitochondrial homeostasis. This study may provide new insights into the molecular diagnosis and prevention of heritable cardiomyopathy as well as therapeutic options for FARS2-associated cardiomyopathy.


Assuntos
Cardiomiopatia Hipertrófica , Insuficiência Cardíaca , Doenças Mitocondriais , Fenilalanina-tRNA Ligase , Animais , Humanos , Recém-Nascido , Camundongos , Ratos , Cardiomiopatia Hipertrófica/patologia , Insuficiência Cardíaca/patologia , Homeostase , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/metabolismo , Simulação de Acoplamento Molecular , Fenilalanina-tRNA Ligase/genética , Fenilalanina-tRNA Ligase/metabolismo , Peixe-Zebra/genética , Mutação
6.
Life (Basel) ; 14(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38398786

RESUMO

To track down the possible roots of life, various models for the initial living system composed of different combinations of the three extant biopolymers, RNA, DNA, and proteins, are presented. The suitability of each molecular set is assessed according to its ability to emerge autonomously, sustain, and evolve continuously towards life as we know it. The analysis incorporates current biological knowledge gained from high-resolution structural data and large sequence datasets, together with experimental results concerned with RNA replication and with the activity demonstrated by standalone constructs of the ribosomal Peptidyl Transferase Center region. The scrutiny excludes the DNA-protein combination and assigns negligible likelihood to the existence of an RNA-DNA world, as well as to an RNA world that contained a replicase made of RNA. It points to the precedence of an RNA-protein system, whose model of emergence suggests specific processes whereby a coded proto-ribosome ribozyme, specifically aminoacylated proto-tRNAs and a proto-polymerase enzyme, could have autonomously emerged, cross-catalyzing the formation of each other. This molecular set constitutes a feasible starting point for a continuous evolutionary path, proceeding via natural processes from the inanimate matter towards life as we know it.

7.
FEBS Lett ; 598(5): 521-536, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246751

RESUMO

Helicobacter pylori infection is a global health concern, affecting over half of the world's population. Acquiring structural information on pharmacological targets is crucial to facilitate inhibitor design. Here, we have determined the crystal structures of H. pylori isoleucyl-tRNA synthetase (HpIleRS) in apo form as well as in complex with various substrates (Ile, Ile-AMP, Val, and Val-AMP) or an inhibitor (mupirocin). Our results provide valuable insights into substrate specificity, recognition, and the mechanism by which HpIleRS is inhibited by an antibiotic. Moreover, we identified Asp641 as a prospective regulatory site and conducted biochemical analyses to investigate its regulatory mechanism. The detailed structural information acquired from this research holds promise for the development of highly selective and effective inhibitors against H. pylori infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Antibacterianos/farmacologia , Helicobacter pylori/enzimologia , Isoleucina-tRNA Ligase/química , Isoleucina-tRNA Ligase/metabolismo , Estudos Prospectivos
8.
Methods Enzymol ; 692: 103-126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37925176

RESUMO

Transfer RNA (tRNA) plays a critical role during translation and interacts with numerous proteins during its biogenesis, functional cycle and degradation. In particular, tRNA is extensively post-transcriptionally modified by various tRNA modifying enzymes which each target a specific nucleotide at different positions within tRNAs to introduce different chemical modifications. Fluorescent assays can be used to study the interaction between a protein and tRNA. Moreover, rapid mixing fluorescence stopped-flow assays provide insights into the kinetics of the tRNA-protein interaction in order to elucidate the tRNA binding mechanism for the given protein. A prerequisite for these studies is a fluorescently labeled molecule, such as fluorescent tRNA, wherein a change in fluorescence occurs upon protein binding. In this chapter, we discuss the utilization of tRNA modifications in order to introduce fluorophores at particular positions within tRNAs. Particularly, we focus on in vitro thiolation of a uridine at position 8 within tRNAs using the tRNA modification enzyme ThiI, followed by labeling of the thiol group with fluorescein. As such, this fluorescently labeled tRNA is primarily unmodified, with the exception of the thiolation modification to which the fluorophore is attached, and can be used as a substrate to study the binding of different tRNA-interacting factors. Herein, we discuss the example of studying the tRNA binding mechanism of the tRNA modifying enzymes TrmB and DusA using internally fluorescein-labeled tRNA.


Assuntos
Proteínas de Transporte , RNA de Transferência , RNA de Transferência/metabolismo , Nucleotídeos/metabolismo , Corantes Fluorescentes/metabolismo , Fluoresceínas
9.
Sci Bull (Beijing) ; 68(18): 2094-2105, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37573249

RESUMO

Methyltransferase-like 8 (METTL8) encodes a mitochondria-localized METTL8-Iso1 and a nucleolus-distributed METTL8-Iso4 isoform, which differ only in their N-terminal extension (N-extension), by mRNA alternative splicing. METTL8-Iso1 generates 3-methylcytidine at position 32 (m3C32) of mitochondrial tRNAThr and tRNASer(UCN). Whether METTL8-Iso4 is an active m3C32 methyltransferase and the role of the N-extension in mitochondrial tRNA m3C32 formation remain unclear. Here, we revealed that METTL8-Iso4 was inactive in m3C32 generation due to the lack of N-extension, which contains several absolutely conserved modification-critical residues; the counterparts were likewise essential in cytoplasmic m3C32 biogenesis by methyltransferase-like 2A (METTL2A) or budding yeasts tRNA N3-methylcytidine methyltransferase (Trm140), in vitro and in vivo. Cross-compartment/species tRNA modification assays unexpectedly found that METTL8-Iso1 efficiently introduced m3C32 to several cytoplasmic or even bacterial tRNAs in vitro. m3C32 did not influence tRNAThrN6-threonylcarbamoyladenosine (t6A) modification or aminoacylation. In addition to its interaction with mitochondrial seryl-tRNA synthetase (SARS2), we further discovered an interaction between mitochondrial threonyl-tRNA synthetase (TARS2) and METTL8-Iso1. METTL8-Iso1 substantially stimulated the aminoacylation activities of SARS2 and TARS2 in vitro, suggesting a functional connection between mitochondrial tRNA modification and charging. Altogether, our results deepen the mechanistic insights into mitochondrial m3C32 biogenesis and provide a valuable route to prepare cytoplasmic/bacterial tRNAs with only a m3C32 moiety, aiding in future efforts to investigate its effects on tRNA structure and function.


Assuntos
COVID-19 , Humanos , RNA Mitocondrial/genética , RNA de Transferência/genética , Isoformas de Proteínas , Metiltransferases/genética
10.
J Biol Chem ; 299(5): 104704, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059185

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) are essential components for mRNA translation. Two sets of aaRSs are required for cytoplasmic and mitochondrial translation in vertebrates. Interestingly, TARSL2 is a recently evolved duplicated gene of TARS1 (encoding cytoplasmic threonyl-tRNA synthetase) and represents the only duplicated aaRS gene in vertebrates. Although TARSL2 retains the canonical aminoacylation and editing activities in vitro, whether it is a true tRNA synthetase for mRNA translation in vivo is unclear. In this study, we showed that Tars1 is an essential gene since homozygous Tars1 KO mice were lethal. In contrast, when Tarsl2 was deleted in mice and zebrafish, neither the abundance nor the charging levels of tRNAThrs were changed, indicating that cells relied on Tars1 but not on Tarsl2 for mRNA translation. Furthermore, Tarsl2 deletion did not influence the integrity of the multiple tRNA synthetase complex, suggesting that Tarsl2 is a peripheral member of the multiple tRNA synthetase complex. Finally, we observed that Tarsl2-deleted mice exhibited severe developmental retardation, elevated metabolic capacity, and abnormal bone and muscle development after 3 weeks. Collectively, these data suggest that, despite its intrinsic activity, loss of Tarsl2 has little influence on protein synthesis but does affect mouse development.


Assuntos
Aminoacil-tRNA Sintetases , Biossíntese de Proteínas , Treonina-tRNA Ligase , Animais , Camundongos , Aminoacil-tRNA Sintetases/metabolismo , RNA de Transferência/metabolismo , Treonina-tRNA Ligase/genética , Treonina-tRNA Ligase/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Methods Mol Biol ; 2620: 107-111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37010755

RESUMO

This chapter describes the preparation of pre-charged Arg-tRNA that can be used in arginylation reaction. While in a typical arginylation reaction arginyl-tRNA synthetase (RARS) is normally included as a component of the reaction and continually charges tRNA during arginylation, it is sometimes necessary to separate the charging and the arginylation step, in order to perform each reaction under controlled conditions, e.g., for measuring the kinetics or determining the effect of different compounds and chemicals on the reaction. In such cases, tRNAArg can be pre-charged with Arg and purified away from the RARS enzyme prior to arginylation.


Assuntos
Aminoacil-tRNA Sintetases , Arginina-tRNA Ligase , Arginina-tRNA Ligase/química , Arginina-tRNA Ligase/genética , Arginina-tRNA Ligase/metabolismo , RNA de Transferência de Arginina/química , RNA de Transferência de Arginina/genética , RNA de Transferência de Arginina/metabolismo , Aminoacilação , RNA de Transferência/genética , Aminoacilação de RNA de Transferência , Cinética , Aminoacil-tRNA Sintetases/metabolismo
12.
Life (Basel) ; 13(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36983877

RESUMO

Aminoacylation of a primordial RNA minihelix composed of D-ribose shows L-amino acid preference over D-amino acid without any ribozymes or enzymes. This preference in the amino acylation reaction likely plays an important role in the establishment of homochirality in L-amino acid in modern proteins. However, molecular mechanisms of the chiral selective reaction remain unsolved mainly because of difficulty in direct observation of the reaction at the molecular scale by experiments. For seeking a possible mechanism of the chiral selectivity, quantum mechanics/molecular mechanics (QM/MM) umbrella sampling molecular dynamics (MD) simulations of the aminoacylation reactions in a modeled RNA were performed to investigate differences in their free-energy profiles along the reactions for L- and D-alanine and its physicochemical origin. The reaction is initiated by approaching a 3'-oxygen of the RNA minihelix to the carbonyl carbon of an aminoacyl phosphate oligonucleotide. The QM/MM umbrella sampling MD calculations showed that the height of the free-energy barrier for L-alanine aminoacylation reaction was 17 kcal/mol, which was 9 kcal/mol lower than that for the D-alanine system. At the transition state, the distance between the negatively charged 3'-oxygen and the positively charged amino group of L-alanine was shorter than that of D-alanine, which was caused by the chirality difference of the amino acid. These results indicate that the transition state for L-alanine is more electrostatically stabilized than that for D-alanine, which would be a plausible mechanism previously unexplained for chiral selectivity in the RNA minihelix aminoacylation.

13.
Clin Genet ; 103(3): 358-363, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36411955

RESUMO

Aminoacyl-tRNA synthetases are enzymes that ensure accurate protein synthesis. Variants of the dual-functional cytoplasmic human glutamyl-prolyl-tRNA synthetase, EPRS1, have been associated with leukodystrophy, diabetes and bone disease. Here, we report compound heterozygous variants in EPRS1 in a 4-year-old female patient presenting with psychomotor developmental delay, seizures and deafness. Functional studies of these two missense mutations support major defects in enzymatic function in vitro and contributed to confirmation of the diagnosis.


Assuntos
Aminoacil-tRNA Sintetases , Surdez , Epilepsia , Feminino , Humanos , Pré-Escolar , Aminoacilação , Aminoacil-tRNA Sintetases/genética , Mutação , Epilepsia/diagnóstico , Epilepsia/genética , Convulsões/genética , Surdez/genética
14.
Proteins ; 91(3): 354-362, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36196751

RESUMO

Cysteinyl-tRNA synthetase (CysRS) catalyzes the aminoacylation reaction of cysteine to its cognate tRNACys in the first step of protein translation. It is found that CysRS is different from other aaRSs as it transfers cysteine without the need for an editing reaction, which is not applicable in the case of serine despite the similarity in their structures. Surprisingly, the reasons why CysRS has high amino acid specificity are not clear yet. In this research, the binding configurations of Cys-AMP and its near-cognate amino acid Ser-AMP with CysRS are compared by Molecular Dynamics (MD). The results reveal that CysRS screens the substrate Cys-AMP to a certain extent in the process of combination and recognition, thus providing a guarantee for the high selectivity of the next reaction. While Ser-AMP is in a folded state in CysRS. In the meanwhile, the interaction between Cys-AMP and Zn963 in CysRS is much stronger than Ser-AMP. The substrate-assisted aminoacylation mechanism in CysRS is also explored by Quantum Mechanics/Molecular Mechanics (QM/MM) modeling. According to the QM/MM potential energies, the energy barrier of TSCys-AMP is 91.75 kJ/mol, while that of TSSer-AMP is close to 150 kJ/mol. Based on thermochemistry calculations, it is found that the product of Cys-AMP is more stable than the reactant. In contrast, Ser-AMP has a reactant that is more stable than its product. As a result, it reflects that the specificity of CysRS originates from both the kinetic and thermodynamical perspectives of the reaction. Our investigations demonstrate comprehensively on how CysRS recognizes and catalyzes the substrate Cys-AMP, hoping to provide some guidance for researchers in this area.


Assuntos
Aminoacil-tRNA Sintetases , Simulação de Dinâmica Molecular , Cisteína , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoácidos/química , Especificidade por Substrato
15.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36555394

RESUMO

tRNA is a key component in life's most fundamental process, the translation of the instructions contained in mRNA into proteins. Its role had to be executed as soon as the earliest translation emerged, but the questions of the prebiotic tRNA materialization, aminoacylation, and the origin of the coding triplets it carries are still open. Here, these questions are addressed by utilizing a distinct pattern of coding triplets highly conserved in the acceptor stems from the modern bacterial tRNAs of five early-emerging amino acids. Self-assembly of several copies of a short RNA oligonucleotide that carries a related pattern of coding triplets, via a simple and statistically feasible process, is suggested to result in a proto-tRNA model highly compatible with the cloverleaf secondary structure of the modern tRNA. Furthermore, these stem coding triplets evoke the possibility that they were involved in self-aminoacylation of proto-tRNAs prior to the emergence of the earliest synthetases, a process proposed to underlie the formation of the genetic code. Being capable of autonomous materialization and of self-aminoacylation, this verifiable model of the proto-tRNA advent adds principal components to an initial set of molecules and processes that may have led, exclusively through natural means, to the emergence of life.


Assuntos
Aminoacil-tRNA Sintetases , RNA de Transferência , Aminoacilação , RNA de Transferência/metabolismo , Código Genético , RNA/metabolismo , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/genética , Conformação de Ácido Nucleico , Evolução Molecular
16.
Membranes (Basel) ; 12(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36295673

RESUMO

Membrane-targeted molecules such as cationic antimicrobial peptides (CAMPs) are amongst the most advanced group of antibiotics used against drug-resistant bacteria due to their conserved and accessible targets. However, multi-drug-resistant bacteria alter their plasma membrane (PM) lipids, such as lipopolysaccharides (LPS) and phospholipids (PLs), to evade membrane-targeted antibiotics. Investigations reveal that in addition to LPS, the varying composition and spatiotemporal organization of PLs in the bacterial PM are currently being explored as novel drug targets. Additionally, PM proteins such as Mla complex, MPRF, Lpts, lipid II flippase, PL synthases, and PL flippases that maintain PM integrity are the most sought-after targets for development of new-generation drugs. However, most of their structural details and mechanism of action remains elusive. Exploration of the role of bacterial membrane lipidome and proteome in addition to their organization is the key to developing novel membrane-targeted antibiotics. In addition, membranotropic phytochemicals and their synthetic derivatives have gained attractiveness as popular herbal alternatives against bacterial multi-drug resistance. This review provides the current understanding on the role of bacterial PM components on multidrug resistance and their targeting with membranotropic phytochemicals.

17.
Cell Rep ; 41(4): 111539, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288695

RESUMO

Codon usage of each genome is closely correlated with the abundance of tRNA isoacceptors. How codon usage bias is resolved by tRNA post-transcriptional modifications is largely unknown. Here we demonstrate that the N1-methylation of guanosine at position 37 (m1G37) on the 3'-side of the anticodon, while not directly responsible for reading of codons, is a neutralizer that resolves differential decoding of proline codons. A genome-wide suppressor screen of a non-viable Escherichia coli strain, lacking m1G37, identifies proS suppressor mutations, indicating a coupling of methylation with tRNA prolyl-aminoacylation that sets the limit of cell viability. Using these suppressors, where prolyl-aminoacylation is decoupled from tRNA methylation, we show that m1G37 neutralizes differential translation of proline codons by the major isoacceptor. Lack of m1G37 inactivates this neutralization and exposes the need for a minor isoacceptor for cell viability. This work has medical implications for bacterial species that exclusively use the major isoacceptor for survival.


Assuntos
Anticódon , Uso do Códon , Metilação , Sobrevivência Celular/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Códon/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Guanosina , Prolina/genética
18.
Hum Mutat ; 43(10): 1454-1471, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35790048

RESUMO

Aminoacylation of transfer RNA (tRNA) is a key step in protein biosynthesis, carried out by highly specific aminoacyl-tRNA synthetases (ARSs). ARSs have been implicated in autosomal dominant and autosomal recessive human disorders. Autosomal dominant variants in tryptophanyl-tRNA synthetase 1 (WARS1) are known to cause distal hereditary motor neuropathy and Charcot-Marie-Tooth disease, but a recessively inherited phenotype is yet to be clearly defined. Seryl-tRNA synthetase 1 (SARS1) has rarely been implicated in an autosomal recessive developmental disorder. Here, we report five individuals with biallelic missense variants in WARS1 or SARS1, who presented with an overlapping phenotype of microcephaly, developmental delay, intellectual disability, and brain anomalies. Structural mapping showed that the SARS1 variant is located directly within the enzyme's active site, most likely diminishing activity, while the WARS1 variant is located in the N-terminal domain. We further characterize the identified WARS1 variant by showing that it negatively impacts protein abundance and is unable to rescue the phenotype of a CRISPR/Cas9 wars1 knockout zebrafish model. In summary, we describe two overlapping autosomal recessive syndromes caused by variants in WARS1 and SARS1, present functional insights into the pathogenesis of the WARS1-related syndrome and define an emerging disease spectrum: ARS-related developmental disorders with or without microcephaly.


Assuntos
Aminoacil-tRNA Sintetases , Doença de Charcot-Marie-Tooth , Microcefalia , Triptofano-tRNA Ligase , Animais , Humanos , Aminoacil-tRNA Sintetases/genética , Doença de Charcot-Marie-Tooth/genética , Ligases , Microcefalia/genética , Microcefalia/patologia , RNA de Transferência , Triptofano-tRNA Ligase/genética , Peixe-Zebra/genética
19.
Annu Rev Biochem ; 91: 221-243, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729073

RESUMO

Genetic code reprogramming has enabled us to ribosomally incorporate various nonproteinogenic amino acids (npAAs) into peptides in vitro. The repertoire of usable npAAs has been expanded to include not only l-α-amino acids with noncanonical sidechains but also those with noncanonical backbones. Despite successful single incorporation of npAAs, multiple and consecutive incorporations often suffer from low efficiency or are even unsuccessful. To overcome this stumbling block, engineering approaches have been used to modify ribosomes, EF-Tu, and tRNAs. Here, we provide an overview of these in vitro methods that are aimed at optimal expansion of the npAA repertoire and their applications for the development of de novo bioactive peptides containing various npAAs.


Assuntos
Aminoácidos , Código Genético , Aminoácidos/metabolismo , Peptídeos , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
20.
Cell Chem Biol ; 29(7): 1071-1112, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35413283

RESUMO

A critical step in repurposing the cellular translation machinery for the synthesis of polymeric products is the acylation of transfer RNA (tRNA) with unnatural monomers. Toward this goal, flexizymes, ribozymes capable of aminoacylation, have emerged as a uniquely adept tool for charging tRNA with ever increasingly diverse substrates. In this review, we present a library of monomer substrates that have been tested for tRNA acylation with the flexizyme system. From this mile-high view, we provide insights for understanding the chemical factors that influence flexizyme-mediated tRNA acylation. We conclude that flexizymes are primitive esterification catalysts that display a modest binding affinity to the monomer's aromatic recognition element. Together, these robust, yet flexible, flexizyme systems provide researchers with unprecedented access for preparing unnatural acyl-tRNA and the opportunity to repurpose the translation machinery for the synthesis of novel biologically derived structures beyond native proteins and peptides.


Assuntos
RNA Catalítico , Aminoacilação de RNA de Transferência , Acilação , Catálise , Peptídeos/metabolismo , RNA Catalítico/química , RNA de Transferência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA