Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Infect Immun ; 92(5): e0000424, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38563734

RESUMO

Neisseria gonorrhoeae, a human restricted pathogen, releases inflammatory peptidoglycan (PG) fragments that contribute to the pathophysiology of pelvic inflammatory disease. The genus Neisseria is also home to multiple species of human- or animal-associated Neisseria that form part of the normal microbiota. Here we characterized PG release from the human-associated nonpathogenic species Neisseria lactamica and Neisseria mucosa and animal-associated Neisseria from macaques and wild mice. An N. mucosa strain and an N. lactamica strain were found to release limited amounts of the proinflammatory monomeric PG fragments. However, a single amino acid difference in the PG fragment permease AmpG resulted in increased PG fragment release in a second N. lactamica strain examined. Neisseria isolated from macaques also showed substantial release of PG monomers. The mouse colonizer Neisseria musculi exhibited PG fragment release similar to that seen in N. gonorrhoeae with PG monomers being the predominant fragments released. All the human-associated species were able to stimulate NOD1 and NOD2 responses. N. musculi was a poor inducer of mouse NOD1, but ldcA mutation increased this response. The ability to genetically manipulate N. musculi and examine effects of different PG fragments or differing amounts of PG fragments during mouse colonization will lead to a better understanding of the roles of PG in Neisseria infections. Overall, we found that only some nonpathogenic Neisseria have diminished release of proinflammatory PG fragments, and there are differences even within a species as to types and amounts of PG fragments released.


Assuntos
Neisseria , Proteína Adaptadora de Sinalização NOD1 , Proteína Adaptadora de Sinalização NOD2 , Peptidoglicano , Animais , Humanos , Camundongos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Membrana Transportadoras , Neisseria/genética , Neisseria gonorrhoeae/imunologia , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Peptidoglicano/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(44): e2308940120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871219

RESUMO

Bacteria produce a structural layer of peptidoglycan (PG) that enforces cell shape, resists turgor pressure, and protects the cell. As bacteria grow and divide, the existing layer of PG is remodeled and PG fragments are released. Enterics such as Escherichia coli go to great lengths to internalize and reutilize PG fragments. E. coli is estimated to break down one-third of its cell wall, yet only loses ~0 to 5% of meso-diaminopimelic acid, a PG-specific amino acid, per generation. Two transporters were identified early on to possibly be the primary permease that facilitates PG fragment recycling, i) AmpG and ii) the Opp ATP binding cassette transporter in conjunction with a PG-specific periplasmic binding protein, MppA. The contribution of each transporter to PG recycling has been debated. Here, we have found that AmpG and MppA/Opp are differentially regulated by carbon source and growth phase. In addition, MppA/Opp is uniquely capable of high-affinity scavenging of muropeptides from growth media, demonstrating that AmpG and MppA/Opp allow for different strategies of recycling PG fragments. Altogether, this work clarifies environmental contexts under which E. coli utilizes distinct permeases for PG recycling and explores how scavenging by MppA/Opp could be beneficial in mixed communities.


Assuntos
Escherichia coli , Proteínas de Membrana Transportadoras , Proteínas de Membrana Transportadoras/metabolismo , Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Proteínas de Bactérias/metabolismo , Bactérias/metabolismo , Parede Celular/metabolismo
3.
Infect Drug Resist ; 16: 5587-5598, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645559

RESUMO

Objective: In this study, we constructed ampG knock-out and knock-in strains from a clinically isolated Kp1strain carrying ampR-ampC in its plasmid and compared them with the Kp NTUH-K2044 strain to investigate the relationship between ampG and ampR-ampC-induced expression. Methods: We created the ampG gene deletion mutant strains Kp1-ΔampG and Kp NTUH-K2044-ΔampG with pKO3-km plasmid using homologous recombination technology. We constructed the Kp NTUH-K2044-RC and Kp NTUH-K2044-ΔampG-RC drug resistance model strains with plasmid pACYC184. We constructed the ampG knock-in strains by introducing the ampG genes of Kp1, Enterobacter cloacae 029M, Pseudomonas aeruginosa PAO1, Escherichia coli ATCC25922, and Salmonella typhimurium LT2 into the ampG gene-deleted strains with carrier pet-30a. Real-time polymerase chain reaction (real-time PCR) was used to detect the relative expressions of ampC and ampG mRNAs. Results: Compared with Kp1, the induction phenotype of the ampC of Kp1-ΔampG strain disappeared, the ampC expression was reduced, and the minimal inhibitory concentration (MIC) values of cefoxitin and ceftazidime significant decrease from 128 µg/mL to 1 µg/mL. Based on Kp1, five strain were successfully constructed to complement the ampG genes from five knock-in strain, and all of the above complemented strains showed inducible expression of ampC and restored the expression of ampG to varying degrees, as well as restored resistance to the antimicrobial drugs cefoxitin and ceftazidime (P < 0.05). The ampC and ampG genes were barely expressed in Kp NTUH-K2044-ΔampG-RC when compared with Kp NTUH-K2044-RC. The expressions of ampG and ampC in each knock-in strain were recovered, the induction phenotype of ampC was restored, and the MIC values of cefoxitin and ceftazidime were increased. (P < 0.05). Conclusion: In this study, we found that ampG was an essential regulator for the plasmid-mediated ampC-induced expression in K. pneumoniae.

4.
Microbiol Spectr ; 10(1): e0201921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35171032

RESUMO

In the current scenario of antibiotic resistance magnification, new weapons against top nosocomial pathogens like Pseudomonas aeruginosa are urgently needed. The interplay between ß-lactam resistance and virulence is considered a promising source of targets to be attacked by antivirulence therapies, and in this regard, we previously showed that a peptidoglycan recycling blockade dramatically attenuated the pathogenic power of P. aeruginosa strains hyperproducing the chromosomal ß-lactamase AmpC. Here, we sought to ascertain whether this observation could be applicable to other ß-lactamases. To do so, P. aeruginosa wild-type or peptidoglycan recycling-defective strains (ΔampG and ΔnagZ) harboring different cloned ß-lactamases (transferable GES, VIM, and OXA types) were used to assess their virulence in Galleria mellonella larvae by determining 50% lethal doses (LD50s). A mild yet significant LD50 increase was observed after peptidoglycan recycling disruption per se, whereas the expression of class A and B enzymes did not impact virulence. While the production of the narrow-spectrum class D OXA-2 entailed a slight attenuation, its extended-spectrum derivatives OXA-226 (W159R [bearing a change of W to R at position 159]), OXA-161 (N148D), and principally, OXA-539 (D149 duplication) were associated with outstanding virulence impairments, especially in recycling-defective backgrounds (with some LD50s being >1,000-fold that of the wild type). Although their exact molecular bases remain to be deciphered, these results suggest that mutations affecting the catalytic center and, therefore, the hydrolytic spectrum of OXA-2-derived enzymes also drastically impact the pathogenic power of P. aeruginosa. This work provides new and relevant knowledge to the complex topic of the interplay between the production of ß-lactamases and virulence that could be useful to build future therapeutic strategies against P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa is one of the leading nosocomial pathogens whose growing resistance makes the development of therapeutic options extremely urgent. The resistance-virulence interplay has classically aroused researchers' interest as a source of therapeutic targets. In this regard, we describe a wide array of virulence attenuations associated with different transferable ß-lactamases, among which the production of OXA-2-derived extended-spectrum ß-lactamases stood out as a dramatic handicap for pathogenesis, likely as a side effect of mutations causing the expansion of their hydrolytic spectrums. Moreover, our results confirm the validity of disturbing peptidoglycan recycling as a weapon to attenuate P. aeruginosa virulence in class C and D ß-lactamase production backgrounds. In the current scenario of dissemination of horizontally acquired ß-lactamases, this work brings out new data on the complex interplay between the production of specific enzymes and virulence attenuation that, if complemented with the characterization of the underlying mechanisms, will likely be exploitable to develop future virulence-targeting antipseudomonal strategies.


Assuntos
Peptidoglicano/efeitos dos fármacos , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Cefalosporinase , Transferência Genética Horizontal , Proteínas de Membrana Transportadoras , Testes de Sensibilidade Microbiana , Mariposas , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Virulência/efeitos dos fármacos , Resistência beta-Lactâmica/efeitos dos fármacos , Resistência beta-Lactâmica/genética
5.
Ann Clin Microbiol Antimicrob ; 20(1): 45, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134705

RESUMO

BACKGROUND: A complex cascade of genes, enzymes, and transcription factors regulates AmpC ß-lactamase overexpression. We investigated the network of AmpC ß-lactamase overexpression in Klebsiella aerogenes and identified the role of AmpG in resistance to ß-lactam agents, including cephalosporins and carbapenems. METHODS: A transposon mutant library was created for carbapenem-resistant K. aerogenes YMC2008-M09-943034 (KE-Y1) to screen for candidates with increased susceptibility to carbapenems, which identified the susceptible mutant derivatives KE-Y3 and KE-Y6. All the strains were subjected to highly contiguous de novo assemblies using PacBio sequencing to investigate the loss of resistance due to transposon insertion. Complementation and knock-out experiments using lambda Red-mediated homologous recombinase and CRISPR-Cas9 were performed to confirm the role of gene of interest. RESULTS: In-depth analysis of KE-Y3 and KE-Y6 revealed the insertion of a transposon at six positions in each strain, at which truncation of the AmpG permease gene was common in both. The disruption of the AmpG permease leads to carbapenem susceptibility, which was further confirmed by complementation. We generated an AmpG permease gene knockout using lambda Red-mediated recombineering in K. aerogenes KE-Y1 and a CRISPR-Cas9-mediated gene knockout in multidrug-resistant Klebsiella pneumoniae-YMC/2013/D to confer carbapenem susceptibility. CONCLUSIONS: These findings suggest that inhibition of the AmpG is a potential strategy to increase the efficacy of ß-lactam agents against Klebsiella aerogenes.


Assuntos
Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Cefalosporinas/farmacologia , Proteínas de Membrana Transportadoras/genética , Resistência beta-Lactâmica/genética , beta-Lactamas/farmacologia , Sequência de Aminoácidos , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , República Democrática Popular da Coreia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Klebsiella pneumoniae/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Mutagênese , Alinhamento de Sequência , Resistência beta-Lactâmica/efeitos dos fármacos
6.
BMC Microbiol ; 20(1): 352, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203363

RESUMO

BACKGROUND: The Gram-negative oral pathogen Tannerella forsythia strictly depends on the external supply of the essential bacterial cell wall sugar N-acetylmuramic acid (MurNAc) for survival because of the lack of the common MurNAc biosynthesis enzymes MurA/MurB. The bacterium thrives in a polymicrobial biofilm consortium and, thus, it is plausible that it procures MurNAc from MurNAc-containing peptidoglycan (PGN) fragments (muropeptides) released from cohabiting bacteria during natural PGN turnover or cell death. There is indirect evidence that in T. forsythia, an AmpG-like permease (Tanf_08365) is involved in cytoplasmic muropeptide uptake. In E. coli, AmpG is specific for the import of N-acetylglucosamine (GlcNAc)-anhydroMurNAc(-peptides) which are common PGN turnover products, with the disaccharide portion as a minimal requirement. Currently, it is unclear which natural, complex MurNAc sources T. forsythia can utilize and which role AmpG plays therein. RESULTS: We performed a screen of various putative MurNAc sources for T. forsythia mimicking the situation in the natural habitat and compared bacterial growth and cell morphology of the wild-type and a mutant lacking AmpG (T. forsythia ΔampG). We showed that supernatants of the oral biofilm bacteria Porphyromonas gingivalis and Fusobacterium nucleatum, and of E. coli ΔampG, as well as isolated PGN and defined PGN fragments obtained after enzymatic digestion, namely GlcNAc-anhydroMurNAc(-peptides) and GlcNAc-MurNAc(-peptides), could sustain growth of T. forsythia wild-type, while T. forsythia ΔampG suffered from growth inhibition. In supernatants of T. forsythia ΔampG, the presence of GlcNAc-anhMurNAc and, unexpectedly, also GlcNAc-MurNAc was revealed by tandem mass spectrometry analysis, indicating that both disaccharides are substrates of AmpG. The importance of AmpG in the utilization of PGN fragments as MurNAc source was substantiated by a significant ampG upregulation in T. forsythia cells cultivated with PGN, as determined by quantitative real-time PCR. Further, our results indicate that PGN-degrading amidase, lytic transglycosylase and muramidase activities in a T. forsythia cell extract are involved in PGN scavenging. CONCLUSION: T. forsythia metabolizes intact PGN as well as muropeptides released from various bacteria and the bacterium's inner membrane transporter AmpG is essential for growth on these MurNAc sources, and, contrary to the situation in E. coli, imports both, GlcNAc-anhMurNAc and GlcNAc-MurNAc fragments.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ácidos Murâmicos/metabolismo , Tannerella forsythia/metabolismo , Proteínas de Bactérias/genética , Biofilmes , Parede Celular/química , Parede Celular/metabolismo , Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Boca/microbiologia , Ácidos Murâmicos/química , Peptidoglicano/química , Peptidoglicano/metabolismo , Especificidade por Substrato , Tannerella forsythia/genética , Tannerella forsythia/crescimento & desenvolvimento , Tannerella forsythia/ultraestrutura
7.
J Infect Dis ; 220(11): 1729-1737, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31325363

RESUMO

BACKGROUND: Searching for new strategies to defeat Pseudomonas aeruginosa is of paramount importance. Previous works in vitro showed that peptidoglycan recycling blockade disables AmpC-dependent resistance and enhances susceptibility against cell-wall-targeting immunity. Our objective was to validate these findings in murine models.This study shows for the first time in different murine models of infection that blocking the peptidoglycan recycling in Pseudomonas aeruginosa causes an important virulence impairment and disables AmpC-mediated resistance, being hence validated as a promising therapeutic target. METHODS: Wildtype PAO1, recycling-defective AmpG and NagZ mutants, an AmpC hyperproducer dacB mutant, and their combinations were used to cause systemic/respiratory infections in mice. Their survival, bacterial burden, inflammation level, and effectiveness of ceftazidime or subtherapeutic colistin to treat the infections were assessed. RESULTS: Inactivation of AmpG or NagZ significantly attenuated the virulence in terms of mice mortality, bacterial load, and inflammation. When inactivating these genes in the dacB-defective background, the ß-lactam resistance phenotype was abolished, disabling the emergence of ceftazidime-resistant mutants, and restoring ceftazidime for treatment. Subtherapeutic colistin was shown to efficiently clear the infection caused by the recycling-defective strains, likely due to the combined effect with the mice cell-wall- targeting immunity. CONCLUSIONS: This study brings us one step closer to new therapies intended to disable P. aeruginosa AmpC-mediated resistance and dampen its virulence, and strongly support the interest in developing efficient AmpG and/or NagZ inhibitors.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Peptidoglicano/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/enzimologia , Resistência beta-Lactâmica , beta-Lactamases/metabolismo , beta-Lactamas/administração & dosagem , Animais , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Carga Bacteriana , Ceftazidima/administração & dosagem , Parede Celular/imunologia , Modelos Animais de Doenças , Feminino , Proteínas de Membrana Transportadoras/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Análise de Sobrevida , Resultado do Tratamento , Virulência
8.
J Med Microbiol ; 67(1): 1-21, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29185941

RESUMO

The bacterial cell-wall that forms a protective layer over the inner membrane is called the murein sacculus - a tightly cross-linked peptidoglycan mesh unique to bacteria. Cell-wall synthesis and recycling are critical cellular processes essential for cell growth, elongation and division. Both de novo synthesis and recycling involve an array of enzymes across all cellular compartments, namely the outer membrane, periplasm, inner membrane and cytoplasm. Due to the exclusivity of peptidoglycan in the bacterial cell-wall, these players are the target of choice for many antibacterial agents. Our current understanding of cell-wall biochemistry and biogenesis in Gram-negative organisms stems mostly from studies of Escherichia coli. An incomplete knowledge on these processes exists for the opportunistic Gram-negative pathogen, Pseudomonas aeruginosa. In this review, cell-wall synthesis and recycling in the various cellular compartments are compared and contrasted between E. coli and P. aeruginosa. Despite the fact that there is a remarkable similarity of these processes between the two bacterial species, crucial differences alter their resistance to ß-lactams, fluoroquinolones and aminoglycosides. One of the common mediators underlying resistance is the amp system whose mechanism of action is closely associated with the cell-wall recycling pathway. The activation of amp genes results in expression of AmpC ß-lactamase through its cognate regulator AmpR which further regulates multi-drug resistance. In addition, other cell-wall recycling enzymes also contribute to antibiotic resistance. This comprehensive summary of the information should spawn new ideas on how to effectively target cell-wall processes to combat the growing resistance to existing antibiotics.


Assuntos
Parede Celular/metabolismo , Parede Celular/fisiologia , Farmacorresistência Bacteriana/fisiologia , Escherichia coli/fisiologia , Pseudomonas aeruginosa/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Parede Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , beta-Lactamases/metabolismo
9.
SLAS Discov ; 23(1): 55-64, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28850797

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen that is prevalent in hospitals and continues to develop resistance to multiple classes of antibiotics. Historically, ß-lactam antibiotics have been the first line of therapeutic defense. However, the emergence of multidrug-resistant (MDR) strains of P. aeruginosa, such as AmpC ß-lactamase overproducing mutants, limits the effectiveness of current antibiotics. Among AmpC hyperproducing clinical isolates, inactivation of AmpG, which is essential for the expression of AmpC, increases bacterial sensitivity to ß-lactam antibiotics. We hypothesize that inhibition of AmpG activity will enhance the efficacy of ß-lactams against P. aeruginosa. Here, using a highly drug-resistant AmpC-inducible laboratory strain PAO1, we describe an ultra-high-throughput whole-cell turbidity assay designed to identify small-molecule inhibitors of the AmpG. We screened 645,000 compounds to identify compounds with the ability to inhibit bacterial growth in the presence of cefoxitin, an AmpC inducer, and identified 2663 inhibitors that were also tested in the absence of cefoxitin to determine AmpG specificity. The Z' and signal-to-background ratio were robust at 0.87 ± 0.05 and 2.2 ± 0.2, respectively. Through a series of secondary and tertiary studies, including a novel luciferase-based counterscreen, we ultimately identified eight potential AmpG-specific inhibitors.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas/métodos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Resistência beta-Lactâmica/efeitos dos fármacos , Antibacterianos/química , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Ensaios de Triagem em Larga Escala , Humanos , Estrutura Molecular , Pseudomonas aeruginosa/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
10.
Front Microbiol ; 8: 648, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28446907

RESUMO

Tannerella forsythia is a Gram-negative oral anaerobe associated with periodontitis. This bacterium is auxotrophic for the peptidoglycan amino sugar N-acetylmuramic (MurNAc) and likely relies on scavenging peptidoglycan fragments (muropeptides) released by cohabiting bacteria during their cell wall recycling. Many Gram-negative bacteria utilize an inner membrane permease, AmpG, to transport peptidoglycan fragments into their cytoplasm. In the T. forsythia genome, the Tanf_08365 ORF has been identified as a homolog of AmpG permease. In order to confirm the functionality of Tanf_08365, a reporter system in an Escherichia coli host was generated that could detect AmpG-dependent accumulation of cytosolic muropeptides via a muropeptide-inducible ß-lactamase reporter gene. In trans complementation of this reporter strain with a Tanf_08365 containing plasmid caused significant induction of ß-lactamase activity compared to that with an empty plasmid control. These data indicated that Tanf_08365 acted as a functional muropeptide permease causing accumulation of muropeptides in E. coli and thus suggested that it is a permease involved in muropeptide scavenging in T. forsythia. Furthermore, we showed that the promoter regulating the expression of Tanf_08365 was activated significantly by a hybrid two-component system regulatory protein, GppX. We also showed that compared to the parental T. forsythia strain a mutant lacking GppX in which the expression of AmpG was reduced significantly attenuated in utilizing free muropeptides. In summary, we have uncovered the mechanism by which this nutritionally fastidious microbe accesses released muropeptides in its environment, opening up the possibility of targeting this activity to reduce its numbers in periodontitis patients with potential benefits in the treatment of disease.

11.
Bioorg Chem ; 56: 41-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24955547

RESUMO

The peptidoglycan is the structural polymer of the bacterial cell envelope. In contrast to an expectation of a structural stasis for this polymer, during the growth of the Gram-negative bacterium this polymer is in a constant state of remodeling and extension. Our current understanding of this peptidoglycan "turnover" intertwines with the deeply related phenomena of the liberation of small peptidoglycan segments (muropeptides) during turnover, the presence of dedicated recycling pathways for reuse of these muropeptides, ß-lactam inactivation of specific penicillin-binding proteins as a mechanism for the perturbation of the muropeptide pool, and this perturbation as a controlling mechanism for signal transduction leading to the expression of ß-lactamase(s) as a key resistance mechanism against the ß-lactam antibiotics. The nexus for many of these events is the control of the AmpR transcription factor by the composition of the muropeptide pool generated during peptidoglycan recycling. In this review we connect the seminal observations of the past decades to new observations that resolve some, but certainly not all, of the key structures and mechanisms that connect to AmpR.


Assuntos
Antibacterianos/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Resistência beta-Lactâmica/efeitos dos fármacos , beta-Lactamas/farmacologia , Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Enterobacteriaceae/enzimologia , Enterobacteriaceae/metabolismo , Testes de Sensibilidade Microbiana , Peptidoglicano/química , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , beta-Lactamases/metabolismo , beta-Lactamas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA