Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38102302

RESUMO

BACKGROUND: Restoration efforts have led to the return of anadromous fish, potential source of food for the Penobscot Indian Nation, to the previously dammed Penobscot River, Maine. OBJECTIVE: U.S. Environmental Protection Agency (EPA), Penobscot Indian Nation's Department of Natural Resources (PINDNR), and Agency for Toxic Substances and Disease Registry (ATSDR), measured contaminants in six species of anadromous fish. Fish tissue concentrations were then used, along with exposure parameters, to evaluate potential human and aquatic-dependent wildlife risk. METHODS: PINDNR collected, filleted, froze, and shipped fish for analysis of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), dioxins/furans, and per- and polyfluoroalkyl substances (PFAS). Contaminant levels were compared to reference doses (where possible) and wildlife values (WVs). RESULTS: Chemical concentrations ranged from 6.37 nanogram per gram (ng/g) wet weight (ww) in American Shad roe to 100 ng/g ww in Striped Bass for total PCBs; 0.851 ng/g ww in American Shad roe to 5.92 ng/g ww in large Rainbow Smelt for total PBDEs; and 0.037 ng/g ww in American Shad roe to 0.221 ng/g ww in Striped Bass for total dioxin/furans. PFAS concentrations ranged between 0.38 ng/g ww of PFBA in Alewife to 7.86 ng/g ww of PFUnA in Sea Lamprey. Dioxin/furans and PFOS levels indicated that there are potential human health risks. The WV for mink for total PCBs (72 ng/g) was exceeded in Striped Bass and the WV for Kestrel for PBDEs (8.7 ng/g) was exceeded in large Rainbow Smelt. Mammalian wildlife consuming Blueback Herring, Striped Bass, and Sea Lamprey may be at risk based on PFOS WVs from Canada. IMPACT: Anadromous fish returning to the Penobscot River potentially could represent the restoration of a major component of tribal traditional diet. However, information about contaminant levels in these fish is needed to guide the tribe about consumption safety. Analysis of select species of fish and risk calculations demonstrated the need for a protective approach to consumption for both humans and wildlife. This project demonstrates that wildlife can also be impacted by contamination of fish and their risks can be as great or greater than those of humans. A One Health approach addresses this discrepancy and will lead to a healthier ecosystem.

2.
J Appl Microbiol ; 134(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37699793

RESUMO

AIMS: The bacterial communities associated with the gastrointestinal (GI) tract are primarily involved in digestion, physiology, and the immune response against pathogenic bacteria for the overall development and health of the host. Hilsa shad (Tenualosa ilisha), a tropical anadromous fish, found predominantly in Bangladesh and India, has so far been poorly investigated for its gut bacterial communities. In this study, both culture-based and metagenomic approaches were used to detect intestinal isolates of hilsa, captured from both freshwater and seawater to investigate the community structure of intestinal microbiota. METHODS AND RESULTS: Culture-dependent approach allowed to isolate a total of 23 distinct bacterial species comprising 16 Gram-negative, and 7 Gram-positive isolates, where Proteobacteria and Firmicutes were identified as the two most dominant phyla. While metagenomic approach explored a wide range of important GI bacteria, primarily dominated by Proteobacteria, Firmicutes, and Bacteroidetes, with Proteobacteria and Firmicutes, being the most abundant in freshwater and seawater samples, respectively. CONCLUSIONS: A combination of these approaches provided the differential GI-associated bacterial diversity in freshwater and seawater hilsa with the prediction of overall functional potential. IMPACT STATEMENT: The study explored the diversity of gut microbiota in hilsa, one of the most preferred nutritious dietary fish, captured from freshwater and seawater habitats, which may encourage to comprehend the composition of the gut microbiome in relation to the migratory behavior and polyunsaturated fatty acid profile of anadromous fish in general.


Assuntos
Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/genética , Peixes , Firmicutes/genética , Bacteroidetes/genética , Bangladesh , Proteobactérias/genética
3.
J Environ Manage ; 344: 118420, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336016

RESUMO

River herring (Alosa sp.) are ecologically and economically foundational species in freshwater streams, estuaries, and oceanic ecosystems. The migration between fresh and saltwater is a key life stage of river herring, where the timing and magnitude of out-migration by juveniles can be limited when streams dry and hydrologic connectivity is lost. Operational decisions by water managers (e.g., restricting community water use) can impact out-migration success; however, these decisions are largely made without reliable predictions of outmigration potential across the migration season. This research presents a model to generate short-term forecasts of the probability of herring out-migration loss. We monitored streamflow and herring out-migration for 2 years at three critical runs along Long Island Sound (CT, USA) to develop empirical understandings of the hydrologic controls on out-migration. We used calibrated Soil and Water Assessment Tool hydrologic models of each site to generate 10,000 years of daily synthetic meteorological and streamflow records. These synthetic meteorological and streamflow data were used to train random forest models to provide rapid within-season forecasts of out-migration loss from two simple predictors: current spawning reservoir depth and the previous 30-day precipitation total. The resulting models were approximately 60%-80% accurate with a 1.5-month lead time and 70-90% accurate within 2 weeks. We anticipate that this tool will support regional decisions on spawning reservoir operations and community water withdrawals. The architecture of this tool provides a framework to facilitate broader predictions of the ecological consequences of streamflow connectivity loss in human-impacted watersheds.


Assuntos
Ecossistema , Emigração e Imigração , Animais , Humanos , Peixes , Rios , Aprendizado de Máquina , Água
4.
Biology (Basel) ; 12(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37237562

RESUMO

This article presents data on the mesonephros histology and ultrastructure in the Atlantic salmon from the Baltic Sea and Barents Sea populations, with an emphasis on comparisons between the following ontogenetic stages: parr, smolting, adult life at sea, the adults' return to their natal river to spawn, and spawning. The ultrastructural changes in the renal corpuscle and cells of the proximal tubules of the nephron occurred as early as the smolting stage. Such changes reflect fundamental alterations during the pre-adaptation to life in saltwater. In the Barents Sea population, the adult salmon sampled in the sea had the smallest diameters of the renal corpuscle and proximal and distal tubules, the most narrow urinary space, and the thickest basement membrane. In the group of salmon that entered the mouth of the river and spent less than 24 h in freshwater, the structural rearrangements occurred only in the distal tubules. Better development of the smooth endoplasmic reticulum and a greater abundance of mitochondria in the tubule cells were observed in the adult salmon from the Barents Sea compared to those from the Baltic Sea. Cell-immunity activation was initiated during the parr-smolt transformation. Another pronounced innate-immunity response was registered in the adults returning to the river to spawn.

5.
Animals (Basel) ; 12(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35739815

RESUMO

The rapid decline of longfin smelt Spirinchus thaleichthys, a threatened euryhaline forage fish in California, is a serious concern for scientists and resource managers. To recover and conserve this species, a captive culture program was initiated, focusing on the collection, captive rearing and breeding of wild broodstock, and the rearing of their offspring. Although progress has been made in the collection of broodstock and the production and culturing of larvae, no studies have evaluated the rearing of juvenile life stages in captivity. The present study examines methodological considerations for culturing F1 juvenile longfin smelt, specifically, the first efforts toward weaning juveniles to a dry commercial pellet feed. Cultured juvenile longfin smelt were fed live Artemia only or co-fed Artemia and dry feed for 62 days, and the effects of feed type on juvenile survival, growth, body condition, and fatty acid profiles were examined. No significant differences were observed between feeding treatments, despite an 80% reduction in Artemia in the co-feeding treatment. Furthermore, examination of fish stomach contents at the end of the trial confirmed the transition to dry feed. This is the first study to indicate successful feeding by longfin smelt on dry commercial pellets, and suggests that juvenile longfin smelt can be fully weaned onto dry feeds. Results of this study are critical for closing the lifecycle of longfin smelt in captivity and developing a successful conservation culture program for this imperiled species.

6.
Ecotoxicol Environ Saf ; 230: 113153, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34995908

RESUMO

Rivers along the eastern seaboard of the United States and Canada are becoming increasingly contaminated with heavy metals. This includes the Tusket River (Nova Scotia, Canada) which empties into the Gulf of Maine, near the Bay of Fundy. Whether anadromous fish such as alewife (Alosa pseudoharengus), exposed both to marine and freshwater contaminants, are accumulating these heavy metals and experiencing any changes in their morphology was explored in this study. Adult (4-6 years of age) Tusket River alewife (n = 38) were harvested and had external examinations including morphometrics (fork length, weight). Biopsies were taken and structural abnormalities noted. Morphometric data was compared to historical alewife reference data from 1985. Biopsies of muscle, liver and kidney had heavy metal profiles assessed. Major findings of this study include detectable levels (µg/g wet weight) of a number of heavy metals and concerning maximum concentrations achieved of arsenic (liver: 14 µg/g), cadmium (kidney: 2.6 µg/g), mercury (liver: 0.26 µg/g), magnesium (muscle: 460 µg/g), selenium (kidney: 4.0 µg/g) and zinc (liver: 38.0 µg/g). As well, reduced body weight for length and in 87% of fish, presence of spine curvatures (3-24°) not visible externally were noted. This study is the first detailed report in alewife of key tissue heavy metals, some at levels of concern, reductions in weight for length and spine abnormalities. These findings validate concerns regarding potential impacts of deteriorating conditions of rivers and their surrounding waters such as the Gulf of Maine on anadromous fish species.

7.
Oecologia ; 198(2): 371-379, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35064821

RESUMO

In many migratory species, smaller migrants suffer higher mortality rates during the risky migration. To minimize the size-selective mortality, migrants with smaller body sizes would need to accelerate growth rates or delay migration timing to attain a large enough body size prior to migration. To test these predictions, we investigated size-dependent patterns of growth rates and migration timing of juvenile masu salmon (Oncorhynchus masou) before their oceanic migration. We tracked uniquely marked individuals in a study population consisted of oceanic migrants and river-dwelling residents using mark-recapture surveys and PIT-tag antenna-reader system. Data supported our predictions about size-dependent growth rates and migration timing. For approximately 6 months before outmigration (i.e., between the decision of migration and the start of migration), eventual migrants grew more than residents if their initial size was smaller, but such a difference in growth rate diminished for fish with larger initial sizes. In addition, smaller eventual migrants delayed the timing of outmigration compared to larger individuals, to attain a larger body size in the river prior to migration. These results suggest that size-selective mortality during migration has shaped size-dependent patterns of the pre-migration growth in migratory masu salmon. Size-conditional changes in growth rate and duration of pre-migration period may be an adaptive tactic for the migratory animals.


Assuntos
Migração Animal , Oncorhynchus , Animais , Tamanho Corporal , Oncorhynchus/crescimento & desenvolvimento , Rios
8.
Sci Total Environ ; 781: 146691, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34594059

RESUMO

Levels of total mercury were measured in tissue of six species of migratory fish (alewife, American shad, blueback herring, rainbow smelt, striped bass, and sea lamprey), and in roe of American shad for two consecutive years collected from the Penobscot River or its estuary. The resultant mercury levels were compared to reference doses as established in the U.S. Environmental Protection Agency (EPA) Integrated Risk Information System and wildlife values. Mercury concentrations ranged from 4 µg/kg ww in roe to 1040 µg/kg ww in sea lamprey. Sea lamprey contained the highest amounts of mercury for both seasons of sampling. Current health advisories are set at sufficient levels to protect fishers from harmful consumption of the fish for mercury alone, except for sea lamprey. Based upon published wildlife values for mink, otter, and eagle, consumption of rainbow smelt, striped bass, or sea lamprey poses a risk to mink; striped bass and sea lamprey to otter; and sea lamprey to eagle. For future consideration, the resultant data may serve as a reference point for both human health and wildlife risk assessments for the consumption of anadromous fish. U.S. EPA works with federally recognized Tribes across the nation greatly impacted by restrictions on sustenance fishing, to develop culturally sensitive risk assessments.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Estuários , Peixes , Humanos , Maine , Mercúrio/análise , Rios , Poluentes Químicos da Água/análise
9.
Biol Lett ; 16(9): 20200218, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32961086

RESUMO

There is growing evidence that culverts at road-stream crossings can increase fish density by reducing stream width and fish movement rates, making these passageways ideal predator ambush locations. In this study, we used a combination of videography and δ13C stable isotope analyses to investigate predator-prey interactions at a road-stream crossing culvert. Eastern snapping turtles (Chelydra serpentina) were found to regularly reside within the culvert to ambush migratory river herring (Alosa spp.). Resident fish species displayed avoidance of the snapping turtles, resulting in zero attempted attacks on these fish. In contrast, river herring did not display avoidance and were attacked by a snapping turtle on 79% of approaches with a 15% capture rate. Stable isotope analyses identified an apparent shift in turtle diet to consumption of river herring in turtles from culvert sites that was not observed in individuals from non-culvert sites. These findings suggest that anthropogenic barriers like culverts that are designed to allow passage may create predation opportunities by serving as a bottleneck to resident and migrant fish movement.


Assuntos
Rios , Tartarugas , Animais , Peixes , Comportamento Predatório
10.
Heliyon ; 6(8): e04571, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32775746

RESUMO

Loss of valued diadromous fishes and their habitats is one of the most critical problems in aquatic habitat connection and resource management worldwide. In China, the Poyang, Dongting, Gaobao, Gucheng, Dongping, and Taihu lakes were known to be historical migratory spawning sites of the anadromous estuarine tapertail anchovy Coilia nasus. However, except for Poyang Lake, it is believed that these lakes are no longer used by anadromous fish owing to overfishing, water pollution, and loss of connectivity. To confirm this assumption, we used an electron probe microanalyzer to analyze elemental strontium (Sr) and calcium (Ca) microchemical patterns in the otoliths of C. nasus individuals sampled from these lakes, in accordance with our previous analysis of the otolithic patterns of the same species sampled from habitat areas characterized by different salinity gradients. The results of line transect analysis of Sr/Ca ratios and Sr X-ray intensity maps of the otoliths indicated that all individuals from Dongting, Gaobao, Gucheng, Taihu, and Dongping lakes were characterized by a freshwater-resident life history. In contrast, individuals from Poyang Lake exhibited both freshwater-resident and anadromous life histories. The findings of this pilot study suggest that anadromous C. nasus can be found in Poyang Lake but are unlikely to be found in Dongting, Gaobao, Gucheng, Dongping, or Taihu lakes, despite these lakes being historical distribution areas or even spawning sites. This anchovy can possibly be used as a good model species for understanding the aforementioned global problem. Given that C. nasus is a commercially important species, restoration of its natural habitats and maintenance of their connections are recommended for its management and conservation.

11.
Genes (Basel) ; 11(1)2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905942

RESUMO

The migration of anadromous fish in heterogenic environments unceasingly imposes a selective pressure that results in genetic variation for local adaptation. However, discrimination of anadromous fish populations by fine-scale local adaptation is challenging because of their high rate of gene flow, highly connected divergent population, and large population size. Recent advances in next-generation sequencing (NGS) have expanded the prospects of defining the weakly structured population of anadromous fish. Therefore, we used NGS-based restriction site-associated DNA (NextRAD) techniques on 300 individuals of an anadromous Hilsa shad (Tenualosa ilisha) species, collected from nine strategic habitats, across their diverse migratory habitats, which include sea, estuary, and different freshwater rivers. The NextRAD technique successfully identified 15,453 single nucleotide polymorphism (SNP) loci. Outlier tests using the FST OutFLANK and pcadapt approaches identified 74 and 449 SNPs (49 SNPs being common), respectively, as putative adaptive loci under a divergent selection process. Our results, based on the different cluster analyses of these putatively adaptive loci, suggested that local adaptation has divided the Hilsa shad population into two genetically structured clusters, in which marine and estuarine collection sites were dominated by individuals of one genetic cluster and different riverine collection sites were dominated by individuals of another genetic cluster. The phylogenetic analysis revealed that all the riverine populations of Hilsa shad were further subdivided into the north-western riverine (turbid freshwater) and the north-eastern riverine (clear freshwater) ecotypes. Among all of the putatively adaptive loci, only 36 loci were observed to be in the coding region, and the encoded genes might be associated with important biological functions related to the local adaptation of Hilsa shad. In summary, our study provides both neutral and adaptive contexts for the observed genetic divergence of Hilsa shad and, consequently, resolves the previous inconclusive findings on their population genetic structure across their diverse migratory habitats. Moreover, the study has clearly demonstrated that NextRAD sequencing is an innovative approach to explore how dispersal and local adaptation can shape genetic divergence of non-model anadromous fish that intersect diverse migratory habitats during their life-history stages.


Assuntos
Peixes/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Polimorfismo de Nucleotídeo Único , Adaptação Fisiológica , Animais , Ecossistema , Peixes/classificação , Peixes/fisiologia , Genética Populacional , Filogenia , Dinâmica Populacional , Análise de Sequência de DNA
12.
J Theor Biol ; 448: 104-111, 2018 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-29630993

RESUMO

Within the salmonid species, some male juveniles after spawning in fresh water stream migrate to the ocean and return to their natal streams after maturation, while others stay and mature in the fresh water stream only. Migration is relative to the size of the individuals. This is an evolutionary outcome according to the status-dependent strategy model, which assumes that the juveniles exhibit the optimal tactic based on their status. In this paper, we consider the case in which the density of adult residents suppresses juvenile growth, and explore the dynamics of alternative tactics and the evolution of threshold size. We show that a fraction of the migratory tactic that might converge into a stable state or continue to fluctuate wildly, and that the evolutionary outcome might be evolutionarily bistable, resulting in a clearly different threshold size. In the case of evolutionary bistability, two threshold sizes differ in ecological dynamics either by stable fraction of migratory tactic or showing two-year periodic fluctuation.


Assuntos
Migração Animal/fisiologia , Características de História de Vida , Salmão/fisiologia , Animais , Evolução Biológica , Tamanho Corporal , Masculino
13.
J Fish Biol ; 92(5): 1422-1434, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29573270

RESUMO

American shad Alosa sapidissima, an anadromous clupeid, exhibits variation in reproductive strategies, including semelparity and iteroparity. It provides an excellent model for studying the behaviour of germ cells in anadromous fish during their migration from sea to river. The vasa gene was characterized in A. sapidissima as a germ-cell marker to elaborate the process of germ-cell development and differentiation in anadromous species. A complementary (c)DNA fragment of 819 bp, partial open reading frame (ORF), was cloned by degenerate PCR and named as ASvas. In adult A. sapidissima, vasa transcript was exclusively detected in gonads by reverse-transcription (RT)-PCR. Through chromogenic in situ hybridization, the vasa messenger (m)RNA was specifically detected in primordial germ cells (PGC) in embryos and germ cells at early stages in ovary and testis. Besides, the cellular distribution profile of Vasa protein also proved that vasa gene could be used as a germ-line marker to trace the PGCs migration during embryogenesis and the germ-cell differentiation during gametogenesis in A. sapidissima. During embryogenesis, the migrating PGCs were clearly detected at tail-bud stage and the PGCs reached the genital ridge at the stage of pre-hatching stage in A. sapidissima embryos. During gametogenesis, the Vasa protein was dynamically expressed in differentiating germ cells at different stages in adult gonads. As far as we know, this is the first report to demonstrate the PGCs migration and germ-cell differentiation through vasa gene expression in the anadromous species. The findings will pave a way for investigating germ-cell development and maturation in the A. sapidissima and other anadromous fish.


Assuntos
Desenvolvimento Embrionário/genética , Peixes/embriologia , Gametogênese/genética , Células Germinativas/metabolismo , Animais , Diferenciação Celular , Feminino , Proteínas de Peixes/genética , Peixes/genética , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Marcadores Genéticos , Células Germinativas/citologia , Gônadas/metabolismo , Hibridização In Situ , Masculino , Ovário/citologia , Ovário/metabolismo , RNA Mensageiro/metabolismo , Testículo/citologia , Testículo/metabolismo
14.
Lipids ; 52(12): 1033-1044, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28965211

RESUMO

In several Russian northern lakes and rivers, Arctic cisco Coregonus autumnalis, least cisco C. sardinella, peled C. peled, tugun C. tugun, broad whitefish C. nasus, whitefish C. lavaretus and vendace C. albula were sampled in periods of officially permitted commercial fishery. Special attention was paid to contents (mg g-1 of wet weight) of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in muscle tissues (filets), which are essential for human nutrition. The highest values of EPA + DHA content in semi-anadromous fish and freshwater fish were recorded for C. autumnalis from the Yenisei River, 17.60 mg g-1 wet weight, and for C. lavaretus from the Sobachye Lake, 16.61 mg g-1 wet weight, respectively. Intra-genus variations of EPA + DHA contents of Coregonus species were from 1.87 to 17.60 mg g-1 wet weight. Since the congeneric species were genetically close to each other, the variations in EPA and DHA contents were thought to be caused primarily by ecological factors: migrational capability, type of feeding and trophic status of aquatic ecosystems. In general, the majority of studied species appeared to be of a high nutritive value for humans, although unfavorable environmental conditions could considerably diminish this value.


Assuntos
Ácidos Docosa-Hexaenoicos/análise , Ácido Eicosapentaenoico/análise , Peixes/metabolismo , Animais , Ácidos Docosa-Hexaenoicos/química , Ácido Eicosapentaenoico/química , Peixes/classificação , Lagos , Músculo Esquelético/química , Rios , Federação Russa
15.
Behav Processes ; 132: 76-84, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27720756

RESUMO

Many fish that are exposed to a threat release disturbance cues, which are chemicals that alert conspecifics to the presence of the threat. The release of disturbance cues has been well demonstrated in various species of laboratory-reared fish. Migratory fish species often exhibit increased cortisol levels and are exposed to numerous stressors during their migrations, which could trigger the release of disturbance cues. We tested the responses of wild migrating sockeye salmon (Oncorhynchus nerka) and pink salmon (O. gorbuscha) to the odours of disturbed and undisturbed conspecifics to determine whether these fish release disturbance cues following exposure to a simulated stressor. Furthermore, we tested the responses of sockeye salmon to water-borne cortisol, following evidence from past studies that this chemical is excreted through the gills of stressed fish, and speculation that endogenous correlates of stress might function as disturbance cues. We found that sockeye salmon avoid the odour of disturbed conspecifics, whereas pink salmon do not. Avoidance occurred in both female and male sockeye salmon, and was associated with an increase in plasma cortisol levels in females, but not in males. We also found no behavioural response to water-borne cortisol, which suggests this chemical does not act as an exogenous disturbance cue in sockeye salmon. Avoidance of disturbed conspecifics could limit exposure to risks during the sockeye salmon spawning migration, but could also delay the rate of migration and thereby accrue reproductive costs.


Assuntos
Migração Animal/efeitos dos fármacos , Sinais (Psicologia) , Hidrocortisona/farmacologia , Feromônios/farmacologia , Reprodução/efeitos dos fármacos , Salmão/fisiologia , Animais , Aprendizagem da Esquiva , Feminino , Hidrocortisona/sangue , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Salmão/sangue
16.
Evol Appl ; 9(8): 963-81, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27606005

RESUMO

As global change alters multiple environmental conditions, predicting species' responses can be challenging without understanding how each environmental factor influences organismal performance. Approaches quantifying mechanistic relationships can greatly complement correlative field data, strengthening our abilities to forecast global change impacts. Substantial salinity increases are projected in the San Francisco Estuary, California, due to anthropogenic water diversion and climatic changes, where the critically endangered delta smelt (Hypomesus transpacificus) largely occurs in a low-salinity zone (LSZ), despite their ability to tolerate a much broader salinity range. In this study, we combined molecular and organismal measures to quantify the physiological mechanisms and sublethal responses involved in coping with salinity changes. Delta smelt utilize a suite of conserved molecular mechanisms to rapidly adjust their osmoregulatory physiology in response to salinity changes in estuarine environments. However, these responses can be energetically expensive, and delta smelt body condition was reduced at high salinities. Thus, acclimating to salinities outside the LSZ could impose energetic costs that constrain delta smelt's ability to exploit these habitats. By integrating data across biological levels, we provide key insight into the mechanistic relationships contributing to phenotypic plasticity and distribution limitations and advance the understanding of the molecular osmoregulatory responses in nonmodel estuarine fishes.

17.
Mov Ecol ; 4: 18, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27429757

RESUMO

BACKGROUND: Mass migrations are among the most striking examples of animal movement in the natural world. Such migrations are major drivers of ecosystem processes and strongly influence the survival and fecundity of individuals. For migratory animals, a formidable challenge is to find their way over long distances and through complex, dynamic environments. However, recent theoretical and empirical work suggests that by traveling in groups, individuals are able to overcome these challenges and increase their ability to navigate. Here we use models to explore the implications of collective navigation on migratory, and population, dynamics, for both breeding migrations (to-and-fro migrations between distinct, fixed, end-points) and feeding migrations (loop migrations that track favorable conditions). RESULTS: We show that while collective navigation does improve a population's ability to migrate accurately, it can lead to Allee effects, causing the sudden collapse of populations if numbers fall below a critical threshold. In some scenarios, hysteresis prevents the migration from recovering even after the cause of the collapse has been removed. In collectively navigating populations that are locally adapted to specific breeding sites, a slight increase in mortality can cause a collapse of genetic population structure, rather than population size, making it more difficult to detect and prevent. CONCLUSIONS: Despite the large interest in collective behavior and its ubiquity in many migratory species, there is a notable lack of studies considering the implications of social navigation on the ecological dynamics of migratory species. Here we highlight the potential for a previously overlooked Allee effect in socially migrating species that may be important for conservation and management of such species.

18.
Genes (Basel) ; 7(2)2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26828521

RESUMO

Heat shock proteins play essential roles in basic cellular events. Spawning migration is a complex process, with significant structural and biochemical changes taking place in the adult gonad. To date, the molecular mechanisms underlying migration reproductive biology remain undetermined. In this regard, a full length HSP90AA1 comprising 2608 nucleotides from the anadromous fish Coilia nasus was characterized, encoding 742 amino acid (aa) residues with potential phosphorylation sites. HSP90AA1 mRNA transcripts were detected in all organs, especially in the gonad. Furthermore, the greatest transcript levels were found during the developmental phase, while the lowest levels were found during the resting phase. In addition, the strongest immunolabeling positive signal was found in the primary spermatocyte and oocyte, with lower positive staining in secondary germ cells, and a weak or absent level in the mature sperm and oocyte. Interestingly, HSP90AA1 was mainly located in the cytoplasm of germ cells. These results are important for understanding the molecular mechanism of anadromous migration reproductive biology. In combination with data from other fish species, the result of this present study may facilitate further investigations on the spawning migration mechanism.

19.
Proc Natl Acad Sci U S A ; 113(4): 868-73, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26504209

RESUMO

The past was a world of giants, with abundant whales in the sea and large animals roaming the land. However, that world came to an end following massive late-Quaternary megafauna extinctions on land and widespread population reductions in great whale populations over the past few centuries. These losses are likely to have had important consequences for broad-scale nutrient cycling, because recent literature suggests that large animals disproportionately drive nutrient movement. We estimate that the capacity of animals to move nutrients away from concentration patches has decreased to about 8% of the preextinction value on land and about 5% of historic values in oceans. For phosphorus (P), a key nutrient, upward movement in the ocean by marine mammals is about 23% of its former capacity (previously about 340 million kg of P per year). Movements by seabirds and anadromous fish provide important transfer of nutrients from the sea to land, totalling ∼150 million kg of P per year globally in the past, a transfer that has declined to less than 4% of this value as a result of the decimation of seabird colonies and anadromous fish populations. We propose that in the past, marine mammals, seabirds, anadromous fish, and terrestrial animals likely formed an interlinked system recycling nutrients from the ocean depths to the continental interiors, with marine mammals moving nutrients from the deep sea to surface waters, seabirds and anadromous fish moving nutrients from the ocean to land, and large animals moving nutrients away from hotspots into the continental interior.


Assuntos
Ecossistema , Alimentos , Distribuição Animal , Animais , Organismos Aquáticos , Comportamento Animal , Aves , Tamanho Corporal , Difusão , Extinção Biológica , Comportamento Alimentar , Peixes , Abastecimento de Alimentos , História Antiga , Comportamento de Retorno ao Território Vital , Mamíferos , Oceanos e Mares , Densidade Demográfica
20.
PeerJ ; 3: e1157, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26339539

RESUMO

Salmon and other anadromous fish are consumed by vertebrates with distinct life history strategies to capitalize on this ephemeral pulse of resource availability. Depending on the timing of salmon arrival, this resource may be in surplus to the needs of vertebrate consumers if, for instance, their populations are limited by food availability during other times of year. However, the life history of some consumers enables more efficient exploitation of these ephemeral resources. Bears can deposit fat and then hibernate to avoid winter food scarcity, and highly mobile consumers such as eagles, gulls, and other birds can migrate to access asynchronous pulses of salmon availability. We used camera traps on pink, chum, and sockeye salmon spawning grounds with various run times and stream morphologies, and on individual salmon carcasses, to discern potentially different use patterns among consumers. Wildlife use of salmon was highly heterogeneous. Ravens were the only avian consumer that fed heavily on pink salmon in small streams. Eagles and gulls did not feed on early pink salmon runs in streams, and only moderately at early sockeye runs, but were the dominant consumers at late chum salmon runs, particularly on expansive river flats. Brown bears used all salmon resources far more than other terrestrial vertebrates. Notably, black bears were not observed on salmon spawning grounds despite being the most frequently observed vertebrate on roads and trails. From a conservation and management perspective, all salmon species and stream morphologies are used extensively by bears, but salmon spawning late in the year are disproportionately important to eagles and other highly mobile species that are seasonally limited by winter food availability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA